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TRUNCATED TOEPLITZ OPERATORS ON FINITE
DIMENSIONAL SPACES

JOSEPH A. CIMA, WILLIAM T. ROSS, AND WARREN R. WOGEN

Abstract. In this paper, we study the matrix representations of compressions
of Toeplitz operators to the finite dimensional model spaces H2	BH2, where

B is a finite Blaschke product. In particular, we determine necessary and

sufficient conditions - in terms of the matrix representation - of when a linear
transformation on H2 	BH2 is the compression of a Toeplitz operator. This

result complements a related result of Sarason [6].

1. Introduction

If H2 is the classical Hardy space of the open unit disk D := {|z| < 1} and P
is the orthogonal projection of L2 = L2(∂D, dθ/2π) onto H2 (see [3] for the basic
definitions), one defines for ϕ ∈ L∞ the Toeplitz operator Tϕ on H2 by the formula

Tϕf = P (ϕf).

Recently, Sarason [6] initiated a study of truncated Toeplitz operators. These are
operators Aϕ defined on the model spaces

Kϑ := H2 ∩ (ϑH2)⊥,

where ϑ is an inner function, by the formula

Aϕf := Pϑ(ϕf).

Here Pϑ is the orthogonal projection of L2 onto Kϑ. In other words, Aϕ is the
compression of Tϕ to Kϑ. In [6, Thm. 4.1], the set

Tϑ := {Aϕ : ϕ ∈ L2 and Aϕ is bounded}
is characterized as follows: A bounded operator A on Kϑ belongs to Tϑ if and only
if there are functions g1, g2 ∈ Kϑ such that

(1.1) A = A∗zAAz + g1 ⊗ k + k ⊗ g2,
where

k(z) :=
ϑ(z)− ϑ(0)

z
and h1 ⊗ h2 denotes the rank-one operator

h1 ⊗ h2(f) = 〈f, h2〉h1.

Though the condition in (1.1) determines which bounded operators on Kϑ belong
to Tϑ, it is difficult to apply since it depends on the existence of the functions
g1, g2 ∈ Kϑ. In this paper we will obtain, in the special case when Kϑ is finite
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dimensional, a more tangible condition. A finite n-dimensional model space takes
the form KB , where B is a finite Blaschke product with zeros {a1, · · · , an}. It is
well known that KB consists of all functions of the form

(1.2) f(z) =
p(z)∏n

j=1(1− ajz)

where p is any polynomial of degree at most n− 1. Furthermore,

(1.3) kλ(z) :=
1−B(λ)B(z)

1− λz
is the reproducing kernel for KB in that kλ ∈ KB for all λ ∈ D and

f(λ) = 〈f, kλ〉 ∀f ∈ KB .

In the above formula, the inner product is the L2 inner product

〈f, g〉 =
∫

T
f(ζ)g(ζ)

|dζ|
2π

,

where T := ∂D. Using (1.2) and interpolating, it is easy to show that given distinct
points λ1, · · · , λn ∈ D, the set {kλ1 , · · · , kλn} is a basis for KB . If we assume
that the zeros a1, · · · , an of B are distinct, a (non-orthonormal) basis for KB is
{ka1 , · · · , kan} where

kaj (z) =
1

1− ajz
.

By elementary linear algebra, the complex vector space of all linear transforma-
tions on KB has dimension n2. By Sarason [6, Thm. 7.1], TB has dimension 2n−1.
This leads to the natural question as to which linear transformations on KB belong
to TB . Our first theorem is the following.

Theorem 1.4. Let B be a finite Blaschke product of degree n with distinct ze-
ros a1, · · · , an and let A be any linear transformation on the n-dimensional space
KB. If MA = (ri,j) is the matrix representation of A with respect to the basis
{ka1 , · · · , kan}, then A ∈ TB if and only if

(1.5) ri,j =
(
B′(a1)
B′(ai)

)(
r1,i(a1 − ai) + r1,j(aj − a1)

aj − ai

)
, 1 6 i, j 6 n, i 6= j.

Remark 1.6. (1) Theorem 1.4 says that the matrix representation of a trun-
cated Toeplitz operator is determined by the entries along the main diago-
nal and the first row. Notice how such matrices have dimension 2n− 1 as
they should since TB has dimension 2n− 1.

(2) There is nothing special about the first row. For example, a similar result
can be obtained where the representing matrix is determined by the entries
along the main diagonal and the first column.

(3) The proof of this theorem will also yield an algorithm for determining the
symbol ϕ from the matrix entries.

(4) When n = 2, the matrix (
r1,1 r1,2
r2,1 r2,2

)
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is the matrix representation of a truncated Toeplitz operator with respect
to the basis {ka1 , ka2} if and only if

B′(a1)r1,2 = r2,1B′(a2).

Although {ka1 , · · · , kan} is a natural basis for KB , it is not an orthonormal one.
An important orthonormal basis for KB is the Clark basis {vζ1 , · · · , vζn} which are
the normalized eigenvectors corresponding to the eigenvalues ζj ∈ T for the Clark
unitary operator Uα where α ∈ T. This is formed as follows: Since B is a finite
Blaschke product, it is analytic in an open neighborhood of D− and hence, for each
ζ ∈ T, the kernel function kζ defines an analytic function on D. It is routine to
show that kζ ∈ KB and

(1.7) f(ζ) = 〈f, kζ〉 ∀f ∈ KB .

For each α ∈ T a routine exercise, using the fact that B′ never vanishes on T, will
show that there are exactly n distinct points ζ1, · · · , ζn ∈ T for which

B(ζj) =
α+B(0)
1 +B(0)α

, j = 1, · · · , n.

Another routine exercise will show that

‖kζs‖2 = |B′(ζs)|
and so we form the normalized kernel functions

(1.8) vζs :=
kζs√
|B′(ζs)|

.

The points ζ1, · · · , ζn turn out to be the eigenvalues of the Clark unitary operator,

(1.9) Uα := Az +
B(0) + α

1− |B(0)|2
(k0 ⊗ k̃0)

with corresponding eigenvectors vζ1 , · · · , vζn . (Here and for what follows below,

(1.10) k̃λ(z) :=
B(z)−B(λ)

z − λ
.

One can show [6] that k̃λ ∈ KB for all λ ∈ D.) Thus {vζ1 , · · · , vζn} is an orthonor-
mal basis for KB . The operators Uα, first explored by Clark [2], have been well
studied and generalized [1, 5]. By the spectral theorem, we know that the ma-
trix representation of Uα with respect to this basis is diag(ζ1, · · · , ζn). Our next
theorem replaces the basis {ka1 , · · · , kan} of kernel functions with the Clark basis
{vζ1 , · · · , vζn}.

Theorem 1.11. Suppose B is a finite Blaschke product of degree n and α ∈ T.
Let A be any linear transformation on the n-dimensional space KB. If MA = (ri,j)
is the matrix representation of A with respect to the Clark basis {vζ1 , · · · , vζn}
corresponding to α, then A ∈ TB if and only if

(1.12) ri,j =

√
|B′(ζ1)|
ζj − ζi

(
ζj
ζi

1√
|B′(ζj)|

(ζ1 − ζi)r1,i +
1√
|B′(ζi)|

(ζj − ζ1)r1,j

)
for all 1 6 i, j 6 n, i 6= j.

Remark 1.13. (1) Exactly as in the previous theorem, the matrix representa-
tion of a truncated Toeplitz operator is determined by the entries along the
main diagonal and the first row.
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(2) The proof of this theorem will also yield an algorithm for determining the
symbol ϕ from the matrix entries.

(3) When n = 2, the matrix (
r1,1 r1,2
r2,1 r2,2

)
is the matrix representation of a truncated Toeplitz operator with respect
to the basis {vζ1 , vζ2} if and only if

ζ1r1,2 = ζ2r2,1.

If we alter the basis {vζ1 , · · · , vζn} slightly, we get even more. Indeed, let

(1.14) βα :=
α+B(0)
1 +B(0)α

, ws := e−
i
2 (arg(ζs)−arg(βα)), eζs :=

1√
|B′(ζs)|

wskζs .

Garcia and Putinar in [4] show that {eζ1 , · · · , eζn} is an orthonormal basis which
not only diagonalizes the Clark operator Uα but has the additional property that
the matrix representation of any truncated Toeplitz operator with respect to this
basis is complex symmetric. A matrix M is complex symmetric if M = M t, where
t denotes the transpose. This next theorem replaces the Clark basis {vζ1 , · · · , vζn}
with this new basis {eζ1 , · · · , eζn}.

Theorem 1.15. Suppose B is a finite Blaschke product of degree n and α ∈ T. Let
A be any linear transformation on the n-dimensional space KB. If MA = (ri,j) is
the matrix representation of A with respect to the basis {eζ1 , · · · , eζn} corresponding
to α, then A ∈ TB if and only if MA is complex symmetric and
(1.16)

ri,j =

√
|B′(ζ1)|
w1

1
ζj − ζi

(
wj√
|B′(ζj)|

(ζ1 − ζi)r1,i +
wi√
|B′(ζi)|

(ζj − ζ1)r1,j

)
for all 1 6 i, j 6 n, i 6= j.

Remark 1.17. When n = 2, the theorem says that any complex symmetric 2 × 2
matrix represents a truncated Toeplitz operator with respect to the basis {eζ1 , eζ2}.
This was previously observed by Sarason [6, §5].

In [6, §12], Sarason began a discussion on how the Clark unitary operators some-
how generate the truncated Toeplitz operators (see Remark 3.3 below). In finite
dimensions, we have the following result.

Theorem 1.18. Let B be a Blaschke product of degree n and let α1, α2 ∈ T with
α1 6= α2. Then for any ϕ ∈ L2, there are polynomials p, q of degree at most n so
that

(1.19) Aϕ = p(Uα1) + q(Uα2).

Remark 1.20. (1) Sarason in [6, Thm. 10.1] proves that p(Uα) ∈ TB for every
polynomial p and every α ∈ T. In fact, Theorem 1.18 can be gleaned from
the proof of Thm. 7.1 in [6] along with the spectral theorem for unitary
operators.

(2) We will see in Remark 3.3 that, in a certain sense, one can compute the
polynomials p and q in (1.19) from ϕ.
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2. Proof of Theorem 1.4

For a given ϕ ∈ L2, decompose ϕ as

ϕ = ψ1 + ψ2 + η1 + η2, ψ1, ψ2 ∈ KB , η1, η2 ∈ BH2.

Now write Aϕ as
Aϕ = Aψ1+ψ2

+Aη1+η2

and notice from [6, Thm. 3.1] that the second term on the right is zero. Thus

(2.1)
{
Aψ1+ψ2

: ψ1, ψ2 ∈ KB

}
= TB .

We are assuming that the zeros a1, · · · , an of B are distinct and so the functions

k̃aj (z) =
B(z)
z − aj

, j = 1, · · · , n

form a basis for KB and

k̃aj (z) =
(
B(z)
z − aj

)
, j = 1, · · · , n

form a basis for KB .
From the above discussion and (2.1), TB consists of Aϕ, where

(2.2) ϕ(ζ) =
n∑
j=1

cj

(
B(ζ)
ζ − aj

)
+

n∑
j=1

dj
B(ζ)
ζ − aj

and cj , dj are arbitrary complex numbers. Combine this with the identity

(2.3) kλ ⊗ k̃λ = A B
z−λ

.

[6, Thm. 7.1] and its adjoint to see that TB consists of operators of the form

(2.4)
n∑
j=1

cjkaj ⊗ k̃aj +
n∑
j=1

dj k̃aj ⊗ kaj ,

where cj , dj are complex numbers.
In a moment, we will find the matrix representation of the above operator with

respect to the basis {ka1 , · · · , kan}. Before doing this, we need a few formulas.
Using the reproducing property of kaj and the definitions of kaj (1.3) and k̃aj
(1.10) we obtain

(2.5) 〈k̃ai , kaj 〉 =
{

0, if i 6= j;
B′(aj), if i = j. and 〈k̃ai , k̃aj 〉 =

1
1− ajai

.

We know, since {ka1 , · · · , kan} is a basis for KB , that

k̃aj =
n∑
s=1

hs(aj)kas

for some complex constants hs(aj). Using (2.5) one can compute hs(aj) and get

(2.6) k̃aj =
n∑
s=1

1
B′(as)

1
1− asaj

kas .
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We are now ready for the proof in Theorem 1.4. Let Aϕ be of the form in (2.4)
and let

(bs,p)16s,p6n = MAϕ

be the matrix representation of Aϕ with respect to the basis {ka1 , · · · , kan}. We
want to show that

(2.7) bs,p =
(
B′(a1)
B′(as)

)(
b1,s(a1 − as) + b1,p(ap − a1)

ap − as

)
, 1 6 s, p 6 n, s 6= p.

A computation with (2.4), (2.5), and (2.6) will show that

Aϕkap = cpB′(ap)kap +
n∑
s=1

 1
B′(as)

n∑
j=1

dj
(1− asaj)(1− apaj)

 kas .

Thus

bs,p = cpB′(ap)δs,p +
1

B′(as)

n∑
j=1

dj
(1− asaj)(1− apaj)

.

The identities in (2.7) follow from the formula

1
(1− asaj)(1− apaj)

=
−as

ap − as
1

1− asaj
+

ap
ap − as

1
1− apaj

.

One direction of the proof is now complete.
For the other direction, let V denote the set of all matrices satisfying (1.5). These

identities show that each M = (ri,j) ∈ V is determined uniquely by its entries along
the diagonal and the first row. Furthermore, M is a linear function of these entries.
It follows that V is a 2n− 1 dimensional vector space. We have already shown via
(2.7) that

V1 := {MAϕ : Aϕ ∈ TB} ⊂ V
and, from Sarason’s theorem, V1 has dimension 2n − 1. Therefore, V1 = V . The
proof is now complete.

Remark 2.8. (1) Note that {D1, · · · , Dn, R2, · · · , Rn} is an explicit basis for
V . Here Dk = diag(0, · · · , 1, 0, · · · , 0) and Rk is the matrix satisfying (1.5)
with r1,k = 1, r1,j = 0 if j 6= k, and rj,j = 0 for all j. For example, if n = 3,
then

D1 =

 1 0 0
0 0 0
0 0 0

 , D2 =

 0 0 0
0 1 0
0 0 0

 , D3 =

 0 0 0
0 0 0
0 0 1

 ,

R2 =

 0 1 0
B′(a1)
B′(a2)

0 (a1−a2)B
′(a1)

(a3−a2)B′(a2)

0 (a2−a1)B
′(a1)

(a2−a3)B′(a3)
0


∗

R3 =

 0 0 1
0 0 (a3−a1)B

′(a1)
(a3−a2)B′(a2)

B′(a1)
B′(a3)

(a1−a3)B
′(a1)

(a2−a3)B′(a3)
0


∗

In the above, ∗ denotes complex conjugation of all the entries of the matrix
(not the conjugate transpose).
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(2) If

Pj :=
1

B′(aj)
kaj ⊗ k̃aj ,

notice from the above proof that

P 2
j = Pj ,

n∑
j=1

Pj = I, PjPl = δj,lPj , TB = span{Pj , P ∗j : j = 1, · · · , n}.

Similar identities hold for

P ∗j =
1

B′(aj)
k̃aj ⊗ kaj .

These identities exhibit the linear dependence of the set of 2n operators
{Pj , P ∗j : j = 1, · · · , n}. A little work will show, for example, that the set
{Pj , P ∗l : j = 2, · · · , n; l = 1, · · · , n} forms a basis for TB consisting of rank
one idempotents.

(3) Using similar techniques, one can compute Aϕ from (2.4) with respect to
the basis {k̃a1 , · · · , k̃an}. In this case, the bs,p entry of this matrix is

bs,p = dpB
′(ap)δs,p +

1
B′(as)

n∑
j=1

cj
(1− asaj)(1− apaj)

and the necessary and sufficient condition for a matrix (rs,p) to represent
(with respect to the basis {k̃a1 , · · · , k̃an}) something from TB is

rs,p =
B′(a1)
B′(as)

(
r1,s(a1 − as) + r1,p(ap − a1)

ap − as

)
, 1 6 s, p 6 n, s 6= p.

3. Proof of Theorem 1.18

The following lemma can be gleaned from [6, Thm. 7.1]. We include a proof
here.

Lemma 3.1. Suppose w1, · · · , w2n−1 are distinct points of T. Then the rank-one
operators

kw1 ⊗ kw1 , · · · , kw2n−1 ⊗ kw2n−1

are linearly independent.

Proof. Suppose c1, · · · , c2n−1 are complex constants such that

(3.2)
2n−1∑
j=1

cjkwj ⊗ kwj = 0.

Since kw1 , · · · , kwn are linearly independent, there is a g ∈ KB such that

〈kw1 , g〉 = 1, 〈kwj , g〉 = 0, j = 2, · · · , n.
Apply to this g the operator on the left hand side of (3.2) to see that

c1kw1 +
2n−1∑
j=n+1

cj〈g, kwj 〉kwj = 0.

However, the vectors kw1 , kwn+1 , · · · , kw2n−1 are linearly independent and so c1 = 0.
Now take an appropriate g to show that c2 = 0 and so on. �
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Here is the proof of Theorem 1.18. Let α1, α2 ∈ T with α1 6= α2. Let ζ1, · · · , ζn
and η1, · · · , ηn be the points in T so that

B(ζj) = βα1 :=
α1 +B(0)
1 +B(0)α1

, B(ηj) = βα2 :=
α2 +B(0)
1 +B(0)α2

, j = 1, · · · , n.

Notice that the points ζ1, · · · , ζn, η1, · · · , ηn are distinct and recall that {vζ1 , · · · , vζn}
is a orthonormal basis forKB of eigenvectors of Uα1 . In a similar way, {vη1 , · · · , vηn}
is a orthonormal basis for KB of eigenvectors of Uα2 . Let

Pζj := vζj ⊗ vζj , Pηj := vηj ⊗ vηj , j = 1, · · · , n

and observe that these operators are the orthogonal projections onto the eigenspaces
spanned by kζj (respectively kηj ). In [6, Thm. 5.1] it was shown, for any ζ ∈ T,
that

kζ ⊗ kζ = Akζ+kζ−1

and so these projections Pζj , Pηj also belong to TB . Furthermore, by the spectral
theorem for unitary operators, we have, for any analytic polynomials p and q,

p(Uα1) =
n∑
j=1

p(ζj)vζj ⊗ vζj , q(Uα2) =
n∑
j=1

q(ηj)vηj ⊗ vηj .

and so p(Uα1), q(Uα2) ∈ TB .
Then, to show that

TB =
∨
{(Uα1)i, (Uα2)j , 1 6 i, j 6 n},

it suffices to prove that

TB =
∨
{Pζj , Pηj : j = 1, · · · , n},

which follows directly from Lemma 3.1 and the fact that TB has dimension 2n− 1.

Remark 3.3. (1) Theorem 1.18 says that any Aϕ takes the form p(Uα1)+q(Uα2)
for some polynomials p and q. We remark here that we can determine p
and q from the symbol ϕ provided it is chosen in a particular way. To see
how to do this, notice in the proof of Theorem 1.18, how we have shown
that ∨

{kζj ⊗ kζj , kηj ⊗ kηj : j = 1, · · · , n} = TB .

In fact any 2n− 1 of these will form a basis for TB . But since

kζ ⊗ kζ = Akζ+kζ−1,

every operator in TB can be written as Aϕ where

ϕ =
n∑
j=1

cj(kζj + kζj − 1) +
n∑
j=1

dj(kηj + kηj − 1).

Choose polynomials p and q of degree at most n for which

p(ζj) =
√
|B′(ζj)|cj , q(ηj) =

√
|B′(ηj)|dj , j = 1, · · · , n.

Then we have
Aϕ = p(Uα1) + q(Uα2).
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Indeed, from the spectral theorem,

p(Uα1) =
n∑
j=1

p(ζj)vζj ⊗ vζj , q(Uα2) =
n∑
j=1

q(ηj)vηj ⊗ vηj .

The result now follows.
(2) Sarason [6, § 12] began a discussion on how the Clark unitary operators

generate Tϑ for a general inner function ϑ. He used the Clark theory and
some recent results of Aleksandrov and Poltoratski to prove, for a bounded
Borel function ϕ and an inner function ϑ, the following integral formula:

(3.4) Aϕ =
∫

T
ϕ(Uα)

|dα|
2π

,

where the above integral is understood in the weak sense, i.e.,

〈Aϕf, g〉 =
∫

T
〈ϕ(Uα)f, g〉 |dα|

2π
, f, g ∈ Kϑ.

When ϕ ∈ L2 (not necessarily bounded), there is also a version of this
formula, although it must be interpreted in a very special way. Sarason
also proves that Tϑ is closed in the weak operator topology. Is it the case
that

(3.5) Tϑ :=
∨
{q(Uα) : q is a trigonometric polynomial;α ∈ T}?

In the above,
∨

is the closed linear span in the weak operator topology.
This is certainly true when ϑ is a finite Blaschke product (Theorem 1.18).
In order to prove (3.5), it suffices, by means of (3.4), to prove that {Aϕ :
ϕ ∈ L∞} is dense (weak operator topology) in Tϑ. As mentioned earlier, it
is unknown whether or not the above set is actually equal to Tϑ.

4. Proof of Theorem 1.11 and Theorem 1.15

Fix α1, α2 ∈ T with α1 6= α2. Let {ζj , ηj : j = 1, · · · , n} be the points of T for
which

B(ζj) = βα1 , B(ηj) = βα2 , j = 1, · · · , n.
We know from Remark 3.3 that any member of TB takes the form

n∑
j=1

cjkζj ⊗ kζj +
n∑
j=1

djkηj ⊗ kηj

for some complex constants cj , dj . Let eζs = wsvζs , where

(4.1) ws = e−
i
2 (arg(ζs)−arg(βα1 )).

To prove Theorem 1.15, let us compute〈 n∑
j=1

cjkζj ⊗ kζj +
n∑
j=1

djkηj ⊗ kηj

 eζp , eζs

〉
,

the matrix representation of this operator with respect to the basis {eζ1 , · · · , eζn}
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Since {eζ1 , · · · , eζn} is an orthonormal basis for KB , every f ∈ KB has the
‘Fourier’ expansion

f(z) =
n∑
s=1

〈f, eζs〉eζs(z) =
n∑
s=1

ws√
|B′(ζs)|

f(ζs)eζs(z)

and so

(4.2) 〈f, g〉 =
n∑
s=1

f(ζs)g(ζs)
|B′(ζs)|

, f, g ∈ KB .

First notice that

eζs(ζq) =
ws√
|B′(ζs)|

kζs(ζq) =
{
ws
√
|B′(ζs)|, if s = q;

0, if s 6= q.

From the above inner product formula in (4.2), we have〈
(kζj ⊗ kζj )eζp , eζs

〉
=

n∑
q=1

((kζj ⊗ kζj )eζp)(ζq)eζs(ζq)
|B′(ζq)|

= ((kζj ⊗ kζj )eζp)(ζs)
ws√
|B′(ζs)|

=
ws√
|B′(ζs)|

〈eζp , kζj 〉kζj (ζs)

=
ws√
|B′(ζs)|

wp√
|B′(ζp)|

kζp(ζj)kζj (ζs)

=
{
|B′(ζs)|, if s = p = j;
0, otherwise.

In a similar way,

〈(kηj ⊗ kηj )eζp , eζs〉 =
ws√
|B′(ζs)|

wp√
|B′(ζp)|

kζp(ηj)kηj (ζs)

=
ws√
|B′(ζs)|

wp√
|B′(ζp)|

1−B(ζp)B(ηj)
1− ζpηj

1−B(ηj)B(ζs)
1− ηjζs

=
ws√
|B′(ζs)|

wp√
|B′(ζp)|

1− βα1βα2

1− ζpηj
1− βα2βα1

1− ηjζs

= |1− βα2βα1 |2
ws√
|B′(ζs)|

wp√
|B′(ζp)|

1
1− ζpηj

1
1− ηjζs

= |1− βα2βα1 |2
ws√
|B′(ζs)|

wp√
|B′(ζp)|

1
1− ζpηj

1
1− ηjζs

(−ηj)ζp
(−ηj)ζp

= −ηj |1− βα2βα1 |2
ws√
|B′(ζs)|

wpζp√
|B′(ζp)|

1
ηj − ζs

1
ηj − ζp

The definition of wp from (4.1) yields the identity

ζp = βα1wp
2.

Use this identity to manipulate the last line of the above expression to

−βα1ηj |1− βα2βα1 |2
ws√
|B′(ζs)|

wp√
|B′(ζp)|

1
ηj − ζs

1
ηj − ζp

.
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Putting this all together, we get〈 n∑
j=1

cjkζj ⊗ kζj +
n∑
j=1

djkηj ⊗ kηj

 eζp , eζs

〉

= cp|B′(ζp)|δs,p − βα1 |1− βα2βα1 |2
n∑
j=1

ηjdj
ws√
|B′(ζs)|

wp√
|B′(ζp)|

1
ηj − ζs

1
ηj − ζp

.

Using the partial fraction decomposition
1

ηj − ζs
1

ηj − ζp
=

1
ζs − ζp

(
1

ηj − ζs
− 1
ηj − ζp

)
,

one can verify the identities in (1.16). Thus the matrix representation of any
truncated Toeplitz operator - with respect to the basis {eζ1 , · · · , eζn} - satisfies the
conditions in (1.16). The proof of the converse is nearly the same as the proof of
the converse in Theorem 1.4.

Using similar calculations as in the proof of Theorem 1.15, one proves that〈 n∑
j=1

cjkζj ⊗ kζj +
n∑
j=1

djkηj ⊗ kηj

 vζp , vζs

〉

= cp|B′(ζp)|δs,p − βα1 |1− βα2βα1 |2
n∑
j=1

ηjdj
1√
|B′(ζs)|

ζp√
|B′(ζp)|

1
ηj − ζs

1
ηj − ζp

.

Now follow the rest of the proof of Theorem 1.15 to prove Theorem 1.11.
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