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Chapter I
Statement of the Problem

Our purpose In this study is ¢0 give a oritical
~exposition of Bertrand Avthur Russell's logico-mathematical
philosophy. The thesls,which is the cors of a1l his work

on this subjeo'b;is the contention that logic and pure mathe=
matics form a continuous whole, or as Russell himself states
its “They differ as boy and man: logle is the youth gt
mthematies and mathematics 1s ths manhood of logle;"

In order to demonstrate the validity of hils thesis,
1t was necessary for Russell to define what he meant by
Vpure mathema tics, to develop his logical calculus, and to
demonstrats that all pure mathematics {including geometry)

 could be deduced from the principles of his loglc. It is

neceasary for us to consider sach of these subjects.

- The primary problem with which we are concerned
in this study 1s to determine whether or not Russell's proof,
or demonstration, of his thesis is valid, If we determine
‘that his proof is valid, then it follows that his thesis
‘48 valld also;, but, 1f we determing that his proof 1s ine
valid, it does not necessarily follow that the thesis ia
“4nvalid also, If wo reach the latter conclusion, we can

1. Introduction to Mathematical Philosophy (1919), p. 194,



only say that Russell has not proved his thesis, but this
does not mean that the thesis itself is not true. For this
regson we aay that our problem 1g an exemination of his

proof and not of his thesis. Paremnca we find that his
proof is vallid, then wo will conclude that the ;thpaié. is
valid alsos

In addition to these matters related directly to

‘the eatabliabmanc of his thesis, we smu congider the hise
_tor'y of the development of his thesls and the phnosaphiaalt
importance of ma thems tical logic.
| . Thus our study consists of four partst (1). the
histm:y of the development of Ruasall*s loglao«mathematicai,
thesis, ‘(2). Russell's establishment of his thesis, (3)e
examination of hia proof of his thesis, and (4). the philo=
sophical importance of logico-mthematical philosophye
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Chapter II

Russell's Logico-Mathematical Thesis and Its History

The intellectual beginnings of Barti’ami Arthur Ruse
sell (1872 -~ __ ) were in loglc and mathematiocs and it is in
this feld that he has done his most signiffcant work snd has
won for himself a worthy name smong the immortals of all
agese Hia book, done in aollabomtion wlth Alfred K. Whites
head, Principia Mathematich, which rapresenta his ma‘t:ure
work in mathematical logloe, uéut;ea among the one hundred

greatest books of civilization. Russell's work in this field
- began very early, being influenced chiefly by Bradleyt's logle
until bout 1898, when he was forced to change his opinions
due to arguments on philoaaﬁhy with G. BE. Moore. A% the age
of twenty«four years, he published his firat article which
was entitled "The Logic of Geometry." # It was not until

- ‘the publiaation of the article "Recent Work on tha Principles
of Mathema tlcs" in the Intemational Monthly (1901) that the |

influence of Peano upon him was revealed. From the time of
his first article in 1896 until the publlication of Introe
duction to Mathematical Philosophy (193‘9),@1::11 he wrote

1.5t Jobn's College, Annapolia, Md., has a uns.que CUDw
riculum in which the four years work for the B. A« degree
consists of mastering the one hundred greatest books of
eivilizgation, Principls Mathematica 1s included in this
.13sb., Bee Life Hagazine, Feb. b, 1940, pp. 61-67,
2. Mind, n.s., vol. 5 (1896), pps 1=23. This is Russell's
iirst artiole as far as I can determine by Poole's Index
Yo Periodical Literaturs.
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dﬁring his four and one ‘halzf‘ months imprisonment in 1918,

his chief contributions were in the field of mathematical
logice During this period there appeared, in addition to
numerous arﬁioles on the mxbjaet, the following bookst (1)»

| An Essay on the Founa.ations of Geometry (1897)3 (2), A A
Critﬁ.eal Exposition of the Philoscph; of Ixeﬁmis {1900) ,
which might bave been entitled A A Study of I.aibniz’s Logie
-and Mathemtios without doing any injustice worthy of note
%o Lts contentsj (3)s The Principles of Mathematics (1905);
in uollabomtion with ?mi.i:ehaad, Prinaipia Mathematica, vol,
1 (1910), vols 8 (1912)1 vols 3 (1913)3 and (4). Inbroduction
to Mathematical Philasep!g (1919); | R
' . The primary theaia of el theae logicaamthemtical

works is that pnra mathematics and logic are memzca:., oy
as he statea in the prei‘ace w the 1903 adi.tinn of Prinéiu
ples of Mathematiocs, his objective in thia beok (and M; is
the aame in all of them) 15 "the prcoi‘ that all pure matha..

: matics daals amlusively with concepta definable 1:1 tema af’
a vary amall mmber of mndamenﬁal logleal eonoepts, and
that all its propbsitions are deducibla fmm a very small
n:umbar of fundement:al logieal yrmcipleae This thesis wiin
the i damohaﬁrabi’ﬂh of it in coll&bomt&oﬁ withﬁ Whitehead
in Prﬂ.naigia Kathamatical by strict ;ymbolia raasonmg with

"all t.he certainty and praoiaicm of which ma.thematioal dsm-
onstrat:!.ons are capable,‘* 18 Russellls greatost aehzevement.
| In pmving {or should we say demnstrabing?) ths.a
i:heais, a new anienca hes been perfected, which is known
as"mathematical"{or symbolic) logics This sclence is de=
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fined for us by Russell himself in this way: Y8y the name
tmathematical logict...I will denote any 1ogs.u§1 theory
'ﬁhoae:objéct. 15 the snalysis and deduction of 'a.rithmatiu and
gemetr{ by means of concepts which belong evidently to
logles” o
Althop.gh we have called t;h_ivisf‘ Va‘r'ave‘w science; let
us hasten to add that work had been done previously' on the
subjects The idea that loglc md mathematics come from the
same ronts mist have been folt aven by Euclid and his dise
ciples, since what they called "Cmmnon Fotions" are i‘omu...
lations of 1:3313&1 prmcsiplea ’ and the- eharacteriatics ot‘
apaca are deaeri‘bed in the aafinitionﬁ and pustmlates. But
- 1% was not until the time of Leibniz that; the significance
~ of this kinahip s a.ctually ralt.; The history of the. sub«»
jec‘b propax*ly begins with him. Leibnﬁ.z ‘has ?hilalethes i
in the New Easala on _the Humen Understanding, to say: "I’

begin to form for myself a wholly different idea of logic
from that"mich I formerly had.»r I regarded 1t as & a'cholar‘fa
diversicn,} but I now see that, in the wa.# you un&arétand

1t, 1t is like 8 universal mathematics." 3 :In this statement
we 806 that he had caught e glimpse of the larger outlines
of the subjeot, ut ha never understood the difficulties
involved and he contributed little o the successful works
ing out of the detallss Hov:evef, he'am_aﬁvooata two

necessary features of the aaﬁ.enamv He abntenc’iad for a 'aa;

| I""ﬁiféaeﬁ "The *'E‘i'loecphi.cal Importance of Mabhematical
Logie," chniat, vols 23 (1913) , p« 481,

2, See C. I, Lowis, A Survey of Symbolle goéic (Berkeley,
Cal,: University of Ca ornis Press, . Pe e

3+ Book IV, Chapter XVII, Paragraph 93 quoted 3.n Ivid, p.5¢



nive:*sal madium for the axpreesim of sclence and for a
calculus of reasoning “deaigned to display the moat uni-»
versal relat-ions of acientifia ccneepta and tw afford

some ayatematic abridgmenh of the labor cf rational immatiu
gation in all fields; much aa!mathamgtical formulae abridge
the labor of dealing with quantity and m:mbem”l For the;
universal medium he raaommanded an ideograpme lenguage
rather than phonographic. He wantea certain i‘undamental
eharactgré or symbols which would be the "alphabet of human
thought,* and these and combinations of them itould form the
- symbolism of the new science. His’hopé has been mggly
realized in Peano, Russell and Whitehead, but Leibniz, parte
1y due to his own nature and par’alj" beoause he spen‘t his
time trying to win learned soaiaﬁieg to the acceptance of
his thesis and thus instigate & revélum;m in tim methods
of solence in a short time, neglected the more 1imi ted task
of working out the details and ﬁhe technimia necessary to
prove his theory feaé,:}.bie‘ _ -

Imanuel Kant felt very keenly ‘the kinship bstween
loglc and mathematics. He may have been fulded in his by
his greaﬁ eontsmpomry, Lam‘oarh. But he was prevented from
identifying logic and pure mathematics 11kaa Russell has done
because of three factorss First, he thought of 163* cal |
‘proposl tiong as being Qnalyt:.c and mathematiaal propesitions

15 Ge Ls Lewia;‘ QE‘ Qitd; p;aﬁ -



as synthetlc, tut 1% has been proved that loglc is just

“as synthetis as all other kinds of tmth.l Beocnd; in Kant's
time formal {or symbolic) 163‘10 »we_.s in a very undeveloped
stage in comparison to the work of the past century. XKant
himself held thzé.t no great advance had been made in logic
since Aristotle, and Aristotle d1d not go beyond the syllow
3iams,‘-"'rhis was cortainly inadequate for mathematicss And,
third, mathematical reasoning itself was very inferior in
Xent's day to what it was whon Russell began his work. Mathew
matics had not, at that time, been completely divorced from
empiricisms Russell says, in'e. drastic statement, "there
probably did not exist, in the eighteenth century, any aingle
légically adrz'eot pi‘eéi of mathematieal reasoning, that is

to say, an's' raasoning whicn aorrectly deduced its regulta
i'z-om the axplioit premises mm down by the author.”

Sinca the ts.ma of Kant, mathematicians and lo=
glolang allke have felt the need for reexamination of the
nature of thmghtncpemtim and of axtending concepts of
‘logic in mich the pame way*aa matagaometr:.ciana endeavored
to eonatmct & pangemaatry which v:cmld be free from Fucli=
dean spaces The ﬁrst gmat mrk to adVanca Ariatotelian
logic was The laws of Thaggg (1854) by Georga Booles Ruge s
sell says that "pure mathematics was discovered by Beole..‘,
but Boole asaerted time snd agam that h&.s book was not on

1"Tes Thssolly b Critleal %aaibﬁm of fhe Philosophy
- of

Leibtniy (1500), pps 4
2, Principles of Maiuﬁﬁgati cg {1938 edltion, which will be
" Wsed throughout ©

his work, since it daes not differ from
the 1903 edition except for a new Introduction) pe 457,
%."Reocent Work on the Principles of Math.} Int, Monthly,

vol., 4 (1901), p.83.
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ﬁétheﬁnti‘csl;{ Russell says that this heiief taf Boolets was
dne to 'hhe faet that he was too modest to think that ha was
the firat person Wha hed ever m-ithen a book on puz'a ma.thew
matioss smae the publi.aation of Boole's bonk (1854.»}, which
was & significant ﬁqta in the history r;g‘ :Lc:gia becanse 1t
marked the end of a iperied vwhiah had been dominated almost
‘exclusively by Sr&'akoﬁleg iogi(ciané"hava realiged the ine
sufficiency of Ariatotelia_n methods. they have geen the
need of dsciphering the nature of thought in its operations,
and they haﬁs_ra attempted "to exhiblt the funetlions of reason
in formﬁlaa, or in gfgphiu, presentations, or in algebreilc
,nbtation’s."l

The ehief workera in thi.a fiald prior to Russell
were Emst Shroedem,; Charles S ‘Peirce, Giuseppe .Peano, and
‘Frege. It-1a interesting ﬁha.t.}tf'gage; developed theories
’v'ery ai'milar to those of Rﬁ’ssall; but Rizssel}. arrived at
his mde‘pendently for the moat parte fmssel‘& very expliclte-
iy reaagniges his indabtednesa to these, espeeiall:r to Peano,
whom he calls the great master of formal rgaaoning. . Maeh
more progress was made in formal logic in each decade from
1850 to 1916 than in all the centuries from Aristdtle to

Booles Principis Mathematlca stands as the great capstone
or the culmination of all the work that had been dons on
the gubject in sll of its past hletory.

I ? ﬁarua TThe Nature of Togical and Mathematical Thought,

Mcnist, V01¢ 20 (1910)’ Pe 43
2, TRecent Work on the Principles of ﬂathematioa," Int,

Hon thlxp vol. 4 (1901)* Pas 86,
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The great advance in the sclence of logle during
the last helf of the nineteenth century and the first two
decades of the twentleth héa been due to the invention of
a striocter symbollsm by Boole, Shrosder, Peirce, and 8s-
peclally Peano, Russell, and Whitehead., Two hundrad Years
before Pesno's work, Leitniz foresaw this new scianua and
pought to create it, but he was pveventod from doing sa
partly by his inability to belleve ari stat:la to be guilty
of definite formal fallacies. He hopad, through the means
of symbc}:la logio, for a solution of all philosophical |
problems, anar thus an end of all disputes, "If co‘ntéoversiea
‘were to arise," he says, v"*bheré would be no more need of
diasputation between two philosophers than between two ace
countants. For it would suffice o take their pens in
thelr handa; to sit down to thelr desks, and tay say to each
other (with a friend as witness, if they liked), 'Let us
| aaloulata.'"l This was excessive optimism. With all the
striotness and precision of the symbollsm of Russell and
Whitehead, there still remain problems whose solutions are
doubtful and disputes which caloulation is unabdble to dee
clde even within the realm of mathemstical philosophy. Bub
Leibnizts dream has become true for a wide fleld of what
was previously controversal. Symbollc logic has axte_nded
the certainty of mathematios to much of mathematical philo-
sophy, which was previously just as controversal as any
other fieid of philosophy,

886 n ecem: Work on the ?rinoiples of
Eathemticn, Int. Eonthlg wvol. 4' ps 87,
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Coneorning the importance of symbolism, Russell
says: |

It is not easy for the lay mind %o vealize the
importance of symbolism in discussing the foune
detions of mathematics, and tho explanation may
perhaps seem paradoxlcals The fact 1s that
symbolism is useful because it makes things
diffieuls; {(This 1s not true of the advanced

- parts of mathematics, but only of the beglnnings,)
‘What we wish %to; know is; what can be deduced
from what. HNow, in the beginnings, everything
1a selfesvident; and it is very hard to see
vhether one selfwevident proposition follows
from another or noty Obviousness 1s always the
enemy of correctnegses Henco we invent some new
and difficult symbolism, in which nothing seems
obvious; Then we set up certaln rules for o
perating on the symbols, and the whole thing
becomes mechanical, In this wey we find out
what st be taken as prgmise and what can be
demonstrated or defined,”*

In this statement, we see something of Russelltls love of
~atating bis ideas in paradoxicel fomrm. . Yeét his paradox
holds trues Pub this statement has a greater gignificance
than merely revealing our philosopher’s love for psradoxes.
It gives us in clear terms his method of determining which
are the primitive ideas and propositions from which all else
is deduced in logic and mathematlies: Thls constitutes an
importance second to none in his logico-mathematical phi-
logophy.

Symbolism in logic hed accomplished mich before
the work of Russell and Whitehead. In 1901, Russell wrote
that due to symbolic logic "meny of the toples which used
to be placed among ths great mysteriese-for gxamplg, the

natufes of infinity,;of continuity, of space, time, and

1. "Recent Work on the Principles of Mathematics," Int,
Monthlg, vol. 4, PDs 85«86



A1-

motion=-are now No longer in any degree open to doubt or
discussion, Those who wish to know the nature of these
things need only read the works ox‘.“ such men as Peano and
Georg Cantornw"l

Peano's idea of gymbolism in logilc was not new,
It dates back ‘ba Leibniz (as we have already observed) and
Descartes, and perhaps earl&.er, tut it was not untll about
the middle of t.he nineteen’oh aentnr‘g that it began to 'be
vigorously developad by izhe 1a’bora of Boole, De Morfgan, and
vothers. Poano became the greai:. master of the sutject and
laid tho foundations upon Which Russell and Whitehoad built,
Hewever, in some respects hls werk was not naarly so fundaw-
mental and subtls as Frege's, but his views and me thods
became far better Xmovn than ths Germen’s bescause of his
editing and publishing & journal and a periocdieal coliection
of mathematical propositions sxpressed in his symbolism,
Peano's symbolism largely consisted of certaln convenient
signs for depoting logical notlons oo that logleal prow
positions could be translated into a form similar to mathew
matical equations, One significant result of Peano's
work was the discovery that all the ideas which appear In
arithmetie, geometry, and other mathema tical selences can
be defined in terms of the ldeas of‘genera}. logle, such es

class, implication, class inclusion, ccnjunction end dise

junctlon of classes, together with geveral other ideas like

1. "Recent Work on the Principles of Mathemties, Int,
Hon thlx' vols 4, Ds 88,
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integer, number, and point. Also Peano contriimted much
of the utmost importance to loglo, such as the idea that
inference in mathematics is not the Inference of one proe
position from another, but the inferanca of a whole class
of propositions from asnother olasﬂ.-l Put as significent
as Peano's work was, he was prevented from developing 1%
further by his failure to deal with the loglec of Telationsy
which had been founded and developed considerably by De
Horgan, C« S Peirce, and Schiroeder.

Rusgell, partly helped by his study of Froge's
work, and partly heving discovered independently many of
Frege's distinotions, took up Peeno's work where Peano had
left 1% and added, smong msny other things, the logic of
Telationse '_ He defined in logical téms? 'aione all of the
fundamantal"mthematical propositions of Peano and dé- .
veloped and demdnétratsd the thesis tﬁai‘- mathematics and
loglic form parts of a dontinuous wholes All of this he
dld with a minimum number of undefined ideas and une

demonstrated propositionse

i, Ps E. Be Jourdain, "Some Modern Advances in Logic,"
Hlonist, vols 21 {1911), pp. 564=565,
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Chapter IIX

| Dafinltion of Pure Mathematics

Traditionally mathematics *éra,s supposed to have
been concerned with guestions about' nmnber' and qugntﬁ.ty. It
was defined as the acienee of number and quantity, with
gquantity belng defined as that of which we can predicate
the rolations of equality, greater than, or less then. But
this definition has had to give waiy‘b_‘efom the rige of dise
tinotively non=quantitative mathema.tii:_al scionces, like ﬁhe
theory of aggregaté'a {or manifolda); pz;ﬁjeétive goeonetyy,
and analysls,

NonuEﬁcli.dean geometz'y wag the first of the
mathematical sciences to free itself from empiriclsm, Eue
clideans assumed thet geometry dealt with the spacs in
which we 1livée. But, as Russell says, "1t uas gradually
aﬁpeared by the increase of non~Euclideen systems, that
Geometry throws no more lignt upon the nature of space
than artthmetic throws upon the populatlon of the United
States.” He adds, "Geometry is a whole collection of de-
duetive sclencos baged on a sorresponding collectlon of sets
of axloms. One set of axioms is Euclld'g; other equally
good sets of axloms lcad to other reaults."lﬁ

georg Gantur; to vhom Russell is greatly ine
debted, completed his work on transfinite {or infinite)
numbers and ordinal typés ih 1885 and 189'7 in two epoch

1. Wecenﬁ%rk on the Principles of Hathematios," Int,
HMonthly, vols 4, P« 98
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1
meking articles in which the principles of the subfject

were stated in an almost perfect logical form, ~With the
work of Peano and o_fhers, logic was becoming move lilke
mathemntios, that is it was being reduced to pure symbolic
form, md with the work of £he nonwHuclidean geometricians
" and Cantor, mathematics was being reduced to logical forms.
Thus by the symbolization of logle md the logicalization
of mathematics, the way was paved for Russell's thesis that
logic and pure mathematios are one, 1cé5.e being the boyhood
of mthem tios and mathematics being the manhood of logle.
By 1801 mathematics had beoame generamaad and
divoreced from the world of quantity and ;Ss,rtioulars to such
an oxtent that Russell defined {perhaps "described" would
be beti;er) the subject’in this manners "Mathematics may dbe
defined as the ‘svub;}ect in which we never ¥now what we»ara’
talking sbout, nop whether what we are saying is tméa"e ‘
Thls was & bombshell to the traditional msthems ticlens and
philosophers for they had believed that pure mathematics was
the one remaining field where agnostiolsm bad no opportunity
%o ostablish itself, This bold statement was attacked on

1. Mathematische Annalen, vols. XLVI end XLIX., Cf. Jour
dain, "iransiinite Numbers and the Principles of Mathee
mtics,;* Monlsk, January, 1910. S

2, “Reoent Work on tre Principles of Mathematlcs," Inbe
Monthly, vols 4 (180L), p. 84, Bugsell stated nis
Tundamental views on mathematical logic in thls artlcle,
These views were given further elaboration in The Prins
olples of lathematics (1903) end in subsequent works, we
are told, hDoweveds in the preface to the second editlon
(1938) of The Principles of Nathematlcs that the work was
written for the most part in . or@fora, W6 MAYy COne
sider the 1901 article as en abbreviated editlion of the
fundamental views of The Principles of Mathema tlcs.
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all flanks, but while 1t was being fought over Russell
and Yhitehead wore occupled with giving this thostis a dee

talled and precise demonstration in Principla Mathomatics
in such a faoshion that no one has beed able o rofube 1%
to date on thelr own grounds of demonstration, It is true -
that certeln defects have been i‘ouﬁd; ‘some of vhich have
boen corrected; but the work still stands as the master=
piece -and auvthority on the subjept‘ Although this defie
nition seems to be agnostioc in nature, and it is as far aa
knowledge of the external world through mathematics 48 cone
serned, 1t makes it possible for more complete lmowledge
with more certainty to be established in the flold of
mathemabics, ‘ | | |

As B, T, Bell has poin_ted'cnt,l the definition
of mgthemetl cs quoted above has four great meritss (1),
§7 "shocka the selfeconcelt out of common senge; (2), 1t
emphasizes tho complebtoly abstract nature of mathomatics;
(3). 1t suggests the reduetlon of all mathomatics and the
more mature sclcnees to the postulational form 80 that all
people, mathemsticians, philosophers, scieni:ists, and
ordinary plein comaon aense, ézm seo precisely matvit; is
that ench of them imagines that he is talking -abouts, ancl"
(4), "Rﬁsseli's‘description of mthematics administers a
réscunding-partmg salute to-the doddering tradiéiaﬁ, éti}.l
respected by the nmakers of die‘tiomri'es', that mathems tics: |

is the selense of nu‘mber, quentity, and.meaauremsnb." These

A

1. E. T. Bell, The Queen of tho Sciences, {Baltimore: The
Willioms and Wilkins Company, 1931), pp. 16f.
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things, aceording to the new mathemetics, only constitute
en important parﬁ of the moterlals to which.mathematiéa
hag been applied, rather than being sn eséential peri of
maﬁhematicsvit&elf.‘_

Russell*gfggggeﬁathematics is "the subJoct in
which we nover lmow what we are talking about, nor whether
what wo are saying is true" needs clarification, and this
we find in Russell’s own words., He. explains:

Ve start, in pure mathematics, from certain
rmles of Inferencey by which we can Infer that
1f one proposition is true,; then so is some
‘other proposition, These rules of inference
constltute the principles of formal loglc. Ve
then take any hypothesis that seems assuring
[or amasing] ,+ end deduce its CONSequUences,
1f our hypothesis is about anything, and not
about some on¥e or morve parbiculr toings, then
our dedustions constlitute mathematlcs... Now
tho fact 1s that, though there are indefinables
and indemonstrables in every branch of gpplied
mathemtics, there are none in pure mathematios
cgxcept such as belong to general logic, Logle,
broadly speaking, is distingulshed by the fact
- that its prapoaigiana can be put into e form
in which they apply to enything vhatever, All
pure mathematlos <~ Arithombie, Analysks, and
Geometry --ls bullt up by combinations of the
primitive idcas of loglo, and its propositions
are deduced from the general axioms of logle,
such ns thg syllogism and the other rules of
“inference,

1, Concerning this, Jourdain, in an article entitled e,
Reptrend Russell's Pirst Work on the Prineliples of
Mathematios," in the lonist, vol. 22(1912), p. 149, says

. that he learned from a copy of Fussell's article which
had been coryected by its auﬁher{ that the typesetier oy
adi tor had substituted "assuring' for what was originally

C Mamaging." Mr. Jourdain adds theit this substitution -
Yool away from the force of Mr, Russell's contontion that
1n methematics we are not in the least concerned. with the
truth or obtherwlse of our hypotheses or consequences, bub
merely with the truth of the deductiong,” o

2, "Recent Work on the Principles of Hathematlos, Int.

E Zslonthlz P vole 4 (1901)5 De 844 ' '
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These remarks expliclitly defines pure mathew
matlcs in accord with his fundamentel thesis, They make
clear the complete abstractness and generality of pure
mathematica and that it is all deduced from the fundamental
primitive principles of loglc, Conecerning these primitive
principles, Russell says that "there are ab most a dozen
notions out of which all the notlonz of pure mathematles

1
{including Geometry) are compounded” and that "the whole
of arithmetic.and algebra has been. showm to.requirezthres
indefina’bies and five iﬁdemonstrgbla propositions.”

‘We now come to a more techmical definition of pure
mathematics, It is &s followst v

Pure mathematics is the class of all propositions
of the form "p implies gq," where p and.¢ are pro=
- positions containing one or more variables, the
same in the two propositions, and nelther p nor q
conteins any constants except logical constants,
And logiecal constents are all notions definable
in terms of the following: Implication, the re.
lation of a term to a class of which it is a
rembey, the notion of gsuch that, the notlon of
reletion, end such further notlons as may be ine
volved in the general notion of propositions of
the above form. In addition to these, mathematics
uses a pobion which is not a constituent of the

propositions whi.gh it considers, namoly the
notion of  truth, _

, - At this time we shall not cmsidenthe meaning

of some of the terms uwsed in thls definitlon, since they
are to oocupy .a eonsid’erable amount-of attention later., The
important thing about this novel deﬁniticm; at least it was
novel for its time, 4s that it defines pure mathematles as

1, "Recent Work on the Prineiples of Math,," Int, Monthly,
vols 4, pe 87, - T « |

2. Ibid, ps 86+ This quote refers to the work of Peanc.

3, Fassell, The Principles of Mathematiosy (1903), P« Se




being concerned with implications, and not with statements

in vhich their hypotheses are realizod. Applied mathemstios
has to dowlth the 1atte§; Boole and Peano made class and
clgssainclusian primary in Symbolig 1ogic;.but Russell,;aa»
we larn from the above definition, makes propositions (as
distinct from propositlional funetions;«Whidh erc to be exe
plained Jater), and material implication (vhich is distine
puished, as we shall show later, from formal 1mplieatian;
yvnich has to dé with propositional functions) as vrimary.
?hia is quite signlficants Mo demonstrates how classeine
c¢lusion may always be expressed as Implication. For example,
"all men are mortal” may be stabed as "X 1s a man implies

z 48 a mortal," which means that any man ia included in

the elass of mortalss

This dsfinition of pure mathematics is ﬁhsﬂaula

minaticn_nf the discovery contributed to by Leibniz; Frege,
Deddkind,‘sdhroeder, Peanc and many others, Bub it is only
the beginning in Russelll's work, Ho revlises it conslderably
as he progresses in his thought on the subject hhrcugh the
Years, Aithbugh’it will involve p:esﬁpposition of mich that
is to ocome laber in our discusslion, iét ug at this point
consider some of the changes which Russell has made in the
above definition, If all thet follows is not clear at this
tima; it 18 probably due %o presupn081510n of material not .
yot explained, and it is suggested o ﬁha readem that he
reread thils porticn after having campleted our discussion

of Russellls logle.
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‘We are fortunate In having Russell's owm criw
tlclism and revision of this definition in the Introduction
to the ascond editlon of The Principles of Hathematies (1938).,

This cribiclism and revislon comes after more than forty
Joars work in the fleld, and Wwe may take 1%t as probably his
final treatment of the definlifon of pure mathematics, He
malzes three revislions in the definitlon, FPlrst, concerning
the form "p ZImplies q," he says that it is "only one of
many logleal forms that mathematioal propositions may takes”
In his original definition of 1203, he had thought that it
was the only form, He attributes {his "undue stress on
implicahioﬁ, whlch is only one emong mth;ﬁmchions} and
no more important tham the others" to his consideration of
geometry in his early works. In oxder "bé include Euclidean
and non<Buclidean systems alike in pure mathemablcs without
regarding them as mutually inconsistent, it was necsssary
to assert only that the éxioms imply the propositions, and
not thai'ﬁhe axioms are true andl thersfore the pr‘oposition‘a"

are tric. This and other instances brought implieation.

into prominence and made it appear to be fundamental, He
st111 regards 1t possible to defina methematical pro=
positions in this way, but 1t ls now considered as an are
bitrary se¢lectlon of geveral possible ways instead of its

belng regarded as the only way as he did formerly,

1. Principles, pe. vii, From this point on we shall refer
Pri

B0 Pr ncigles of Mathematlics mersly dg’ Princivles.
2e Ib!. 30w Viie '
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The second change concerns the atatament "p

- and q are propos;tions containing one or more varlables.”
He agreesswith meny of his critics that 1t would be more
correct to say that ﬁhay.éfé proposltlonal functlons rather
.thah prOpasitiona.< Tnis error was polnted oub by A4 Tu
Qhearman in his review of the first edition of the bookgl
But Russell exouses his error on the ground that proe
poslitlonal functiong had not at that time been defined,

. However, he defined the ticrm in the second chapter of the
book, and, therefore, he dould have Introduced the 1dea a6
- this point eve’n if he. had mostpone& 1ts defiritiaﬁ to 1ts
rilghtful place in the development of ﬁhe book. Tha ree
minder of the book 1s glven to Justifying the &efiniticn
and surely the definition should have been comnsistent with
the material presented as the Justification of it. The
error was clearly due to an oversight or to the lack of
thorough comprebension of all the distinctions he wes o
make or had medé in the body of the book,

The third clsnge deals with a more serlous mabter,
namely, the stetement thet "nolther p nor ¢ conteins eny
conptants except logleed eonstants. Assuming thet we kmow
vhat logleal constants are, which will be explained later,
we may point out the weakness of thls stetement. Russa11
says in 1938 that "the absence of nonwloglcal constants,
though a necessary condition for the mathematicalacharaeter
of a proposition, is not & sufficim® condition,” In other
T Tind, NeSes VOLle 1, Pe 254.

Be \Eii.noﬁ.gles, Pe Vii,
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words, a mathematical proposition must not have any none
logical constanta, but a proposition 4s not mathematicael
merely by the virtue of not having eny nonelogical con~
stants., Thus a proposition may satisfy the definitlion
in the Principles of Mathematics and not be capable of

logicald or mathematicel proof or disproof, The definition
includes all mthematical propositlons, but it does not
omelundo all nop-mathematical propositions, An example,

as Russell points out, of a statement that is included in
the definition but s not mathematical is any statement
goneerning the number of things in the world, For example}
"There are at least three things In ;he‘wcrld,_«.“ which 18
equlvalent to "there oxist objeots xg ¥s 2 and\properties
.42,%24%311@11 that x but not 2z h;a..a the property ¥ , end ¥
but not z has the property " Thls statement cen be

- expressed in purely logiecal torms, and 1t can be loglcally
proved to be true of classes of classes qff classas. There
most be at least four classes of classes, oven 1f the uni-
verse were non=existent. In thal case there would be the
null-class) two classes of classes, namely, the class of no
classes,snd the class of which only the null-class is a
memb’ai'; and four clasges of classes in azl; namely, the
null—cls.ssg the one of which only the nulleclass of classes
is & menber, the one of which 1ts only member is the class
wheo e only member is the ml},«-»élasaf and the olasa which
{s the sum of the last two. But among the lower types,

Ry

1.Principles, pp. vii-viii.
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such as_thax of 1nd1vidualag of olasses; and of eclasses . of
classesy it cannot logleally be proved that there arae at least
three members. This presupposes knowledge of the theory of
types, -which appeared in a orude form in Appendix B of the
first edition of The Princlples of. Mathematics,‘ but 1t was
not until the publication of en article entitled "Mathew
matical Logis as based on the Theory of Types™ in the A=
merican Journal of Mathematlcs in 1908 that the thoery was
well developeds It ia fundamental in much of Principia'

Hathemticas

| - Another example cited by Russelll is i;he mlhie
plicative axiom or Zermelo's axiom of selection, vhich is
1ts equivalent. Ve shall discuss this axiom later, and,
sonsequently, only a few words will suffice at thls btime.
The axiom asserts "that, glven a set of mutually exclusive
claases; none of which is mall, there ia at lesst one class
conslsting of one representetive foom each class of the
aets"a Ko one knows the truth or falsity of this state;asnh
One can easily imagine universes in which this is true, but
it 48 an impossibility to prove that there are possible
universes in which it would be falses, Also it is an inme
pessibility to prove  that there are no possible universes
in which it would be false.

T’herei‘ore; since the definition of pure mathee

matiocs given in the beginning of the Principles includes
all mathemetical propositions, but it does not emclude.all

1, Principles; p. viil.
2+ Ibld, p. viii,
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~ non-mathematical propositions, i.fa 18 necessary to add
gomething else to the definltion, 14 it is to define puve
mathemaﬁics,- In order that a proposition may belong to
mathematics,” Russell says 1n 1958; "1t mast have a further
property: accordlng to ?Jittgénstein 1t mast be ?tautclogs.cal;*
and according to Carnap 1t must be fanalytic.!™ Yhether a
proposition is or 1s not analytle depends upon the premisses
with vhich we beglin,g Gonsequenﬂ'y; the questlon as to

what are loglcal propositlous is largely arbitrary unless

we have a oriterion of sdmlsssble logleal premlizses,

The ¢uestlon of logleal constants, which 18 guite
important in the definition at the beglmning of the Prine
ciples, goes through repeated modifications in the process
of the development of Russell's thought om the matters These
modifiostions are to be treated else<where, but et 1%
suflflce at the presenﬁ, for us to quote a statement from the
Introduction to the 1938 edi tion of the Principlas, Ho sayst

- Logical congtants.e., 1f we are to be able to say
enybthing definlte about them, must be treated as
part of the lenguage, not as pard of what the
language speaks abouﬁg In this way, logle becomes
rmach mora linguistic then I belleved 1% to be ab
the time when I wrote the Principles, It will be
trie that no gonstants except Iogicai constants
ocour in the verbal or symbolic expressions of
logleal propositisna, but it will not be true that
these loglcal constants aregnamea of objects, as

- Bocrates'is intended to be.

In 1938, Russell concludes that "to define loglc,

or mathematics, i5e¢..by no means easy eéxcept in relatlon to

1, Principles, ps 1x.
B¢ 1bid, De x{~xilu .
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1 |
soms given set of promlases,” He says that a loglcal

premise rmst have two characteristics, namely, “complete

generality; - the sense that 1t mentions no partiecular
thing gr quality,” and "it must be true by virtue of its
form." We can define logle in relation o & definite aset
of loglcal premisses as 'whatover they enable us to demone
strate.," But this meansja definitlon presents two great
aifficultiasé ' First, 1t seems impossible to prove that
& system resulting from a certaln set of premisses ine
cludes svarything that we should include among logleal
propositions, and second, what i1s meant by saying that a
proposition is true in virtue of its form? Russell is
’féiéed. to confess "I am unable to give any clear account of
vhat is mant_sby saying that a proposition is true in virtue
of its form,! But he believes that this phrase --%true in
virtue of its form"s~ points to the problem which must be
‘ aoiva;d 1f an adequate definition of logic is to be given,
Henee it 1s eviden$ that Russell is less confle
dent cf his definition of pare mthematics thirty«five
years Iatar ‘than he was ab the time he published the
?rinciples; ~This is avidence, howevérg’ that his mind has

always been alert and txontmually grappling with old and
new problems. This as;aect of hi.a nature has prevented him
from belleving in the finelity of his thought and, conse=
quently, it has prevented him from being dogmatics

1. Prineiples, pe xii.
24 Pe xiiy‘ o
S I'Eﬁ" P x14.
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Chapter IV

Russellts Loglcal Caleculus

Russell uaea the torms ssmbolic, ramal, and
ﬁathemhioal LOgiLo as aynanymm Following the most eozmnon
usage m England and Amriaa,l far the mest part we aha‘.tl
aesignata tha acience under ccnsidaration by the name of
aymbolic 3.033.0; All 1::@16, m@luding ‘che ayllcgism of
Aristohle, 13 zm‘bal&.a; but the neme as we use 3.1; denotaa
that !.-ype of 1ogie which is distingus.shed from varioua ’
apecial 'branchea of mthmatiaa chierly by 1ts general 1ty.
The subjecb 1s deﬁned by Ruasall asg“the atud.g- of the
vaz'ioua genewal typea of ée&uction. me this defins.tion
one wauld ccnczu&e that Russell exeludea fronm aymbolio
1og1a the pr:.nos.ple of 1nduoticn which was diacoverea by
Bacon and has become the 'baaia of the aeientifia method.
But; Rusaall includes induetion in deduetion, He aays: ny
do notz distinguiah ‘between/ inference end &eduation. ‘{Ihat

15 nalled. induection appears to me to be ezthar disguisads
deduction or a mere method of making plausible guesses,”
smba:u.c logic investigates "the genera:!. rules by which
_infamnoaa are. made, and.. A% requires a ciassimcation of -
relations or’ ‘propositions only in saéfar ag these generalv

rules introduce particular notions." These parbs.cular

1. Cs I. Lewis eit' pe 1
Ze Prin:ﬁ. los, ’p"gi ’

3. 1b% ,5 Ps f& n-‘

4' Ibi 201Gy p& 110
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notiona in the propositions of symbolie iogio; and all
other notlons definable in terms of these;. are the loglecal
conztants, and they are the onmly constgmts which a propoe
sition of pure methematlcs can contaln, since generallity is
the chief charscterisilec of such e propositlon, |

Togleal Constents Deflined

& constant :.& gomething which is a‘paolutely do=
| finite, like Sqeratas* past; present, future, ete, A pro-
position csnnot -be' characteriged by eomplet;a generallty and
contein sany »such particulars. However, sven pure mathes
matical propositions contain logical, btut only loglcal ,
| congtants.: It is in this respect that pure'mthematies is
distingglished from applied mathematica since the latter
oontalins nonniagical constants 1like definite objects,
Any constant is somsthing sbsclutely definite,
about which there can be no ambiguity. But what are
logloel constantst We have sald above that they are par
ticular notions; and all other notlions definable in terms
of these,which sppear Iin the propositiona of symbolic logle.
In the definition of pure mathematics given at the beginning
of the Princigzes, we ere told that "logical constants are
all notions definable in terms of the following: Implicatim,
the relation of s term to s olass of which it 1s a member,
the notion of such that ,.«v the notion of relation, and such
further notions as may be involved In the general notion of
propoai.ts.ona of pure mathematics.s From the. atatement given

abova ’ namely, that the logical constants are the partioular
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notions, end the notions definable in terms of these
partimlat notlons, introduced by the general rules of
inference, it would séem that mplieation; the relation
of & texm o 2 class of which it is a mem‘par; the notlon -
of such that, the notion of relation, etecs would be o=
glcal constants as well as the notions definable in terms
of these. &lthcugh i;he definition *af‘ logioal constauta
inoludad in the deﬁnition of pure mathematics, as quctéd
above, ‘does not: say that these are 1ogica1 oonstants, 1t 1s
asm:med that they m:'e throug,hcut the boolc« Here again wo
ﬁn;& a lack of consist ency, or explictness, between the
atatemént’or'mé same 1des in‘tw pié.cea in less than a
doaen pages apart, Thié mst have been due to the fact
that he was warking his %deas (mt m&. aefs.ning his terms
as he labored on t.hs bOC)kv

It is in the Intreduction to tha second edition
of the Principles (1938) that we find Russall*s best treate
ment of the meaning of logical constants and the history of
his thought on the matter. At the time that he qute the

Principles, Russell was Flatonie in his agreement with

Frege t;ha.t’ logiaax, constants in some way have constituents
corrssponding to their symbolic expressions. Such cOnw

stants are the principles of disjunction (or), mnjunction
(and), negation (not), if-then, the nullsclass, 0, 1, 2,

& oo Even at the beginm.ng in 1903 Russell did not be-
lieve in the reallty of the celestia.l archtypes of ﬁisjunotion,
conjunction, negation, proposition, implication, such that,
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,if;then s but he did ﬁalieve that numb.ers, which are loe
gic'a_l Qons’ae.nts’ definable in terms of the 5.nvdef5.nabla low=
gical constants, péapla the 'ﬁmeless realm of Being. But
cancerning the indei‘inables, he believed in 1903 that they
ha.‘ve some ‘unlque meanings He sald: Jevery word occurring
fm a sentence must have gome neaning,” \l By this he meant
'that: 1t zmwt have an 1ntellig&b1e nse, ‘I’his; hm:e&ér; is

not trua, as he later recognizes, vhen the word is taken

o in Molation. What is true is thait every word 1n & sene

:/ tdnce contributes to the meaning of the gentence, but that
18 quite different from the ‘.!.dea. that each word has a meane
ing all its own. o

In the development of his thought, Russell has
been foreced .ﬁé givg up his Platonic conception of the moan=
ing of things. The first step in this process was the
- acceptance of» the theory of descripticns. According to
this theory, in the propﬁsitim “Ruaséll 4s the author of
the Principles of Mathematics,” there is no constituent
corresponding tc”ﬁhe author of the Principles of Yathe
motics." The analysis of this gives us the propositional
function:™x wrote the Principles of Mathematios iz equi-

- valent to x S.S RusselI}.Lis trus for all values of x." This
theoz*y aoes away with the ccntention that there must be in
the ree,lm oi‘ Being such objects as the square circle and
the golden mountain since we can talk about such objectss
The question of the square clrcle, snd those similar to

le Principles, p. 42.




o 23e B

it, have always oreated difficulties because one naturally
asks, vhen 4% is stated that the square circle does not
exist, what is 1t that does not exiat? The square circle
~was believed to have some gind of existence or meaning.
But the 'hhecry of descriptions avolds this diffioulty.

The next step,waich caused Russell to give up
even his Platonic comceptlon of the exisience of real nume
bers in the realm of Being, was the abolition of classes,
This step was taken in the Princ:lgial Bﬁathamat:lca? where

it is saldt "The symbols for olasses, 1llke those. for dese
‘eriptions, are, In our systenm, incompleté symbols; thelr
uses are defined, tut they themselves are not assumed to
mean enything at all.,.Thus classes, so far as We introduce
‘them, are mevely symbollc or linguistlc convenlences, not
genuine ob jects.” He had previously defined cardinal
 nunbers as classes of oclagses gimllar %o.a gives‘; ‘olass,
and, with the new step in Principias Mathematica , cardinal
numbers became "mere ly symbolie or 3.1!18&18?216 conveniences."
| A%t this stage of hia development,Russell says that
Whitehoad persuaded him to substitute for polntas of space,
 4ngtants of time, and particles of matter logloal oone
structions composed of events. He addsi "In the end, it
geend to result that none of ihe raw material of the world
has smooth logloal prcpertiea, but that whatever aprears to
have such properties is constructed artificially fm order
to ha.\ns»\17&7&1&:&::."3

g: gﬁ.—m—ithisppom Principie Mathenatica will be denoted

" merely by Erincipie:
Se Pﬁ‘iﬁﬂ_’,ﬁp},eﬁ, Pe X1,
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As a result of these developments , Russell cone
cludes that "Loglcal constants..., if we are to be able to
say anything de;’inite about them, must be treated as pars
of the langusgs, not as part of what the language speaks
aboutis In this way, logic becomes much more linguistic
than I believed it to be at the time when I wrote the
Prinoiglem”l

Since no proposition of logle can mehrtion any
particular objlect, tize only consiants in propositions of
pure »mthamtics (qr' symbolie logle) are logleal constants,
In the Principles, Russell had more difficulty with this
 than he has had since he came to think of logical constants
| as "maraly symbaliu or llnguistic convendences," rather than

as partioular objests in some sense,

" We have given considerable attention to Russell's
sonception cf."logieax sonstants, and this has not been withe
| out a purposa, Tor he says that "pure methematica xémat
contain no indefinables except logleal constantsess” Thua
aii‘f‘q: the px*izﬁitﬂ.‘va {indefinable) ideas from which all of
mthmtios 18 deduced are loglcal constants. They are the
i’«::m.mﬂ,s.i:14.nm;,F along with the indemonstrable (or rather the
undemonstrated) propositions, upon which the whole of the
selence of mathematiocs is tuilt. Therefore, it is necessary
for us to have a olear uhdérstandﬁ.ng of what Russell means

by them.

) Princggles, Pe xds-
Ba : b d' Pe
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The Indefinable Logical Constants of the Principles

Befoi'e w{e‘ déa’i with the indeﬂnéble logleal Aaeﬁ-»-
sﬂants, it 1s h@ﬁeaéafy for ua'té‘éuy ammething‘abuAb ﬁhﬁt
'Russell.maana b& “defﬁuability“ or “definitian. ?hildao»
phically. ﬁhe vnrd “dof&nition? has bean largely restr&ntea
ta the analyaia or'an idea into &ts conatl tuent parta, but
Russell rejects this meantns of the termyon ﬁhe ground that
wholea ara not aetarminata when ﬁheir parts are known.1 He
empluya definitiana only in a nnminal aenea. Tha &efin»
ability ofxtenm for h&m 15 always relative to a givan aet
of nctian&¢ " He aaya: "Given.any sat of notians, a term ta
deﬁnabla by meana ai’ t«hesa noﬁs.ona when, and only when, it
in the onl'y term having to eertain of theaa mtiong a cerf:ain
velation which itself 1a one of ﬁha said notiona;“ Thus.

& term is definable only whsn it can be defined in tarms of
givan.nptiona. Aucordins te this meﬁhad, there mst always
be at 1aast ana or more 1ndef1anb1e ideas by'nmmna of whidh
other ideas are defined. whese‘given undefined ideas_ara
known as prﬂmit&ve.

In ﬁha Princigles; Ruasell says that ﬁhe numbex
nt 1ndafinab1a legiaal eanatanta are eight or nine, but~he
procaeda to glve aereral 11sts, varing in number and in the
terms included. Ve should note that he agrees with reano :
that nofions which are taken as indefinables are to a cere
tain extent arbiﬁrary, but he mays that "4t 1s important

. Princi laailyp, 111-112.
2. 3y De dLls
Se 1 bidn Das 1ile
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to establish all the mu’aual relai;itma of the simpler
notions of loglo, end to emina the conaequencea of fak-;
ing Various notions as indefinable," . In one plat:e,z he
11sts six indefinables: (1)« formal implication; (2).
material tmplication (“implication between propositions

not ccn!:aining variablaa"), (3), the relation of & term

to s olass of vmiah 1t 15 & member (which ia, following
Peano, denoted by € Yy (é).; the notion of such that, and
(5), the nots.on of truthe ‘Then he states that By means of
theae notiona # all the propositiona of ‘symbolie logic can
‘ba sta.ted. ~But on page 3.06, which i & summary of’ the
sectiﬂﬁ déa}.‘m@ with the "Indefinables of Mathamtics, ’

e have the falluwing 1tats (1), implieation, (2). the
relation of 8 tem to the class of which 4t is a member,
(5) ,the notion of such thet, (4).the notion of relation,
(5). propomtwnal i‘xmo*&i.on, (6); class, (7)e denoting, end

(8)+ any or every term,
Tha first list, aa“fgbserved.' proposes %0 be cofte -

plata, end, yet, the second list contains five new indefinm
ablaa, having 1eft out entirely the notion of formal lme
plioation (implication meding material implication) snd the
notion of tmth whiah were ineluded in the first list. 'I.'hs.a
difi’erenca, however, is not as grava as 1% appears: On
further axamimtion he discovered that formal implicatlon
is a aumplaz: concept and that 1t 1nvolves ‘the notions of
propoaibionai functi.on, classy denoting, and any or every

1. Princi 1@5» p; 2‘?&
2. Ioid, Pe Lo




B

term, the additional indefinables, However, the resson
for leaving out the motion of truth in the second 1iist 1s
not known.,

. Tgking the last list, with some modificatlons, as
what he int;ended to present as tha lndefinable notions of
pure mathematical logic (or pure mathemtica), iet us exe
amins each of them briefly in order to see what he means
by them. although no definition is given of any of them;
each 45 disounssed and describeds The reason that they are
ealled indefinebles is that, in order to define tﬁem, the
term 1tself is believed to be used or presupposed, and this
doea not constiiute a Gefinition,
| But. before we discuss the indefinebles, wé should
point out that they are divided among the three-’Qalculuaéa
of the loglo, namely, the propositional caloulus, the cale
culus of olassesy and the caloulus of relaﬁqns; - Peano
held that ﬁm ealculus of classes is primary, but Russell
develops his system upon tho assumption that the proposi tional
caleulus is fundemental, and, consequently, we have implie
cation as the:ﬁrat of the indefinables, since it; 48 the
primary factor in this caloulus. In one place, Russell
says that the.‘ caloulus of ;aropositions requires two indee
finables, namely, implicatlon, meaing boih material and
formal implication, However, he also holds that the
‘analysis of formal mﬁlica’aion belongs &o tga subject, but
1s not required for its formal development, and he ends

1. Princigles, ps 15,
2¢ 202Gy Da 1




wSde

‘ , ‘ . 1
up by not mcluding formal implication as an indefinable,

The calculus of dlaséea‘mquirés three mdefinablesg:ian'zély‘,
~ the re]ation of an 1nd1vs.dua1, otherwi.se known as a term,
to the class of whiah 1t is a mem‘ber, the notion of & pro-:
poaitional function, and the not&on of such that. The idea
of a propnai ﬁ.onal funnt.t:m is amployad 1n the calculua
of propositiana, but ﬁ; is explained as 1t is used, zmd,
thamrore, the ganeral notion 13 not necaasary until we
arrive at the aecond calculua. And the 19.81; calculus, the
calcsulua of ralationa; raqulraa only one mdefinable, and
that is the noticn of relation i1tselfs The other .‘r.ndeﬁn-'
ables !Ln the 113t; are derived from the analysis of the com
plex notion of ramal mPlieataon. We might mention that '
the notion of a proycsitiml function, which 1s raquirea
.‘m the celcmlua of elaasea, is alaa derived from this a.nalyu
sis,
| We now proceed to a brief discussion of each of

the indefinables. We mast warn the reader not to take these
as final in Ruasell'a avatem ‘of loglo, but only as the terms
mioh he had not been able to dafine in 3.903. Before he had
finished i(his most importanb \vorka m 'cha fiem, he had re=
duced the 1ndef1nables to two, as we shau observe as we
trace his devalopment-

| 1, M@_@}}_. Two kinda of Mplicati.on are re=
garded as essential to every kina of deduatﬁ.on (and as we

noticed prevs.ausly, Russell inoluded what is commonly re-

1;, Frinpiples,’; De 106;




w3 He

garded as induction 1n his concepticn of deductlon). These
two kinds are simply tmplicetion, by vhich Russell always
memns material implication, end formal fmplication. But
only the mttei' is _ragé_rd'eci as indcfinable in his final
opinion 11_1' the Principless The latier 1s considered as &

complex notlon, miéh involves the indefinables of propo-
‘ sitlo;ml fuzmt:ion, class, denoting, md any or gvery temm.
xmpliaatfian hag to ‘do with propositions as dlstinguished
from propositional functions, the latter of which 1s yet to
be exj)lained‘ It is tthe relation in virtue of which 1% 1is
péaéibla for us wvalidly to 3‘.nfez"‘f between prepoaitioﬁs.l
This relation exists whether or not we can perceive it.
Russell says that "the mind...is as purely receptive in
mi_:‘erenca a8 common sgnae supposeé it to be in perceptibn
of seneible objects." This ldea of the reality of relatlons
‘i_a'vvery imperté.nt in Rusée‘il’s philosophy. Gettling back
to the relation between propoeitions which 1s knowm as
implication, Rnsseil gays that "the relation holdssse,
when it does hn’ld-,-,. withaut any réferenceatb the truth or
felsehood of the propositions involved.® Consequently,
we Vget such abaui-d sounding statements g-Tahy false proe
poﬂition implies every propcsition»énd sny‘ tmé propo~
sition i lmplied by every proposition.” ot o

‘ It is :meoseible to dei‘ine mpliaa**ion, Russell

3., Pr‘incigles; Ps 33
« ibid, Dy 534
m:a’ P 33.
‘4t 2030y Ps 18+ See Lune



36

Bays, becausze any definition of it involves e viclous
cirele, FPor example, if we try to define 1t as meaning
that "4f one proposition 1a \t?r'u'a, then another is teue,”
the terms if and then a;.ready Involve implication.

At this point, cbserve that Russell has in a way
defined implication in saying that implication "is the re=
lation in virtue of which it is posalble for us validly to
infer® one proposition from another. This does involve
circularity in a sense in that "infer" is almost synonymous
with "imply.” But it seems that he is using the term
frelation” as more fundamental than that of implication,
end yat he asserts that mpis.oation mist be regarded as the
first and most fundamental of the indefinables. Neverthe=
less, we must sadmit, In all fairness to Russen'; that he
did admit in the beginning that the selection of indefine
ables 18 to a large oxtent arbitrary. But it seems ape
parent that implication ean be defined as one df the many
relations existing between propositions.

Although, in the last analysis, Russell does not
rogard foarmal implication as an indefinable, let us say
something about 1t at this point in order to make a clear
distinetion between it end implication (material). He sayas
that "s formal implication...is the affirmation of gvery
material implication of..s.the class of all propositions in
" which g given fixed sssertion, made concerning & certain
subject or subjects, is affirmed to imply another given

fixed assertion ooncerning the same subject or subjects.”

1. Principles, p. 41.
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In the ’é.bove definition of formal 1mplicat!.on;
it is ueeeaam‘ té ﬁndarstand what is meant by the "as-
~ sertion” of a proposition. In traditional J.Qg.m;k a pProe
position is divided into a subject and a predicate. For
example, in the proposition "Socrates 1s a man," Socrates
&8s the subject and man is the predicates. That 13 as far
‘as the analysis goes. Russell is not satisfied with this.
because :..‘; leweg‘ out one very imporiant part of the proe-
peaition; :xemel&,, the verm _In order to sliminate this nege
lect of the verb, he chooses to analyse propositioms into
subjecta and assertions, The assertion includes both the
verdb and the predicate., In "Socrates is a man ," Soorates
43 the subject and "$s a men” is the assertion,

Let us illustrate the differecnce between the two
kinds of implication by an exampia whlchvinvalves aaoh._ RSy
p implles q; then 1f p is true q is tme‘} whgre p end q are

symbolsg for propositions. xn this statement, "p implies q"
and "p's truth implies q's truth” both state material ime
plications, while "p implies (material) q" _f_g_____:{._!_.y_ implies

"pta truth implies{Material) q's truth."

. Formal implication holds between propositional
funuticns; while material mylieationrholds betwaen Dropo
sitiona, Pmpoaif;!.onal functions are to be distingulshed
from propositions later, but let us point out the differenoa
betweern the two at the present by an exampls of eachs A
proposition s of the form "Socrates is martal,” Notlce that
this statement contains no varisble, Such a statement has
%o be true or false, and cannot be true at one time and false
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at another. The propositional mnetion 18 of the fom
‘"x is mortal® fot' all values of X« X is & ve.ria.ble, and
the ntatmenfs is tme or false only when a constant or B
;t’ixad value ia given t;a t:he variablm

" 2¢ The indefinable knowm as "the relution of a
torm (mdi.vi&ual) to_the class af which 11: 1s a member,"

This mea, as we hava observed elsa whera 18 denotad 'by the
symbole « This mlatianahip is distinguishad from the roe
le.tion of wixole and parh batwaen clasaas. The distimtion
18 the same as that: between an indivldual and its species
(6 ) and ‘the spacies and i%s germa. Let us 111uatrata. The
relatﬁ.on af Socratea te the claaa of Greeks is the relation
of an mdividual t;a the alaaa of whs.ch f.t 13 a member; where.,
as tha rala t:ion of the part to the whola betwaan classes 1a
thaw cf the reiation of Gz'eeks to men. This dlstinction
wa.a first ma.da by Frege and than by Pezine. It was frqm
Peano thah Rusaell gct: tha ides. Another ai stinction mﬁ.st
.be made, mmely, the disi:inction between class and clasgse
concept M or ‘the preaicate 'by which the class 3.5 defined,
Hence msn 1s a cslass. whiln man is a class~concept. The
class m:.at be considerad eonactively (for example, men,
not w) s A the relation & 1s o hold. The ralatzion of
pars mad whola between ula.asea ia transitive, but the re-

iati‘én betwean the 1nd$.vidua1 and, alass of which 11; is a

member s.a not.
| 5. The ﬁoticm of such that. ‘Little cen be said

a‘bout; thla noticn. About all that we can do 1is to pclnt
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out examples ot it. Rusaé;l says that it "is roughly
equivalent to who or which, and represents the generﬁl
notion of satiafying a propesi.kt;ional f‘uﬁétion.»“l Pgano
‘defined the hcﬁ.cn of such'thafs by the proposition: "the
x"agauéh that ‘x is a2 are the class a," DBut Russell points
out that' the class derived from such that is the genuine
~class in', extension and as many, whilé ain s is an a" s
not thé slass, but the classeconsept. Furthermore, Peanofs
definition involves the notion of such that itaelf and ig
thexfeforef guiity of t’:’ﬁe vicious circle fallacys An exe
ample of what 18 meant by the indefinable such that may be
given, In the ‘propcsitﬂ.cnai Meﬁién #x, the noﬁion‘ of
guch that is the relation between certain values of x which
rgﬁderﬂ ‘the z:rapaaitional function either true or false.
This s fundamentally the same thing as Peano said, but
Russell does not call this a definition. -

| 4y ‘Iﬁe notion of relation, The fourth indefin-

able 1s.the notion of relation, and, yobt, each cf the prse
-eedins*thfee have been explained, 4f not defined, as being
relations, Because of this we would have o conslder
Russellts ju&ginén‘b concerning the‘ indefinabllity of the
above three and the ofider of these four as unsound, if 1t
were not for the fac'b’ thet he clearly states that his se-
laoﬂon of fundamental indefinables is lmrgely arbltrary.
But we are now concerned with the notion df relation 1ltself.

We are told that "a relation between two terms is a conw

1. Prineigles, pe 83,
e. e ¥ Ps b
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cepb which Gcaura in a nropoaition in which there are two
tems not aocurrﬁ.ng s conaepts, and m which the mter.»
cbanga of the twa terma gives a different propaaitiom 1
There m two parba of th!.s exulanatian {we say"explae
nati.on" since 1% is not regarded a8 a definition) whioch
nee&s further elucidatian. The firsb 15 ’bhe meaning of the
'words “tem“ ' d “conaept. b call & tem, Russell
sa‘s's, "whatavar may be en ebjec%: of thought, or may occur
in any true or false propcaltion, or can be counted £s
 ome .“8 Henoe 1t is aynonymaus with the words, uni.t;, indle
viduai, and mtity {a.s Ruaaell uses 1t). By making term |
aynonymcus mth unit and 1nd1v1due.1 he emphaziaes the
'f&c'b that every term 13 one, while with entity he means
that ever;v tem ha.a bemg, or 19 m aome eenae; Thua term
18 regardea a8 8 very ganeml word. Russell diatinguiahes
betwean twa kﬂ.nds or terms s namely. ths,nga, ‘or those shich
‘are 1nds.cated ‘by pre;:er names, and eoncepts, which are
thoaa S.ndiaated 'by all ‘other worda. Here proper names are
to ‘be understood to 1nc1ude all perticular points and m.-
st'e.naes. and ma.ny omw mtit;ies ndt uaually deslgnated .’m
tm.s mannar. Among aonoapts, two kinda are distinguishod,
namely, bhaae mdieated by adjeotives, which are known as .
predioates or claaanconeepts, and. hhoae 1ndi.czated by ver'bs,
which are alwayscor a‘.rmoat ‘always z'elaticms« ‘

~ since we hava cleared up the mea:n.tng of the
wbrﬂan"ﬁwm“ end "eoncept,"” we prqceed to the aeoond ALfFLe

. Principies, Py 90«
2« s Pe '
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culty in the above explanation of relation, This has to

do with the last part, which says "the interchange of the
two terms gives a dlfferehﬁ propositions®™ This clause is
inssrized to distinguish & relational proposition f.'romkone

of the fom "a and b are two," whiéh 1s identical with "b
and & are tvm." A relational proposition is symbolmed in
this mm&em “aﬁb," where e aod b gre terms and R is the
x‘elatmn 'batween them.c The latter part of the definiti.on A
assert;a tha."a to mtm'cmange the tema in the prcpasit:lon
"anb" we. muld have ”bRa.," which is a new proposition,

"It 1s chametwistic of the relatﬂ.on af two ternus that 1t
proceeds, ac: to apeak, from one to the ot?er. This is what
may be cal‘ied the sense of the x‘ela.tion‘ 'i‘his charactorisg«
tia is the souraa of oprder and aaries, thich is very ime
pcrtmb in mathematioal pmlosophye The ’aerm from which
tba relabion proceeds 1s men as the “refarent’ and the
term to which 1t proceeds 1s known as the "relatum,” While
, th§ relation between a and b is desilptad by R, the relation
‘beﬁ@en b and a, the katter being the converse of the former,
is denoﬁad by \B/. One thing more aboub relatiqns, nan;ely s
~gome rela tiéna ho'ld, between a term and ltgelf, and such |
rela tfv.cma are not necessarily aynmei;rical-

B 2E2iE9E1Q&a2£_E_22229&2&22§§&.£E§2§292&, We
have already illuatrated the Mea of & prepositional fune
etion. , Mz this point we win anly say & few words in ex«
plana‘b!.on of 4t. Russell explains, not defines, this

1. Principles, ps 95.
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notion in this wanner: " fx ia a propositional function 11';
- for every va%ue of x, #x is & proposition, determinate when
X3 is givem A :ﬁ'unc:tion is Mevery relation which 1s manye
ona,” t:hat is "evary rglation for which e glven referent
* has only one relatun,” This dofines a function, "but when
‘the function 11 a praposifaion,; the notion :ltx;volved‘ is proe
‘supposed 1in hha aymbollsm, and cannot be defiﬁed by means
of 1t wﬂ.tl;gﬁ‘b g_viaioua circle: for in the above _generai
f‘igf;h.’s’.féon of & funetion propositlonal ﬁmetiops already
occur.” | | | ,
| 6. ‘I‘he not.’«.on of clasm To maka clear what is
maant by olass a:ad fm éiatinguish it from all the other
netiona whtch are &.’Llied with it is rege.rded by Russell as
one of ﬁxe most difficulﬁ and important problems 3.nvolvad
in mthemahioal philoaephy. And H; is thia matter viilch ine
- volved him in (stmtradictiona for which ha ‘was not ebls to
;t‘ind an adequate salutian in the Pr.tnciplee, |
In the tmest sense of the word, "class" 15 not

an ! mdefma’ole notlon, but it is & fundamental notion £f
whiah Runsell is not able te give a satisfactory deﬂnitian.

His diffi.aulty is not the problem of the vicious circle in
this msbanca, but it ia g matter of making distinctions
between allled ideas md in dsfininglthe term 80 thgt it
 Wi1l inolude sll that it must include in order for 1t to
i‘ie his mﬁhemahical philosophy. For example, he can doe
:f.'ine slass adequately as i’ar Bs finite classes are COle

k P!‘iﬁﬁipl&ﬂ; Pe 190
2, Ibid, pe 85s =

Se Ibid’ Pe 83,



cerned, but he wants aldeﬁnition of classg thét will Iine
clude infinite classes, finite elassea; send the nulleclass,

There are two ways of deflining class; nmely;- -
'intentianally and extentionally. The intentional view de«
fines class in relatlion to the predicates attached exe
clusively to & certain éﬁ't?jee‘b‘ From this viqw; ¢lasses
aré derived in this manner: Socrates 1s humanj Socrates
hé.s hummi‘ty;;&ocraﬁea is a man, and, lastly, Socrates s
~ons emong men. Only the last prqposition explics.‘tly COne
tains the class es a constituent, but the others give rise
to the class, The exﬁeﬁﬁimal view defines o class by the
énmeratipn of 1ts Germs. The mtenticnal view defines the
kind of concept which denotes s class, whereas the oxe
tmtimal view defines the kind of object which is a c‘;aas.
e A'intentimal view deals with the concept of a class,
likem; vhich is not a »olass mt 1% 1s a concept which
denotes the class composed of mens

At this point 4% 1s necessary for us to observe
the distinotion which Russell makes between classwconcept
and the goncept of e classe In oommon usage, thess two
expressiona would mesn the same, but not so with Russell.
We san best point out thie distinotion by 1llustrations.
The term man 1s regarded as & class-concept. Thls does
not denote anything., When we mer‘gly say‘;@ we neither
denote one man, any man, some man, a man, the man, nor a
class known asg man, It is only a class-conocept. Men (or

all men, ths two bes.ng\ used synonymously by Russell), on
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the other hand, is the concept of a class, becuase 1%
denotes. The object which 1% denotes 1s the class come
posed of men (all men). |
. The extentlional view, as we have sald, defines
the kind of object whishlis 8 el&as; and this 4t does by
enumeration of the terms; op membera; of the class,
Although the gernex'aj. notion of ¢lass can be dew
fined in this two-fold mnner, that is by intention and
'bj Aextentim, from the point of view of prachicality; ine
£inite classes osnnot be defined extentionally , becausse
it 1s impossible to enumorate all of their tema; exXprops-
ing a conjunction relationship between each term and another,
Also the extentional definition sliminates the nulleclass.
| However, Russell belleves ti;at the de_ﬂnitions glven by
the two means are on a par 1ogica11y;d The difference, he
aa.ys; is purely psyghologioal « Nevertheless, Fussell cone
eludes thgt‘:' a class 1a essentially to be interpreted in
extention, for it is elther a term, or that kind of come-
bination of terms which is indicated when terms are re-
lated by conjunction, But, practically, not logleally, this
extentional method is applicable only to finite classes.
Whereas the intentional method is applicable to all classes,
both finlte and infinite. These are obtained as the objects
denoted by econcepts of classes (or the plurals of olags«
soncepts), such as men;mmberas points, etc. '1‘5 is con=
cluded that the mlleclass, whlch has no terms, is a flctlom,
but it is maintalned that there sre null-class concepts.
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The most important general conclusion in the discussion
of classes 1s that "although any symbolle treatment muet
work largely with class«~goncepts and mtentkm; classes
»and extention are 1033_.3%1@ more fundsmental for the prine
siples of mathematica."

A grave contradletlon arises out of this treate
ment of olass. It has to do with regarding a class as gne
and as many.  The human prace is a classwconcept as 49_:;1_9_; and
men is the concept of a class as meny. The contradiction
1s stated in this menners "if w be the class of all classes
| whioh as single terms are not members of themselves as
: ‘many‘,-, then W as one cen "be\vpgwed both to be end not to be
‘a member of itself as many." This has come to be known
a8 "The Russell Paradox." Attempta’dre a solution of this
and similar paradoxes gave rise to the theory of types,
which is to be discussed later, This theory 1s hinted at in
the body of the work on Prinsiples, and rough embrbhioc
" sketeh of the theory is included In an appondix to this
work in 1903, Bub the matter of lts development 1s not our

ooncern at the present.

As we observed st the beginning Qf‘t‘he discussion
of classas;. the general notion of class 18, in the last
ma*.{ysia; not regardsd as an indefinable. He says that the
notion of class in genemal can be "replaced as an indefine
abla;. by that of the alag‘s of propositions defined by a
propositisnal funetion.”.

21} Prs.nbi.glesa Da Bl. "
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'h _'I‘he notion of denotin& 'I'hia notion has to

do with claaa-cencepw and ﬁheir objeats » or what they
“denote.“' For exa.mpla, 1t S.a false to say that "yan 15
mortal. . ﬂan nevsr diaa; tug men dé. The dietinction .
hare 1a tmt between a cmcept ami ita object., The req-'
lat;ionahip between theaa ia knewn as dmotat&m. Thera
are a.’sx danoting wm.*cis nsad with elass-conaapbs, namely,
v% gy____z,f 80Ys B4 SOLS, md the. “When 8 classnconeept,
: “precedad by one of the aix words“mceurs in a prcpoaition,
’,tha prapoas.ti.on is, as 8 'mla, not abou{s the concept |
%fomed of the twa wcz*da hagether, bui; a,bou's an e‘b:}eot quite
&uferen‘b from th&a, :!.n general not a concept at all, but

term or cnmple;! of tamﬁa“l Ruseall deeldes that denahing
is a perfeetly definita relation, being tha same 1n all
31::: ca.aaa. namely, 2 thms, eny thmg, some thing, all
| tmngs; m thing, and the thing. The difference in each
‘ af thaae cases 13 i:he nature of the denoted object and the
danotmg mmoapt » ‘but the denoting relaticnship 15 the same
in all ai.x mstaneeaa s |

- 8¢ Any or gvery term temn. Any aeems to be half way

batween a ccmjmxatﬁ.on and a disjunctions Russell calls it
the variable conjunctions Any bterm denotes only one term,
but s.t 1s oomple‘bely Mralavant which 1t denotea, and what
1s aam will ba equally true whichever 1t may be. Using

the a:gmbol 'Y for Lerm, Ruaaeu says: "any s denotes a

: #% Princig‘les,ﬁ pPa 84
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variable 8y “that is, whabever partiaular a8 we may faatan
upon, 1% 13 certain that any a a does not denote that one;
and yet cf that ‘one any prcpasiticn 15 true which is tme
of aﬁy 2" ___x m is & concept denota.ng the true varie
able, and from a formel point of view the varis.ble iz the
cha:'a.cters.stio notion of mathematioa. ____m term 18 ree
la.ted to an ___z term in hha.t any proposition that is true of
any g is a.lsa true of g every a.’ Yét an ___1 a denotes an ene’
mx*aly difrerenﬁ nbjec‘b than w 8 does, Every a de=
nof;ea all the ____{g_, ‘mt 1t does it sevemny rather than
callectivaly. ___1 5, &aea nat denote any particular a, tut
what 15 sald of g_g;g_a is true of eve Be '
Later m the Principles Ruaseli introduces tarm

and g term as i.ndefinablea, mhese ave olusely related to
what is included in an any term term a.s explamed abcva.

As we have 3een, in t.he Prinsiples Russell re-
garded i:he prﬂ.mitiva ideas (mdaﬁnable 1og1ca1 cons‘aants)
as being as.ght or nine or perhaps ten or maybe elevan, dom
panding on whether elaea 18 regarded as indaﬂnable in the
lagt analya.ts, a.nd whether term, &a tem, any term, and '
svery term are ?;o be regarded as each being an indefinables
it we ﬁliminate alaaa and every term, the farmer being Gow -
finable in a Benss md the 3.atte§ being mentioned a8 an :ln-.

definable in a mmnnary gtatement bub not used, we have
niné &miafinablas.;.' If we ma,’mﬁain‘olass and consolidate

1. Princl 163, Ps 152;
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Lorm, a term, any m; and gvery term into ene; then we
have eight 1ndefinab1asg' What sgema to bhe aorract is to
eliminaté olass and torm, ‘since thess are defined in the
book, in spite of the fact that they are contained in some
of i:ia 1ists of indefinables, and to maintain a g_c_am, any
term, and every term. Then we have nine indefinables. It

18 possible to eliminate every term since he does not moke

mpqrtant uns of :.t:;, Then there would be eight ‘ndefine
ables. Therefore, we conclude that Russell s right in the
first of the hocﬂ;l when he says that the number of indo-
finable logloal constants appear to be eight or nine. When
we say that he 1s right, we mesn that he is stating the
number of indefinables vnich he actually proposed within
the pagaa of the book, As we shall see, he greatly reduces
this number in subsequent work,
These are all the indefinables regarded as ne=
cessary for the deduction nf»é.n of mathematics fm
$hem along with a few indsmonstrable propositions, ace
govding to the Prinociples. |

Tha Indemonstre.ble Propositions of the Principlea

B Goncernmg the mdemonstrabla propositiona, Rua-
sell aays: "in regard to some of them I Imow of no grounda

for ragardins them as mdananatrabla exaept that they have

By

1. Principles, ps 1le
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hitherto remained undemonst:atad~"1 ‘Thoge indezéoné trable
prapoaitians are regarded a3 twenty in nmeﬁ; tenkwoms
of dedncticn and ten other axloms of a general 1oglca1
natares The fi:ea’e ‘ten Ilsted will be the axioms of de~
‘due'tu.an, which maans that they come under the ocalculus

of propositlons. |

| (1)e "If p implies q, then p mpliaa q," or

'V”Whataver D and q ma‘.;,fihe s 'p lmplles q 18 & proposition,"
(2)4-“I£‘~p implies q, _theh p implies p," or "whatover ime
plies anything is a proposition.”™ (_,5).""If p implies Q;
‘then gq implies q," or "whatever is implied by anything is
a proposition." (4). "A true hypothesis in an implication
may be d:fapped; and tha consequent assorted,”  This, Rigw
: séil _béligva_d i;;»l?éﬁ; to be incapables of -symbdlic sbabew
wonts (5} The principle of simplificsblon, which is "if
p izplles p and q implies g4 them pg implies p," or "the
joint assertion of two propositions impliss the assertion
of the first of the i:wo;" {6)« The principle of tho
szllogismll- which may,bel stated "1f p izplies g and q ime
plles r; then p impliea rs" (7). The prinociple of ime

optation, mieh is stated this wgy: L g impls.as r ime
plies r, then pq implies r," or "if p implies that q im
plies r;,then r follows from the jointiasseri;iun of p and

qe" (8)s The principle of gxportation, which iz the cone
vorse of noe 7o It is stateds "If p implies p and q im~-

le Principles, pp. 16-16.



plies q, then 1f pq Implies r, then p implies that q ime
plies r." (9). The prinaiple of gomposition: "If P inme

plies q and p implies ry then p implies qr," or "a proe
position which implies each of izwg: propositions implies
them both.” { 1&). The prinaiple of reductions "If p ime
plies P and q implies ¢, then '"p implies q" 1mplies p«'"
The other ten primitiva (inﬁemonatrable) Proe=
gaaitiona are found in the caloulus of elassas and the
caloulus of relations, the first m,lag nated, in the
former and the last eightgin the latter, (11), "If x
belongs to the class of tems satisfying a propositional
funotion #x, thé;n dx is - (12), *1f fx axid‘Y:t are
| iaqui.iraiaht propositions for all values of x, then the class
of x's aueh that #x is ‘ama 1s 1dentical with the olass of
”‘x‘a such that’\l’ x is true. (13), "xRy is a proposition
for all Valuea of x and y where ny is an expression of
the propositional function "x has the relation R to ¥
(14). Every relation has a converse, 1.e. that, ™f R
v‘ba any i'elats.on, thera; is a relation R' such that xRy 1s
equivalent ot yRix for all values of x and y." (15}, "Be-
f:waen a;ny two terms there is a relation not holding bew
tween sny two other térma.-", (16). The negation of & ree
lation is a relation., ({17), The logical product of &
class of relations is a yelation, (18). The relative pro-

 1,Principles pe 20,
Pe LDids Dpe 2426,
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duct of two relations is a relation. (19)., Material
implication is a relation, and (20). the relation of &
term to the class of which it is a member is a relation.
With these fundamental principles (the indefin-
ables and the indemonstrable propositions, or primitive
ideas and primitive propositions, as they are called in

Principla Mathema tlca) Russell proceeds to work out the

Tundamental concepts of mathematics., He defines dise
Junction, or logical addition, negation, identity, number ,
inﬁnii;y, continuity, the varlous spaces of geometry,
motion, etc., and asserts that the laws of contradiction,
excluded middle, double negation, and all of the formal
properties of logical multiplication and addition-«the
assoclative, commtative and distributive laws--can.bé
demonstrated, These céncepta will be considered in due
time, but let us now consider how these primitive ideas
and propositions were modified as he further developed hls
 thought on the subject;

Primitive Ideas in 1908

In 1908 Russell published an artlcle entitlgd
"athematical Loglc as based on the Theory of Types." At
this time he had reduced his list of primitive ideas to

2
seven, but in this list there were some which had been

1. American Journal of Mathematies, Vol. 30,
2. Tbid, pp. 244845,
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defined in 1903 and many of the ones of 1903 were omitted.
These we will indlcate as we enumerate them., (1). The
propositional functlion. He states it in this manner: "Any
propositior_zal function of a variable x or of several vari-
ables X, ¥5 2." This he symbolized as ¢x or pf(x; Ts Zeoe)e
(2). The negation of a proposition, which is denoted by

1
~JD; where p is a proposition. In the Principles, Ruse

sell defined negation as "not-p is equivalent %o the
assertion that p implles all propositions, 1l.e, that 'r
implies r! implies fp implies r' whatever r maj be." (3).
Disjunctlony or the logleal sum of two propositions, denoted
| by pvae In the Principles,a he was able to glve two de-

- finltions of this idea, The first was: "!'p or q' 1s equi-
valent to '"p implies q" implies q'", and the second: ‘fnny
propositioh implied by p and 1mplied‘by q is true," or, 1
other words, "'p implies s' and 'g implies s' together
fmply s, whatever s may be," (4). The truth of any value
of a propositional function, nsmely, the truth of #x where
% 1s not specified. (5). The truth of all values of a |
propositional function, which is denoted: (x).gx, or (x):dx,
or whatever larger number of dots may be necessary to
bracket off the proposition. In (x).#x, x is called an
apparent variable, whereas, when gx is asserted, vhen x is

not specified, x is a real variable. These two indefinables,

1. p. 18,
2.’ Pa 17‘



numbers 4 and 5, have to do with the quality of tm‘c.h;
which is mez.{tioned in cne 1ist of the indefinables 4in the

Principles, where it is spoken of as a fundamentsl notion

in mathemties but 1s said not %to be a constituent of the
mathemtical propositions, which 1s quite true. The prine
" elple is neglectoed in the former work. (6). Any predie
cative function of ean argument of any type. This is re-
presented by #lx, or #l« , or #iR, according to the cir
cumstances, Russell says that "a predlcative function of
x is one whose values are propositions of the Lypse next
above that of x, 1f x is an Individual or a propositlon,
or that of values of x, if x 13 a function, It may be de=
scribed as one in which the aprarent variables, if any,
"are all of the seme type as x or of lower type; and a |
vari_.’abla'is of lower type than x if it can signlficantly
occui:’ a8 argument to x, or as argument to sn argument to
ic, etc.” This explanation presupnoses knowledge of the
theory of types, which has to be explained later. (7).
Assertion, which is represented byl . It is the asserw
tion that some proposition, or that any value of some DPro-
positional function, ls true.

In this 1list we notice that implication, the |
relation of a term to the elass of which it is a member,
rala.tlon, the notion of such that, denoting, a term, any

term, and every term, all of which are regarded as indefine

ables in the Principles are omitted. The two 1lists con=

1. Poe | 3;
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taln only one in common and that is the notion of a Pro-

 positional function,

Primitive Propositions in 1908

In the same article mentioned above, the number
of primitive propositions, which was %wenty in the Prine
clples, has been reduced to fourteen, and these are exe
pressed largelé' in the 'syn'lbolisﬁx \;:hich was later to |

characterize Principla HMathematlca., We shall 1ist these
: T ‘

pro;:oaitiéns as they are glven, _
| But f:irst, we must explain the symbols which ére
used. zl). - means assertion, or "it is asserted that.m U
| {2)s V means disjunctlon, or or. (3). * meansAconjunci;iv.on,
or and. (4)3D means implication, or if, then relation.
{5)."2"used for brackets, or when necessary "." or ":." are
used to distinguish the section to be bracked. (6). ¢x
means that the variable x has the of 4, The ex=
preasion 1s a propositicnal function when x is any x. (7).
(x).fx megns that x has the% g for all values of x. |
For emample: x is mortal 1s written #x, where ¢ means mortal,
and then (x).#x means that for all values of x, x is mortal.
(8). #x means that x in general has the% 4. Instead
of all x's as in (x) «#x, 1t means any x, (9). We might ‘point

out that Roman letters are used for the wvarlables and Greek
lettera for the %. (10). "£" means function like

1._American Journal of Mathematics, vol. 30, pp. 246-248.
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‘ f(gp’x). (11). (I x)efx means ¢x is true for some values of
x, vwhich asserts that there exista one x with the M@
#. This is what is called an existence theorem. Also

(3 £) means some function, or there is one function;so on,
(12). £Ix means that this 1s an elementary function, which
means that its argument x is an individual, This constle-
tutes a function of the first order of of the first type.
{13) .= means equivalence,

We now return to the 1list of primitive propo-
sitions given in the 1908 article. They are as follows.
{1)¢ "A proposition implied by a true premise is true,"
'I’his'axiozh is not given symbolic expression., It has to
do with the indefinable quality of truth. (2)¢ FDpVPp.D-
‘ps, which means that if it 1s asserted that p or p is true,
then p 18 true, This 1s called the "principle of tautology"

iﬁ Prineipia Mathematica. (3)e F % 4eDP V 4., which asserts
that 1f q is true, then p or g 48 true, or, in other words,
1f s proposition is true, then an alternative proposition
can be Joined on to 1t and at least one of the two will be
true, For example: if it 1s hot, we cen add that it is hot
or cold, and it will be true that 1% 1s hot.e (4).} 8 pyasD.
4V psy which states that "If p or q 1is true, qor p is
true." It is known as the principle of "permutation” in
}Princigim It merely states that a disjunction is sym=-
metricale~that 1t may be taken in elther of its two pos-
sible orders without affecting its truth. The same might

be said of a conjunction, put it is not necessary to re-



gard this as a primitive proposition. (5).  : pVig Vr)eD.
qV (er),, which states that "If either p is true or q or
r is true, then elther q is true, or p or » is true.” This
is known as the “asscciati\_re principle” for disjunction,
(6)s Fte dDre D2 PV Ds pVr. (The two dots after the
first horseshoe sign'serves to bracket off ths whole ex
pression following.), vwhich states that "If q implies r;
then p or q implies p or r.' This is known as the mrineiple
of "sunmation" since it states that the addition of the
game alternative to both the condition and the consequent
of an implication does not affect its truth. (7).}f:

(x)s #xe D+ Jy, which asserts that "1f all values of =
are true, then ¢y is true, where gy is any value." (8),
"If gy Ls true, where gy is any value of #x, then (x).fx
is true," This, Russell says, is incapable of strict sym=-
bolic expressicn. (9).f 3 (x). #x.Dfa, vwhere a is any
definite constant, This asserts thet if 1t is true that x
has the quality g for all values of x, then any definite
constant has the quality #. (10).\ :. (x). pVex.e D

ps Vs (x). gx, vhich, being interpreted, says that "if

'p or #x! 18 always true, then elther p is true, or #x

1s always tme.l {11). "Where f{#z) 1s true whatever ar-
gument x may be; and P(dy) is true whatever possible ar=-
gument y may be, then {;f(';{x)' P dxﬂ- is true whatever pos=
slble argﬁinmt % may be." This 1s known as the axiom of

1. As used here,"is always true" means that it 1ls true in
every case.
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tho "identification of variables." (12). If ges gx DOV
is true for any possible x, thenV'x is true for any pose
stble x." (13)e} to (F2)ss (x)2 fxo=. fix. This is the
axlom of reducibility, which is introduced in the theory

of types. It states that, given any function ¢#x, there is
& predicative function Plx such that fix is always equi-
valent to gxe (14)et i (F£)s. (x,7)s %(x,y).?—‘_‘.i".(x‘,y).
This is the axiom of reducibllity for functions with two or
more variables,

These primitﬁ.ve propositibns ere sald to be equale
1y applicable to all types wlthout involving contradictions.
| What is’?meant by typyes will be explained under a section
&e’vo_’ted to the theory of typese.

Primitive Ideas of Principias Hathematica

' Eile ﬁi‘ét volume of Prinéigia was published in
1910, Russell and Whitehead had been working together on
3.,*.;. since 19064, In this wrk the number of Indefinables or
primitive i1deas is ten; They are: (1). The idea of an
',’éle:ﬂentary pﬁoposi’cion,“ by which 4% 1is meant a propo-
sition which does not involve any variables, or, in other
words; one which does not involve words like "all," "some,"
"the," or their equivalents. {2). Elementary propositional
functionas, "By en felementary propositlonal function,!" the
authors aa‘y; "we ghall mean an expresslon containing an

undetermined constituent, i.e. a varlable, or several such
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constituents, and such that, when the undetermined cone
stituent or constituents are determined; 1.8+ when valucs
are assigned to the variable or variables; the resulting
value of the expression In question is an elemantary PYO=
positi@n,“l (3). Assertion. A proposition may be asserted
or it may be merely éonaiﬁared. For examples: "Caesar
died" is asserted. But in the‘statembht; "Caesar dled is

& propositioh," the part "Casesar died" 1s no longer an
assertion. It 13 merely considered, but the whole propo=
sition 1s én assertion. (4). Assertion of a propositional
function, Where ¢gx is a propositional function, we can
assert 1t without assigning a value to x. (5)s The idea
of negation, If p is a proposition, the negation of 1t 1s
the proposition "not~p," which is symbolized in this manner:
~ pe (6). Disjunction. This is what is known as the |
logical sum of two propositions, which ls expressed "p or gq,"
which means thet either p 1s true or ¢ 1s true, or p is false,
or q is fflse, or enything eclse that you want to assert
abou t themae These six indefinables occur in the theory of
deduction, which constitutes the calculus of propositions,
The fqllowing'threesoccur;in the thecry of apparent vari-
ables. (7). The idea expressed by #x is always, meaning in

" all cases, true, which 1s symbolized in this manmer: (x).gx.

1. Princi 1a Vol 1 . 96, All references to Principla,
" @ 688 '13 iﬁdiéated otherwise, will redfer To tne first

edition. |
2. Ibid, Vol. 1, pp. 95-96. ‘ . a
3¢ Toa, Vol. 1,, p 32 for the first two proncsiﬁzonSa en
" PPe iSB, 0-54 for the third,
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(8)s The idea expressed by gx s sometimes (in some cases)
true, vhich is denoted by the notation: (Fx), gx. Here "A"
stands for "there exiats," and the whole symbol may be read
"there axi;sta an x such that x has the quality g." (9).
The idea of an individual. An 2 is "individual™if 1t 1s
neither a proposition nor a funetion, Individuals are
genuine. constituents of propositions and do not disapear
on analysis as classes and descriptions do, (10), Matrix,
or predicative functidn.l Thls ldea occurs in the theory
of typess Theé nemematrix" is given to any function re-
gardless of the number of variables, vhich does not ine
volve any apparent variables, A function is sald to be
predicative when 4t is & matrix,

This 1ist of indefinables omits one of the prin-
itive ideas included in the 1908 1llst and four new ones are
added, The one of the former list that ig omitted is
number 4 of the 1llst as given a@ove', which was: "‘the truth
of any value of a propositional function," namely, of #x
vhere x is not specified. The four new ones are the fol-

lowing numbers in the sbove 1ist: 1, 4, 8, and 9.

The ‘Primitive Propositions of Principia

In the 1908 article, Russell needed only four-

teen primitive propositions, tut the Principla requirgs
aiShteem: The eighteén are the following. (1). sl.l.

1.Prineipia, pe 172,
2: 12crimiaer§'w%t§ an asterisk before them are for re-
ference in the Principia.
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"inything fmplicd by a true elementary proposition is

true." {(2). #1,11, "then Jx can be asserted; where x is

a real variabla, and gz>OV=x can bhe asserted, where x is a
real variable, theny x e¢an be asserted, where = is a real
variable." This 1s true also for functions of several
variabless (3). #1.2.}1pV peDep, which states: "If elther
p ia true or p 1s true, then p 1s true.® (4)., #1,3, -
Ft @ 2DepV qe (5le #lide - DVAe Deqvp. (6)s 1.5,
Fspviave)eDaavinvrle (7)e %160 k10 452030 VD
pVre (8)e #¥1.7. "If p 13 an elementary proposition,~p is
an elementary proposition." (9)., #1,71, "If p and q ave
elementary propositions, pvq is an elomentary proposition,”
(10). #1.72. "If #p and ¥p are olementary propositional
functions which take elementary propositions as arguments,
#pv ¥p is sn elementary propositional function," (11), #9.1.
ot #x.D . (F8)s #z, which states that 1f #x is true, then
gz 1s true in some cases, that ls at least in one case. This
primitive prgaposition gives the only method of proving
"existence-theorems," (12)¢ #9.11.} ¢ gxVdyeDe (32) .92,
whlch states that 1f gx or @y is true, then gz is true in
some cases. (13). +9.12. "What is implied by a true pre-
mise 1s true." This is the extentlon of 11,1 to propo=
sitions which are not elementary. (14). #9.13. "In any
assertion containing a real variable, this real variable
may be ‘tu:‘c'ned into an apparent variable of which all pose
sible values sre amsserted to satisfy the function in
question.” The following four propositlons have to do with
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the theory of types. (15). #0.14, "If 'dx! 1s signi-
fican'b? then 1f x is of the same type as a;, ‘dat is signl-
ficant, and vice versa.” In thls proposition there are

two terms that need clarification. The first is "is signi-
ficant," . It means that some functions have meaning and
gome do not¢ One that is significant is within a type that
gives 1t meaning, The second term needing clarification

is "being of the same type." The following is a definition
of this term, '“We say that u and v ‘are of the same type'
1f (a) both are individuals, (b) both are elementary funce-
tions taking arguments of the same type, (c) u is a func-
tion and v is its negation, (d) u is 2 or V%, and v 1s
#XVVX, where gx andV ¥ are elementary functions, (e)

u 1s (7). J(F,¥) and v 1s (z). (X,2), where A(E,7), (X,7)
are of the same type, (f) both are elementary propositions,.
(g) u is a proposition and v is~mu, or (h) u is {x). #x
and v is (y) .Yy, where #% andV'x are of the same type."
(16). #0.15. "If, for some &, there is a proposition da,
then there is a function #x, end vice versa," The fol-
lowing two primitive propositions are the two forms of the
axiom of reducibility, which will receive further treat-
ment later. The two propositions are: (1¥), #12.1.

b1 (T 2) sdre=x. £ix. (18). 812151302 Hx5).FH e
£3(x,y)s These two axioms of reducibility state that "any

function of one or two variables is formally equivalent

l. Princigia‘ Do 138,
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to some predicative function of one or two‘variables-, as
the case may be. Of the ‘bﬁo axions , the first is chiefly
noeded In the theory of oclasses, and the second in the
theory of relations., They are slightly modified from the
form in which they appeared 4in 1908,

0f these elghteen primitive propositions in the
'Princig la, only slx sre taken wilthout change from the list
of fourteen in the 1908 article. These sixz are the £ollows
ingzl'is).'ea.z. is number 2 in the 1908 1llst; (4). #1.3,
mumber 3 in 1908 1isty (5). #1.4, number 4 in the former
 list (6). #1.5, number 5 in former 1list; (7). #1.6, num<
" ber 6 in 1908 1ist; (13). %9.12, number 1 in 1908 list.
Numbers 13 snd 14 of the 1908 list, which are the two
axioms of reducibility, are weproduced with slight modi-
fications in numbers (17). #12.1 and (18). #12.11. Ve state
them here slde by side so that the difference may more
easily be observed, The first of the two was in this form
in 1908: F :s (F )2 (x)ifx.= £lx, and 1like this in (
Principiatl : (F£): ==y . £ix. The second proposition
appeared in 1908 ast F +{F D). (x,7): Alx,y)e =1Ux,7)3
and 1t was modified to this in Principia:}t (F2): £(x,¥).

=, + £i{x,y)s Those modifications do not constitute a
1

chenge in mesning, tut only in notation.

1. We are giving both the numbers as we listed above and
the numbers in Principia.
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Later Modifications of the Primitive Ideas

1
hmigia. we have stated what the authors

regard as the rour ﬁmdamental functions of propositions.

They are negats.on, diajunction, conjunction, and impli-
cation. The ﬁrat two of these are regarded as primitive

| 'ideas and theéothér two are defined in terms of them, Dr.

He Mo Sheffer has added a fifth function to this list,

which 1s the idea of the incompatibility of two propositions.

It states that buth p and gq cannot be true, The idea of

incozﬁpaﬁiiility iﬁv deﬁotéd by what 1s calied the stroke ,

which 133 symbolized in this way: "/.™ V'I'hus we get p/q.

Sheffef'régards thia' S,aeé.;.aa primitive , end he defines the

other }four‘ functions in terms of 1t. Negation 1s defined

ag the :!.ncompatibiiitj" of a _ﬁropcéition with 1itself, which

13 aeno’ced "P/lh Msjunction 18 the incompatibility of

~p and ~q, which is (p/p)[(q/q). Implication is the ina

ccmpatibility of p and ~q, whlch is p|{a/a). And conjunc-

tlon 1s the nega‘cion of incompatibility, which 1s (p/a)] (p/q)-

In the Introduction to Mathematical Philosophz R

Russell adopta this method of Sheffer s and thus substitutes
the primitive idea of incompatibility for the two prime
1ltive 1deaa of negation ang, ﬁisjunction. This mzthod 1s
edopted also in the second edltion of Principia.

1. Vol 1 6

Be See‘ﬁh; ’Tg;ns;ctions of the Americen Mathematical
Soslety, Vol, xiv, pps 401-¢

S¢ Pe 148,

4. Principia (2nd., edition), Vol. 1, p. xili.
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The second editlon (1925) of the Principia does
away also with the primitive idea of "assertion of a proe
positlonel function, vhich i1s number 4 in our list given
above. Thus three primitive ideas that appearsd in the
first edition arevelin&natad In the second., They are the
ldeas of negation, disjunction, and the assertion of a pro-
positional functlon. But one new one is added, namely; the
1dearof thavincompatibility of two propositiona, This
giﬁaa eight primitive Adeas in the second edition of Prine
cipla.

In the introduction to the second edition of
the Principles (1958),1 Russell makes the following state-
ments: "After the utmost efforts to reduce the number of
uhdefined elements in the loglecal caleulus, we shall find
ourselves loft with two (at least) which seem indispen
sable?! one is incompatibility; the other 1s the truth of
all values of a propositional function."” We do not have
the wdrk‘in which'he was able to work out the whole of the
logical saloulus with only these two primitive ldcas, and
this is highly regretable, But it would appear from this
statement that he has been able to reduce the primitive
1deés necegsary for his loglcal calculus and all of mathe=

matics to two.

1; P Xic"



Lator Modifications of the Primitive Propositions

‘Mo dJean Hicadi replaced five of the primitive
propositions in the first ediiion of Principia with only
one. . The ones replaced were the followingsy (3}, #l.2.;
{4), ¥1.3e5 (5). #odes (6). #1,5.;5 (7)o #1.71. These
five are the formal indefinables in the theory of dew
 duction {the propositional caleulus). Let us observe how
Hicod was able to i'educa these to the one solc formal prine
ciple.of deduction. Taking advantage of Sheffer's sub-
stitution of the ldes of Mcompatibillty as the primitive
idea by which nagaticin, imnlication, conjunction, and dis-
| jlmction 'oan be defined, he deduced his ore formel prin=
‘cipla of deduction in the following manner, We hafe ale
réady seen thabt p l(q/q) means "p implies q." And p[{q/T)
means ‘"p implies both q snd r," for this ezpresslion means
"p is incompatible with the lncompatiblllity of g and r.
Noxt observe that t|(t/t) means "t implies itself,” whioh
is & particular case of pl{q/p). Writing the negatlon of
p as D end of p/s as p/s, which is~the conjunction of p
and s, we have (s/Q)( P75, valch expressos the incompabi~
| bilii;y of 5/q with the conjunction of p and 8, In other
| werds, i% saye that if p and 8 é;re both truc, s/q is false,

i' ‘Bea A Reduction in the Number of the Primitlve
Propositions of Loglc," Procecdings of the Cambridge

. Philosophical Socie% Vols Zike
2. Wo are glving the n ’er sn our list above and the

number in Principls.
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i.e. 8 and q are both true, 0r again; it states that p
and s together imply s and q together. Now, put p for

p (a/r) I for t|{t/t); Q for (s/q)|F/E. Then we have
Nicod's only formal principle of deduction, which s PITT/q,
which states that P implles both7/ and Q.

In addition to this one formsl principle , Nicod
employs _émﬁ nona-fcmai principle which belongs to the theory
of t'ypes and one similar to the e ineiple that;, given p,
and given that p implies ¢, we can asser{: q. This prin-
vcipie is stated in this menner: "If p[(r/a) 1s true; and
p is true, then g is true,"

From these three primitive propositlons, one
formal and two non-formal, Nicod deduces the whole theory
6;{’ Geduction, with the exception of the deduction from or
to the universal truth of propositional functions. 1

In the Introduction o Mathematicel FPhilosophy,

'Russell seems to ac&ept this reduction of primitive pPro=
§o$1tions in the theory of deductlon to one formal and two
non-formal ones. However, in the second editlion of £rin-
cipia, only one of the original five non-formal primitive
propositions is done away with, which is (2). #1.11, Nicod's
one formal proposition is»sﬁbstituted for the flve formal
ones of the first edltion.

| The authors, in the second edition of Prineipia,
are very mdch dissatisfied with the two axioms of reducl-
bllity, which a.fe numbers (17) and (18) in our list above

1. Pp.  151-152.
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and numbers #12.1 and #12.11 in Principia. Concerning it,
they say that 1% "has a purely pragmatic Justification: it
leads to the deslred results; and to no others., But clearw
1’y it 18 not the sort of axiom wlth which we can rest cone
fent. Gn thils subject, however, i1t cannot be sald that a
satisfactory solution 1is as yet dbtainable."l A
Witdenstein, a former student of Russell, sug-

gested a solution in his book Tractatus Logico-Phllosophiw

 cus (#b.541f), iwhich assumes that functlons of propositions
‘are alwaye truth-functlons, and that a function can only
koccur in a proposition through its values. "
t Russell and Whitehead have worked out this theory,
but, al‘bhough they have considered it worth working out 1ts
consequencés,«, »the‘y do not regard it as certalinly right.

| There are difficulties with the theary, but Russell and White-
R head say that "perhaps they are not insurmountable.” One
chief objection is that 1t requires all functlons of flunce
tions to be extentional, This the authars are not pre=

Pa:oed. to accept, With the adoption of this theory prac-
tically everything of Vol, 1 of __rg_igg_@t_p_f_@-_ remains true,
although new proo:t‘a are often required; the thepry of Ine
ductive cardinals and ordinals remain, put the theory 3f
mfinite Dedekindian emd well«-ordered series largely glve

way, md, consequently, irrationals end real numbers gene

1‘ Princinia (2nd. edi’bion), vol. 1, Pe xive.
. edition), Vvol., 1, Appendix C,
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erally cannot be dealt with adequately, Also Cantor's
proof that 23:1 collapses unless n 1s finite, The au-
thors say that "perhaps some further axiom; less ob-
Jectionable than the axiom of reduclbility, might give
these results, but we have not succeeded in finding such
an axiom,"” But tentatively the two primitive proposi=
tions, namely, (1) "functions of functions are always
truthefunotions" and (2) "a function can only cccur in a
proposi.‘bion through 1ts values"-y are substituted in this
appenﬂlxz -i‘ér the two e)ions of reducibility, But thoere
is no finality clalmed for these, They are used only bew
cause they are the best that the authors can do,

'l‘hus; In the second editlon of Principla, the
elghteen primitive propositions of the first edition have
been reduced to thirteen with eight of the original ones
abolished and thres new ones added. 5

In the second edition Bf Principia, we have all
of mathematios, except geometry, deduced from eight un-

" defined ideas and thirteen undemonstrated propositions. As
we saw abova; in 1938, Russell thought that the number of
undefined ideas could be further reduced to only twos Con-
cerning the deduction of ge@étry from these same primitive
1deas and propositions , in the se@ond edition of Principia,
the authors promised s fourth volume in vhich the deduction

of geometry would be demonstrated, tatThis volume has never

1. Principla (2nd. edition), yoli 1: pa.x1¥e

2. THId, (284, eaition), Vol. i, agheBle¥ &

3. The 2nd, edition of Principla differs from the dl veral
in that the former has an adaed introduction and 8¢

appendices,
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been publisghed,

This brings us to the coneclusion of our dis-
cussion of the logical calculus as such, These primi-

- tive ideas and primitive propositions constitute the
caleulus. A1l else is developed from them and by means

of them elther directly or indirectly. The only tests of
the va.lidi‘t‘y of any set of primitive ideas and propo=
sitions are? (1). the inability of further reduction of the
number by defining or demonstrating one (or several) in
terms of the others, and (2), the abllity to deduce all
additional necessary facts in logle end mathematics from
them. It 1s evident from the way Rugsell has altered his
primitive ideas and propositiohs from time Yo time that

no finality can be claimed for any particular set that he
has produced, It remsins to be determined whether or not
all of the necessary facts can be deduced by purely loglcal
mesns from sny one set of these 1deas and propositions. Ve
shall consider this in due time.

Thers remains one tople vhich might be discussed
under the loglical caloulus, namely, the theory of types,
which is set forth in the undemonstrated propositlons of
Principla, but we shall deal with 1%t in the mext chapter

independently of the logical caleulus because of 1ts dis-
tinctive interest to broader philosophical questionse
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Chapter V

The Loglceal Paradoxes and the
Theory of Types

In anclent and medieval times much attention
was glven by philosophers to what is known as logleal pera-
doxes, but in modern times these paradoxes fell into dige
repute until they were rediscovered by the development of
synbolic logle. As late as Lotze the problems involved
wore dismissed as insoluble without efferét belng exerted
to change this state of affairs, However, in 1869, Mr.,
Ce Se Peircel consldered the parsdox resulting from the
prepbsiti'on; "This proposition is false." His treatment of
the problem was very similar to that offered by Paulus Ve
netus in the Hiddle Ages , and he really did nothing to bring
sbout the solution of the problem except in that his dise
cuasion put this end similar problems before philosophers
again, | |

TLittle serious work was done in modern times on

these paradoxes until Russell, 4n his treatment of classes

in the Principles (1903), discovered what has come to be
iﬂm‘m as "Russell's Paradoxz." This pradox or contradictlion
2

1s stated In the Principles as follows: "If w be the class

of all clesses which as single terms are not members of

le "The Vaiidity lof tho Laws of Logle," Journallof Spec-
ulative Fhilosophy, Vols IL: n0. 4e

L4 [ ] *




themselves as wany, then w as one can be proved both to
be and not to be a member of itself as many,."

This paradox is cgly qzie of a whole series of
simllar oness In the 2rinciple, seven of the most signie
ficant of these contradictions ere given as follcwss: (1),
The first is the classic one about the liar. This is of
the form: "Epimenides, the Cretan, sald that all Cretens are
liars<" The simplest form of this contradictlon is the
: étatmenh;' ng am lying." If thls stgtement is true, then
1t must be false, amd if 1% is false, then it 1s true,

(2)e Russellts paradox, which 15 statod: "Let w be the
elasg of all thase classes which are not members of thome
solves. "l‘heﬁ, whatever class X may be, 'x isa w' is equi-
valent to 'x is not an x.! Hence, giv%ing x the value of
w; ’w%.s aw! is equivalsnﬁ to'w 1s not a we'" (3). "Let

T be the relatlon which subslsts botween two relations
Hand 85 whenevar R does not have the relation R to S. Then,
whatever relations R and S may be, 'R has the relation T to
st 1s equivalent to tR does not have the relation R -to Sst

| Hence, giving the value T to both R and §, 'T has tho ro-
lation T to T! is equivalent to !T does not have the ro=-
labion T %o T.'" (4). The next contradictlon is one kmown
as BuralieForti's. I asserts that any series of ordinal
numbers beginning with O has an ordinal number greater

by one than the highest term of the sories. Therefore, the

l¢ Vol. 1, ppe 63-64,
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series of g1l ordinals would have an ordinal number greater
 than the highest ordinal, which would mean that the highest
ordinal_ is greaterthan’ 1tself., (5). “Tl;je ieas’a integer
not namable in fewer than nineteen syllables" (which Ruse
sell says 1s 111,’77‘7) is itself a name consisting of only
eighteen syllables, (6), "Amozig transfinite‘ ordinals some
can be defined, while others cannot; for the fjotal number
of possible definitions is Rolwnich 18 the number of fi-
nite integgrs:] ,’whilé_the number of transfinite ordinals
exceeds {;» Henoce there must be indefinable ordinals,
and among these there must be ay least. But this is de=
fined as 'the least indefimble ordinal,' which is a contra=
‘dletion, (7); The last is lnown as Richard's mradox. It
48 as follows:
Consider all decimals that can be defined by
“means of a finlte number of words; let E be the
- olass of such decimals, Then E has B,terms;
hence its members can be ordered as the lsi,
2nd, 3rd...Let N be a number defined as follows,
If the nth figure in the anth decimal is p, let
the nth figure in N be p+ 1 (or 0, if p=9). °
Then N 4is different from all the members of E,
. since, whatever finite value n may have, the
nth figurs in N is different from the nth £i-
gure in the nth7déoimals composing E, and there-
fore N is different from the nth decimel. Never=-
theless we have defined N in a finite number of
words, and therefore ¥ ought to be a merber of
E, Thus N both is and 1s not a member of E.

A1l of these contradictions are examples of what
- 1s hoﬁn as ti:§ vidioua-circle fallacy, thet is the fallacy
of salfarefefenéé ér 'reflex&veness. Each qf these pro=

positions resuls 1::3 1n conkradictions possess the character=

istic of referring to itself, Each proposition is per=-
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fectly true or false without involving any form of cone
tradictlon except when 1t i1s applied to itself, In each
_proposition something is said about all cases of some kind;
and from what 1s sald a new case is generated; which both
is and ig;not thé éame kind of case to which the all of the
proposition refers, Thls new case, when 1t 1s included
with the other cases, constitutes what Russell and White=
head call "illegitimate totalities," In order to avoid
the vidlous«circle contradictions, 1t seems as if some
method muét'be devised wharsby the new case generated by

a statement about the "all of a kind" can be prevented
from joining with the other cases and thus forming an il
logltimate totality., It 1s this that the theory of types
seeka to do,

Most of the ideas in Principia seem to have
originated with Russell. We draw thls concluslon con-
cerning the fundamental ideas of Principla because these
1deas; for the most part, had been set forth by Russell
previous to the publication of the Principia, In these
previous works, Russell is vafy careful to aclmowledge the
sources of his ideas, and Whitehead, although Russell had
'wbrked in olose contact with him since as early as 1900,
does not feature largely in his acknowledgments. The lm-
portance of the contrimtions of whitehead to Principia
cannot be denied or belittled, but his greatest contri-
bution seems to have been in the development of the sym=
bolism and thé symbolic demonstrations.
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~ This conclusion certainly applies to the theory
of types. Russell ran into the vicious-circle contrae

dictions in the Principles, mmd the theory of types, in a

zfqugh and emb:donic form, first appeared in an appendix to
this wor}; as g possible solution of the "Russell Paradox."
In an article in 1908, Russell presented the theory of
tj'ISes with all of the e_aaenﬁial details which the theéry
has in tﬁe Princigia. Our disoﬁsaiqn of the theoryzia
based on the form in which it appears in Principia, since
1t 18 this fm:'m_ upon which the whole structure of Principia
is baéedc | |

- o 'I'hesé paradoxes goncern various kinds of objects:
?ropoﬁitiona, classes, cafdinal and ordinal numbers, etc.
From this we mightl think that we would ngad a theory of
typea for eacﬁ of these kinda of objects, but this 1s not
thé, ca.se. Rﬁssell and Whitehead reduce statements that
'éerb&lly eoncern classes and relatlions to statements cone
éernizig proposititnel functions by the theory of descripe
tiona'.; This theory émploys what 1s imow as "incomplete
symbols ," which have meaning only in a context, to describe,
not define, é "go end so," Such descriptions (or income
plete ay'mbols')arlé distinguished from proper pames, in &
generaiized.aense, in that they do not stend for ce?tgin

‘ w
1. "Mathematical Lopic as based on the Theory of Types,
* American Journal’{fof Mo thematics, Vol. 30, Dp. 222262,

2. Princlpia, Vols 1, DP. 09=68.
3. Tos o pher III of ?ntroductien to Principia, Vol. 1,

for a discussion of the theory of descrlptions.
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objects and thus have no meaning when in 1sol§t10n; The
following is an example of how s proposition about & rom
1&1:10:; cen be broken down to a propositional function by
the’them'y of descriptiens; Take the proposition "Scott
18 the author of Waverléy." There 1s no constituent cor-
responding to "the author of Waverley," This 1s an ine
complete symbol or description. The proposition is broken

down to the propositional function "'x wrote Waverley ia

equivalent to x 1s Scott! is true for all values of x."

Ail propositions which verbally concern classes and re=-
lations can be broken dom to propositional functions in
this manner, Therefore, a theory of tﬁpea based on Propo=-
sitional functlons will also be applicable to collections
of prapositiéns, of ciaases, of cardinal and ordinal nume
bers, etcs ,

A propositional function, as wé have al:peady
noted; 18 8 statement which contalns a variable x, and ex=
presses a proposition when a definlte value is glven to x.
Thus 1t differs from a proposition only in that a propo=
sition is definite and g propositional function is indefinite
or embiguous. The function itself is that vwhich ambl~
gaously deﬁot es; and an undetermined value of the function
15 that which 1s ambiguously denoted. The undetermined
vaelue is wrltten ";&j" while the functlon itself 1s written
ﬂg{x‘n Proposi tional fungtionslare of two kinds, namely,

those in which the truthevalue of the function is dependent

1. The ’truth-'-valua 4 s whether it is true or whether 1tiis false,
and thus falsity is as mucha truth-value as truth g. .



upcn the value glven to the varieble ard those in which
the truthevalue is the same for all values of the vari-
ables The first type is of the form "x 1s a man;" the

secqnd type 1s of the form "!x is a man' implies 'x is

mortal, '™ Only functions of the latter type can be re-
garded as true or fdse and treated as propositions in .
loglc, In this %ype the variable 1s called an apparent
variable,

" In his oxamination of the paradoxes; Rusgell
concludes that all of them contaln an apparent variable
‘th‘a\‘: refers to "all" of a totallty which 1s illegitimate.
The gpparent variable is deceitfuls. The statement "for
all values" is never completely justified, for sometlmes
there 1s one value that will result In a pgradox. This
value .13 the function itself, For emple; take the pro-
positions "All propositions are false," This way bo stated:
"x is s proposition, and for all values of x, x is false.”
Now insert the proposition just stated as a value of X,
and the result is a paradox. If the proposition is true,
1% 18 false. Russell condludes that such variables must
have a renge of valuas which result in significant pro-
positions and that the runctian ttself ic excluded from

this range in each cauo.
This excluslion of a function {tgelf from the

range of significance of a variable which occurs in 1t 1is

accomplished by the theocry of types. Russell sums up the
technical esémcé of this theory as followas: "given & pro-
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positlional function *g!x? of which all values are tme;
there are éxpragsions wﬁich i1t is not legitimate to sub-
stitute for 'x'," which mesns that a loglcal type is the
| rariga‘ of significance of a propositional mnction; and that
~ the rénge of significance exéludes the function itself, This
exclusion 1s accompiished by the establishment of a serles
of ranges af aignii‘i.oance. Thus a functlon cannot ine
clude 1tself in 4ts range, but it is included in the next
hi.gheét renge in the hierarchy of functions., The first
range 1s defined as thos e 'functions vwhich assume the to=
tality of "individuals," that is th_cée objects which are
not analyza.ble into term and pz'adicate as are propositions,
These constitute the first logleal type and the functlions
in which they occur are imown as flrst order functions. And
functions which assume the totality of propositlons or
Y;C‘unctions of the first order constitute what is kmown as
thé functions of the second order. In like manner, funce
tions which assume the ﬁotality of funcitions or propo-‘ ‘
sitions of the second order constitute the third order, etec.
Now lmt us consider how thig theory of types
solves the paradoxes. As we have sec§ all of these para=-
doxes possess one common characteristle which”responsible
for fhe paradax; md this characteristic is self«reference.
The paradox resultswhen thesé propositions with apperent

variables about "all of a kind" are asserted about themw

e

1, Principles, Introduction to 2nd. ecition, p. xiv,
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selve‘,a.. The ’chepry ’_qf types excludes the proposition
under consideratioh fron the range of its own significance,
and thus places 1t in the next highest range., In this way
the paradox ia avoidad.

In order to observe how this 'bheory 18 applied
toa specifi.e paradox, let us examine how it solves the

- paradox of Epimenidea s Which acserts,in its simplest form,

"T am ,lying. This assertion way be interpreted in this
manner: "There is a proposition wiiich I am affirming and
vwhich is fals_e," or, 1nk other words, I am asserting the
truth of some value of the function "I a,ssart p, and p 1s
false," But "false" is an ambiguous term end to make 1t
| unambiguous the order of the proposition to which false-
hbod 1své.scr‘1bed must be stated, According to the theory
. of vtypeg;,;_-_lf pisa prOpasitibn of the nth order, then a
‘prﬁposiﬁgéh in which p oceurs as an apparent variable is not
of the nth order; but of a higher one. Henc‘e the truth or
falsehood which can ’belong to the statement "there 1s a
proposition p which I am affirming and which hae falsehood
of the nth order" is a truth or falsehood which i3 of a
.higher order than bha nth,. Gonaequently, the statement of
Epimenides does not come within its own range of signifie.
cance, and, therefore, there is no contradiction. To make
a statement with an apparent variable Mof all of a kind"
app]_y' ‘b§ Ltself is 51mp1y to mke the statement meeningless

or out of the range of 1its signlficance,
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The theory of types adequately enables Russell
and Whitehead to avoid the vicious-cirele fallacles which
resulted in the paradoxés,—- but it creatéd new problems, Thé
theory was not satisfled with merely solving the problems
for which 1t was Invented, but it applied itself in situ= |
ations where 1 was not welcome and thus became troublesome.
For example, it rendered 1t impossible to make a statement
concerning truth, meaning, or logic and have the statement
1tself true or meaningful or logical W.thin the mesing of
its owm terms. But of more Importance to the mathematlcal
logician was that the theory mede 1t Impossible to speak of
all the properties of a term, which ls a necessity in the
development of mathematical logics Thug it is necessary to
make the theory of typés less drastice

To meet this new problem created by the theory of
types, Russell and Whitehead introduced what is kmown as
"ihe axiom of reducibility." Before we can §tate the axlom,
wo must give a definition of formal equivalence. 1% is
defined as followszl "two funciions are 'formally eqx_livalent’
when they are satisfied by the same set of arguments," where
an armmt 1s one of the independent variables upon the
value of which a function depéndss The axlom of reducible
1ity 1s stated as follows: "ili is the assumption that, given
eny function g%, there is a formally equivalent predicative
funotion, 1.0, there is a predicasive functioch which is true

'10‘ Principia, Vol. 1.,’ De 58,
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when #x is true and false when gx 1s false,"l For one
variable, it 48 stated sym‘bolically; as we have already
obaerved in the prev‘.i.oua ¢hapter, in the following mane
ners |- :(3:‘): dx.‘:éx .:f’%x;( For two variablles», 1t 1s:
‘2 G Fx,y) .?_,(.,&‘f!(x.y). This makes 1t posgiblé for
us to speak of all the prom rties of a function, since for
every glven function there is a formally equivalent pre-
dicative function of a higher order which aggerts the truth
or falsity of the given function., This function or pro-
position of a.ﬁigher order, 1f 1its truth or falsity 1s to
be asserted, must be éudged by a function or proposition of
still a higher order,

This axlom 1s the weakest point in the Principla.
At the time that it was put forward, the authe_rs clearly
indicated that they were hot satisfied with it, but they
accepted 1t and used it merely because 1t achieved certaln
desired results without dangerous consequences. It 1s
neither demonstrable nor selfeevident., I 1s Included in
1ts two forms as primitive propositions., We have already,
under the sectlon deding with later modifications of the
primitive propositions, seem how the axiom is discredited
in the second sddition of the Principis and how the resulis
of the substitublon of the two peinciples of Witffenstein
for the axiom %orked out in an appendix, '

' ; 58=59. ,
%: gingén: 2 i(,zg]?;eléegg'f'propasitional function” throughout

. this discussion,



- 81#

Although the axiom of reducibiiit-y is not what
the authors would llke for 1%t bo be; ‘the theory of types
with this axiom enables them to work out the system of
pure mathematica, with the exception‘ﬁgeometry which has not
been sublected to this analysis and demonstrats.on; by purely
1ogical means from the 103199.1 caloulus in Principia. The
validity of their deddfions, however, are yet to be conw
sldered, But we may assert at this time that thelr deductlions
dod not involve vicious=circle contradictions. Thus we con
clude that both the theory of typéa and the axiom of re-
duoibility are justified until substitutes, which are more
sat"isfacto:,r'y, and will ghve the same ar better results, are
made. witthnstein's substitdtes for the axiom may be more
eé.tisfactory in some regpects, but Russell and Whitehead
have }Seén unable to secure all of the desired results from
than{, although they did get most of them in the second
sdition of Principia, At the time of the second edltion,

‘the euthors were very dissatisfled with both the axiom of
reducibllity and the Wittpnstein substitubes.



w82

Chapter VI

Russell's Proof of His Thesis

| Rugsell's proof of his contention that all of
purb mathematics can be deduced by purely logical means
from the data given in his logical'calculus is given in
the Principles and thls proof is glven symbolic demone
stratlon in Principia, In this chapter we shall be cone

corned with the proof as given, and we shall postpons our
eritical examination of the validity of the proof to the
next chapter, The proof consists of two parts, namely,

the glving of definitions of the various mathematical

_ concaptam-number; mfﬂ.nity, continulty, the various spaces
of geometry, amd motion=-, | and the establishment of cere
tain mathematical existence-theorems., He shall conslder

~ the 'dei‘initions first., They constitute the most Impor-
tant part of the prodf,

Ae Definitions of the Various Hathemat ical Concepts

The mathemetical concepts considered here are:

number, the infinitesimal, infinlty, continulty, the

spaces of geone try, and motion. Let us take these in the

order enumerated and consider how Russell defined them

in ‘terms of the data in his logical calculus.
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1, Number, Under this title in the Principles,

Rusgell e.ttempbs to show how the ap%.ratus of his loglcal
caleulus, without new indefinables or new primitive proe
positions, 1s sufficient to establish the whole theory of
cardinal integers es a specdnl branch of symbolic logice.
Th;s he doeg by glving a definition of number in logleal
terms,‘ shar ing how arithmetical additicn and multiplicatitm
are dependent on loglcasl additlon, how both may be defined
s0 that they are applicable equelly to finite and infinite
numbers, and how ratios and fractions are to be treated as
explainable in logical terms. Also these mathematicel dee
duotions are teated critically by a consideration of the
philoaaphioél questions involved with the purpose of de=
termining whebher or not any rew primitive ideas or pos-
tulates ‘had crept in under cover. In all this he is con-
firmed that arlthmetic contains no indefinables or ine
demonstrables other than those in general loglc.

The first thing to be sald about numbers is that
they are appliéable essentially to classes, Whlle 1t is |
true that the individuals which make up a glven finite nupe-
bermay be enumerated one by one without reference to a
elaésaconcept, all finite collections of i{ndividuals make
up a olass snd the result 1is the number of a class. The
individuals of infinite numbers cannot be counted one by one,
and; consegquently, an infinite number has to be defined by

intention, that is "by some common property in virtue of

‘1. Part II,
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whilch they ]:the individuals or terzna:] form a class."

Thus for every olass«.conce_ap‘c there 1s a certain number of
Indlviduals denoted by 1t. Cansequently; Russell cone
siders "number" to be a property of a class , and he dew-
fines, nominally, the number of a class as "the class of
all classes similar to the given class."z Two clagses are
said to be "similar" when they have the same number. This
definition makes mmber the classe-concept and not the
clags, A class-concept i1z a property, not a collection,
by which a collectldn is defined, anid 5o number 1s really
defined as "a common groparty of a set of simller classes
and of nothing else.“o This definition, it ls claimed,
permits the deduction of 2ll the ususl properties of fl
nite and infinite numbers.

- XNow let us consider addition and multiplication
as they ere applicable to finite and infinite Antegers.
Logical addition is ecaid to be the fuhdamental kind and
this is tho same as disjunctions "The logical swa of two
classes u and Yy may be defined in tems of the loglcal pro-
duet of two propositions, as the class of terms belézgins

to every class in which both u and ¥ ave contained.”

1, Principles, pe 113,

. T““"P"Ti‘bm-,. p. II5. |

S¢ Ibid, p, 115

4: Lbid, g. 11‘7: Consider: "If p and %ra propc:sité.ox;?,
Their logical sum is the proposition 'p or g,’ an

u and v are classes, their logical sum is the class

T or V,! L.8., the clags to which belongs every term

which oither belorgs to u or ¥." This explains the
meaning of"logical sum."”
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This definition 1s extended to a class of classes; whether
finite or infinite, "If k be a class of classes no two
of which have any commuon terms, then the ‘arithmetical sum
of the numbers of the varictis elasges of k 1s the number
of terms in the logical sum of X.," fThis is a general dee
finition which applies equally to finite and infinite nuwite
bers. |

The general definition of multiplication is
stated as follows: "Let k be a class of classes; no two
of which have any term in comon. From ,wh%hf 1s called
the multiplicative class of k, l.e. the class each of whose
terms ls a claass formed by choosing ons sand only one term
from each of t;hé classes belonging %o k. " Then the number
of terms in the multipiicative class of k is the product
of all the numbers of the varioys classes composing k."5
This definition also 1s applicable to both finite and ine
finite mumberas. ,

At this point we might as well give the definitions
of infinite and finite numbers, The class u 1s sald to be
an 1nfix§1‘be class when it is p&ssiblé to take away one temm
from u and leave s class G' similar to u. When this is

impossible, the class is said to be finite, So it follows

1. The loglcal sum of k means the loglecal sum of the
°  classes composing k. ‘
2+ Principles, p. 118.

3., Principles, D. 119, This definition 1s accredited
 fo RN ¥hitenead, See American Journal of lathe-

matics, October, 1902, for the article in which
Whitehead presents the definitlone
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from these definitlons thet "the nurbers of finite classes
other than the null-class are altered by subtracting Lor
adding_j 1, whlla‘ thzse of infinite classes are unaltered
by this operation.,” '

Peano developed the theory of finite numbers by
Introducing three indefinables and five primitive propoe
sitions which were necessary enlyﬁférithmetic. His thres
indefinables werei "0," "finite 1nt‘eger," and "successor
of +"" He assumes that "successor of" means that every nume
‘ber has one and only one successor end that "successor"
means "irmedlate successor.” The five primitive propo-
sitions weres (1). O is a number, (2). If g is a number,
1ts successor is a number., (3)s If two numbers have the
same auccéssor, the two numbers are identicel., (4). O is
not the successor of any number, (5) If s be a class which
includes O and the successor of every number included in
-] 5 then every mumber is included in s, With these he de-
veloped arithmetic;, but this made arithmetic have its own
indefinables and primitive propositions and thus arithmetlic
could not be riphtly regarded as a braunch of gymbollc logloc,

Russell, in the Principles, proved that Peano's

new indefinables end new primitive propositions for arithe
metis were not necessary., This he did by defining a class
which satfsfies all of the five primitlve proposiiéions of

Peano and no mores His definition is as followas

1. Princigleag pe 121,
2. , » Do Te
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The class of classes satisfying his | Peano's
axioms 18 the same &3 the class of classes Ehose
cardinal number is & _.,..a_ 18 the class of
¢lasses u each of walch 1s the domain of some
one~=one relation R {the relation of & term to 1its
successor) which is such that there 1s at least
one term which succeeds no other ter every term
which succeeds has a successor, and u is cone
talned in any class g which contains a term of
M having no predecessors, and also contains the
successor of every term of u which belongs to g,

It ic clgimed that of every such class all the propositions
cf’fgritmetictg:‘é,?;;g‘in‘ite numbers can be proved. |

But a ‘slimyler and more logitally correct method
of arriving atlthe same result ac the above definition is

the following:

(1), O is the class of ¢lasses whose only menme
ber 4s the nulleclass. (2). A number is the class
of all claasses similar to any one of themselves.
(3)s 1 is the class of all classes which are not -
nmall and are such that, if x belongs to the class,
the c¢lass without x is the nulleclass; or such
that, if x and y belong to the class, then x and
v are identical. (4). Having showm that if two
classes are similar, and a class of one tern be
added to each, the sums are similar, we define
that, if n be a number, n+l 1s the number re=-
sulting from adding & unit to s class of n tems,
(5), Finite numbers are those belonging to every
class 8 to which bélongs O, and to which ntl bew

longs if n belongs,. 7
This gives a complete definition of the finlte numbers, and

it 1s seen that finite numbers do mof result from counting

as ls commonly supposeds
Russell regards ratlos as relations of finite

integera and fractions as relatlons between the divisi-
bilitles of aggregates. An aggregate 18 one type of

1. Principles, p. 128,
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wholes, the other type being a unity. An aggregate (mani-
fold) 1s the whole formed of the terms of a collection. Such
& whole is completely specified by the §pecification of all
of 1ts constituents. Uniltles, aé,wholes; are not specified
by their terms¢’_Th§ former age of the greatey use in mathe-
maticafggThe type of“whéle“known asMunity"is always a pro-
position, It has anelytical parts but it does not have
perts In the Qéns; of constituents, Infinite unities may
be loglically passiblé it they do not appear in human knowe
ledge. On the other hand, Infinlte aggregates are admitted,

But infinite aggregates aréﬁfinite‘aomplexity. Neverthe-
| less, if an Infinite aggregate be divided, there must be
at least one part which remains en infinite aggfegate. Thus
fractions are relations between the divisibilities of
wholesa (aggregaﬁes). These divisibilities are magnitudes
and a magnitude is defined as "whatever 18 greater or less
than sawthing else ."l |

This completes the most important points in Rus-

sell's treatment of the theory of cardinal numbers in the |
Princinles. This same theory 1s demonstrated in Principia,

and in Introduction to Mothematical Philosophy (1919) he

had mads no fundameontal change in this treatment. Also iIn
the introduction to the second editlon of the Principles

(1938) he points out tho chenges which have developed in

his thought on the subject since 1903, md he mentions no
changes in his treatment of the theory of numbers. Howsver,
during this time he did change from time to time the prim-

1, Principles, p. 194.
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itive ideas and propositions uwpon vwhich this theory of
number is based, as we have indlcated elsevhere, But this
was largely a matter of defining one idea in terms of another
and of demonstrating one proposition by others in attempts
to reduce the number of ideas and propositions remaining
undefined and undemonstrated, Thess changes seldom af-
fected the system deduced from the primitive ideas md pro-

- positions,

2, The Infinitesimal, Infinity, and Continuity.

 These subjects are dealt with at length in the Principles

and in Princlipia, but the fundamental aonqlusions COnNe

cerning them are presented in a summary\fashion in the ai-
ticle on "Recent Work on the Principles of Mathematics,"

which may be regarded as an abstract of the Principles.

| , Zeno may be regarded as the founder of the probe
lem of 1nf1nit&. He discovered the problem in his consi=
deration of the rgace between Achtlles and the tartolse,
and the flight of the arrow to &ts target, which =is known
to every student of philosophy. Zeno's problam’was‘really
three, namely, the problem of the infinitesimal, the in-
finite; md continuity. Practlically every philosopher from
the time of Zeno to our own day has dealt with these probe
lems, but 1t was not until the midenineteenth century that
any real progress was made., Russell béses his treatment

of the subjects on the mathematlcel work of Weierstrass,

1. International Monthly, Vol. 4 (1901), pp. 88ff,
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who golved ﬁhe‘prdblan of the infinitesimal; and Deds-
kind, who begg? and Cantor, ﬁho completed the solutions
to the problems of infinity and continuity,

Before we go into the solutions of these parw
ticular problems, 1t is necessary for us to present in
very brief form Russell's proof, which is based on the work
of men like Welerstrass, Dédekind; and Cantar; that these
problems of the infinitesimal, the infinite; and continuity
 are not concerned with quantity as 1t has been traditionally
supposed, and as 1t is stlll assumed 1h practically all
dictionaries, It is this proof that makes the concepts bew
long in thevfield of logic and ezplainable in loglcal terms,
'And; as we shall see, it was only when they were divorced
from quantity that solutions of the meny problems and an-
tihomies involved in the matter were possible., This proof
concerns the nature of quantity and order., We shall conw
sider quantity first. |

| Russell arrives at a definition of guantity by

a purely loglcal process, First, he asser%s that there is
& certain pair of indefinable relations called fopeater” and
"less.”l These relations are shown to be asymmetrical and
transitive and incompatible with each other, When one
holds between A and B the other holds between B and A,
and consequently each 1s the converse of the other. The

terms which are capable of these two relatlions are called

1. : tions "greater" and "1ess" are introduced as
¢ gggegiigbles ingthe Principles. These arz n%? inclugfd

in his lozical calculus, and they appear to be a Wea
point in gia proof. Bué in Principila they are defined.
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"magnitudes." Each magnltude has a relationship to some
concapb which is expressed as "a masnitude of that con-
cept.' Two magnitudes are said to be similar or of the
same kind when they have this relation to the same cone
cepts M"Quantity" is seid to be a magnitude particularized
by a temporal, spatial, or spatio-temporel position, or
"when, belng e relation, 1t can be particulerized by take
ing mtg consideration a palr of terms between vhich 1t
holda,."

From magnitudes mathematiclang have deduced the
eoncept of infinity since it aprears that of some kinds of
magnitudes, fozﬁ example, ratios, dlstances in space and
time, there 1s a magnitude greater than any glven magnle
tudes This magnitude is called infinity, and it is as«
goclated with quantity since quantity has been usually reo=
garded as that from which magnitude has been deduced, Also
philosopheras have declared that every well-defined series
of terms mst have a last term, From these two conclusions
the antinomies usually asgsociated with the problem of ine
£inity bave arisen, |

This problem of infinity, Russell asserts, "is
not properly a quantitative problem, but rather one cone
cerning order. It is only beceuse our magnitudes form a
series having no last term that the problem arises: the
fact that series is composed of magnitudes is wholly ir-

1. Principles, pe 167.
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1 ,
relevant."” The sams 13 3aid of the infinltosimel. The

problem of the infinitesimal is stated in this manner: for
every given magnitude, there is a magnitude less than the
given one, and also philosophers have asserted that every
well-ordered series must have a first term as well as a
last one, But again this has no reference to quantity
and only to magnitudes 3n the sense thet 1t deals with a
series composed of magnitudes, Continuity is defined in
thlis manner: "It applies to serles (and only to series)
whenever these are such that there is a term between any
@é given terms. WVhatever is not a series, or composed of
serles, or wnatever is a serles not fulfilling the above
~condition is discontinuous¢"2 Th¥s we see that inflnlity,
the infinitesimal, and conbtinuity have to do with serlss,
which means that they are related to order and not to
quantity as it has been regarded tradiltionally.

We mist now consider orders We may sum up in a
very simple conclusion the results of a long compllcated
discussion on this matter, The conclusion 1ls: "The
minimum ordinal proposition [proposition of order], which
cen always be made wherevexr there 1g gn order at all, 1
of the form: 'y 1s between x and z.'" This means that
fthere 1s some asymmetrical transitive relation whiqh holds

3
between x and y snd between y}and 2.," Furthermore, 1%

1. Princlples, p. 189.
20 THIA, B, 155,

Sb mﬁ: p‘/ 217‘
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1s said that all order involves asymmetrical transitive
relations, and that evary series as such is Open; Uhm
symmetfical transitive relations® and "open series" rew
quire explanatlon,

An "asymmetrical transitive relation" is a reo=
lation ﬁhich possesses tha propertles of asymmetry and of
Itransitiveneas, and this type of relation 1s declared to
be that which generates order or series. Thils places the
essenbe of order in the relation among the members of a
class and not in the class of terms to be ordered. An
asymetrical relation is a relation of the type xRy,vhich
excludes the possiblillity of YRX. For exemple, the re«
letion of "preceding." If x has the relation of "precede
ing" to y, 1t 18 not possible for y to have the rélation

of "preceding"to x in the same serles, This 1s called an
asymmetrical relation. A transitive relation 1s of this
Sort: Iif x precedes y and y precedes z, then x preceqes
z, If a relation possessing both of these propertles,
namely, asymmetry end transitiveness, exlsts among the
terms of a class, then order exists or the terms are ar-
- ranged 1n,a'aerieﬁ'

o In the Principles, the above 1§ regarded as an

adequate explanation of order, Wt later Russell finds it
necessary to mske expllcit a third property of a relation
if 1t 1s to generate arder or a serles, This third pro-

1; Prineipla, Vol., 11, p. 513, and Introduction to Mathe-
maE{ca% Pﬁilosophx, De 32 _
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perty 1s called "connexlty." This property had been
egsoclated with the serles 1tself and not with the re-
lation in the Principles. "Given any two terms of the class

which 1s to be ordered, there must be one which precedes
end the other which follows. For example, of any two
integers, or fractions, or real numbers, one 1s smaller
and the other greater; but of any two complex numbers
this is not true, Of any two moments in time, one must
be earlier than the other; tut of svents, which may be
gimultaneous, this csnnot be said. Of two points on a
line, one must be to the left of the other."l A re=-
lation having this property is called "connected." Thus
& relatiin is "serfal" when 1t is asymmetrical, tran-
sitive, and connected. A "seriel" relatlon is the same
as a "series," There are many ways of generating series,
but all these ways depend upon the finding or construction
of an asymmetrical, transitive, comnectad relation,

A series 13 sald to be "open" when 1t does not
have a beginning, or when it has a beginning that is not
arbitrary, It is closed when it has an arbltrary begine
ning. This means that 1t has a filrst term, Every closed
serles can be opendd and every open serles closed mathe-
mtically, Yet, in regard to the nature of the generate
ing relation; there 18 a genulne philosophicalldifference
between the two, tut this is of 1ittle, 1f any, mathematl-

cal importence.

1. Introduction to Mathematical Fhilosophy, p. 32.
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Thus 4 igstead of belng concemed with quantity,
the infinltesimal, the infinite, and continuity ars cone
coerned with the realms of order and number, Order and
number have been defined in purely logleal terms without
the introduction of additional indefinables and primitive
propositionss It remains to be seen how these concepis
can be defined and how the problems involved in them can
bé solveds

The Infinitesimal

The 1nfinitasimal has been regarded as very ime
portént to mathematics» The Greeks invented the idea.ln
their distinction between a circle and a polygon. They
asserted that a circle is merely a polygon with a large
number of very small équal sldes. After Leibniz inﬁented
the 1nf1nitesima1 calculus, the notlion of the 1nfin1tesimal
bacams one of the fundamental notions of 21l higher nathee
matics. This calcuius reguired continuity and continuity
was regarded as possible only cn the basis of the infini-
toesimal or the infinitely little elements, But no one was
‘able to discover what hhe infinitesimal of the infinitely
1ittle really was, It was evident that it was not zero.
But when the infinitesimals were added together, they seemed
to mke up a finite wholes &nd no one could discover a
fraction which was not finite. S0 a stalemate developed
in regard to the prdblem‘untii the time of Welerstrass
about the middle of the last century. Welerstrass dis=
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covered that the infinitesimal was not need’fa*s all; and
that everything that had been regarded as depsndent upon
1t could be accomplished without 1%, Conse@ently; the
whole idea of the infinitesimal was abandonedi, This view
is demonstrated to be correct in the Principles and it is

gonerally sccepted todays Russell shows that the berm
"infinitesimal”™ is relative and that it is not capable of
being more except in regard to magnitudes that are divie
slbllitles, or divisibilitles of wholes which are infinite
in the absolute sense, ‘B’ut}where 1t has absolute meaning,
1t is Bhown to be nothing more than finitude, Infinity and
continuity are showm td be completely independnet of this

gonecept.,

The Probokem of the Infinite

Traditionally, 1t was assumed that infinite
numbers and the mathemtieally infinite generally were
self -contradictory. Bub 1t was obvious that there were
infinites, the number of numbers for example, The con-
tradiotions sgémed inevitable and phlilosophy seemed to
have wandered into & "cul-de-sac." This lead to Kant's
aﬁtinomiea and to fnuch of Hegel's dialedtical method.
Eu’c Russell declared in 1901 that a1l the ancient and
respectable contradictions in the notion of the infinlte

. 1l
have been onoe £or all disposed of." In this statement

1. "Recent Work on the Principles of Mathematics," Int.
?ﬂon‘ﬁhl 2 !501‘ 4‘ po 920
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he had in mind the molution offered by Dedekind and Cantor.
He accepbed their solutloh at that time and he has never re-
»3ected its Subsequently it has boen accepted by many mathe-
matiéians.and philosophers,.

- Iet us cxamine the procedure of Dedekind and
Cantor in thdr‘scluti.onof the problem of infinity, In
the first place, they asked the question: "What is ine
finity?" Rupsell says that this guestion had never been
asked intelligently. Then they found a perfectly mecise
definitian of infinite number or an infinite collectlin of
things by examining the supposed contradictions in the
| notion, Cantor strictly examined the supposed proofs of
pairs of contradlctory propositions in which both sides of
the contradletion were regarded as demonstrable, He dise
covered that all proofs opposed to infinity involved a cors
ﬁain maxim which appeared to be obviously true, but vhich
alwayslresulted in destructfvé consequences to almost all
" parts of mthematics. On the other hand, the proofs which
were favorable to infinity never involved any detrimental
principles. Thus he concluded that common sense had been
leading phillosophess end all others astray on this one
principle involved in ell of the proofs opposed to infinlty.

The diabollcsl principle in question is that 1f
one collection is a mrt of another, the part has fewer
terms than ﬁhe collection of which it is a part, This prine
eiple 1g tmie of finite numbers, but in infinite numbers it

invariably lead to disasirous results In all of mathematics
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and philosophys. Cantor decided that the princlple was
false in regard to infinite numbers and so he abandoned 1%
and assumed that a collection wihlch is a pert of another
collection, when the collections are 1nfinite; has just as
many terms as the collection of which it 1s a part,

Conséquently, ﬁé get this definition: "A cole
lection of terms is Infinite when 1t contalns as parts .
other collections which have Just as many terms as 1t has,
If you cen take away some of the torma of a colieetian;
without dimiuishing the number of terms, then tﬁere arse
an infinite number of terms in the collection. . For ex=
emple, -thore are just as many even numbers as thore are
nunbers altogether, since every number can be ddubled,"l
and the double of every'numbar is an even number. T%Thus the
number of finite numbers is infinite.

Ordinal numbers are arrived at by ccunting, that
is to say that counting gilves rumbers in an order or &
series, When there is only a finlte number of terms, we
can count them in any order wé l1kes Ordinal numbers dee
pend upon the number of terms and the way in which they
are arranged., True infinite numbers are cardinal, Care
dinals are not determined by counting them, since they do
not tell us the #nmber of terms a collection has. They tell
us whether two collections have a one-one relatlion of terms,

that is whether two collsctiins bave the same number of

1., "Recent Work on the Principles of Hathematlies," Int,.
Monthly, Vols 4, De 98¢
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terms, or:whether one has more or less than another,

The numbars;cf Infinite eoliectiéns are defined
by the following method: "If every term of a collection
can be hooked on to a number, and all the finite numbers

-are uged once, and only once, each in the process, then
our collection must have Jjust as many terms as there are
finlte numbers,”

We are told that there are infinitely more ine
finite numbers than finlite ones., Thus all infinite nume

. _ 5 |
bers are not equal. Russell says tggtz
there are probably more points in space and
more moments in time than there are finlte
numbers. There are exactly as many fractions
as whole numbers, although there are an in-
finite number of fractions between any two
whole numbers, Bub there are more lrrational
numbers than there are whole numbers or )
fractions, There are probably exactly as
many points on a line a millionth of an 1nch
long as in the whole of infinite space.

In the article on "Recent Work on the Principles
of Mathematics,” Russell parted company with Cantor on
the matter of the existence ( or subsistence) of "a greate
ast of all infnite numbers, which is the number of things
altogether, of every kind amd sort." Cantor had sald that

there is no such number, but Bussell asserted that there is
and he promised to prove 1t in a later bqok. Evidently he

had in mind proving it in the FPrincipled, which was almost

1+ "Recent Work on the Princlples of Mathematics," Int,

Monthlh Vol. 4, Ds 95,
. Pe 95,

2, Ibid o
5. Tater Russell substituted logical constructions com-
posed of events for points of space, instents of time,

‘and particles of mtter., See Principles,(2nd. eds) ypexis
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ready for publicatlon :ait the time‘ the article was written,
But in the Principles, after having carefully examined

cantor*_s work, Russell says: "The only solution I can suge
geat is, to accept the conclusion that there 18 no great=
est number...” In 1901 he said that if a greatest in-
finite number was not accepted all of the old contrédictiona

g ‘ _
involved in.infinite would return. But in the Principles

and later worls the theory of types 1s used as the way out
of the contradic tioné which returned home after the abolitlon
of the notion of a greatest of all infinite numbers.

In sddition to the definition of infinity given
above s Russcil glves ahother in the Principles, . The other
one states that an infinite number is that which cannot be
reached by mathematical induction starting from 1. This
is ca‘lled‘. an oi-dinal definition of infinite number,while

the one giffen above, is called a cardinal definition, The
cardinal deéfinition 1s the most important one.

Contiimity

The solution of ﬁhe problem of infinlty made
it posaiblé to solve the problem of continuity. This
solution 1s due to Cantor also. He has been able to give
e perfectly precise definitlon of continuity and to show
that there are no contredictions involved in the notion as

defined, Russell mccepts this treatment and shows how it

lo’p. 368,
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is part of the pure mathemotlces deduced from formal logic.
by showing that 1t has to do excluslvely with order and
not with quantlty,as we have already shown. Cantor gave
two definltions of continuity, but the first one is not
purel's' drdinal. In at least two pointg, as Russell points
out, .11; demands some reference to numbers or numerically
measurable magnitudes, His later,defﬁ.nition; which is
‘shown by Russe'll to be purely ordinal, is the one that we
are interested in.

Before we can give the definition 1ltself 1% is
necessary to: give some auxillary conceptions so that the
definition may be ﬁnderstandabie when 1% is given, First
of all we must consider the Lype of order exhibited‘by.
the series of rational numbers which are greaber than
zero and less than one, This series has three peculiari-
ties which define it (1), It is"denumerable," that is
1ts terms can be arranged so that they have a one-one re=-
lation with the successive integers; (2). it has neither
a first nor a last term; and (3) . betvieen any two terms
there is always s third. Any series that possesses these
three characteristics 1s sald to be of the type of orderh .

‘We now have to consider what Cantor calls a
ffundamental series.! We need to consider only the ase
cending fundamental serles, By this is meant a serles of
wnich the terms have the t:@e of order\’\ defined above.
Such a series S5 is said to have & limit in¥) , if there 1s
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& term in']which 1s the first after all the terms of S.
Then we say that any manifold {aggregate) 1s perfect if
all the fundamentel seorics contsined in 4t have a 1imit in
4t, and if all itc terms arc limlts of fundamental series
containcd in it, '

With these conceptlons gilven, the definition
of the contimuum is as follows: "A one-dimensional don-
tinuum M 1s a series which (1) 1s perfect, (2) contains
within itself a donumerable serles S of which there are
terms between any two terms of Eg’l,.“l Cantor proves that
ahy aerﬁ.es M that satlsfles thi;s definitlon is ordinally
simllar to the number continuum, that 1s the real nume
bers from O to 1, both inclusive. What is meant by “rgal"
numbers? We ere told that "fhe series of roal numbers s 88
ordinally defined, consists of the whole assemblage of
rational and irrational numbers, the irrationals being dew
fined ag the limits of such series of rationals as have
- neither a rational nor an infinite 1im1i;."2 However, Ruge
sell does not accept the existence of any irratlionals as
defiﬁed in this ctatement., He considers them as a form
of retional numbers, but this does not concern the ques-
tion at hand, That this definition of the continuum is

satisfied by the sories of real numbers is clear since it

can easily be shown that the sories 13 "perfect" and thmt

1, Principles, pe 297
2. Ibid' pQ 2‘706
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there 1s always at least one torm of the series of ratione
al numbers between any two real nuumbers,

This solution of the problem of continuity is
of great signiflcunce in philosophy and masthemstlcs. One
of the results i1s the proof that geomebry canbe divorced
from the space in which we live and can be made compatie
ble with the theory of number., This makes it possible for
geomebry o be deduccd from the primitive idwas and pro-
posltions of fthe loglcal calculus,

Thus the problems of infinity, the infinitesimal,
end continulity are solved. These solubions have been widew
1y eceepted by both mathematiciens and philosophers during
the past forty years. Concerning the solutlon to the probe
lom of the infinibte, which rfay be regarded as the key one
of the three, Russell saysi

The solubtion of the difficuliles which formere

ly surrounded the msthematical infinite 1s pro-
bebly the greatest achievement of which our age
has to boast. Since the beginnings of Greek
thought these difficulties have been known; in
every age the finest intellects have vainly en-
deavoured to answer the aprarently unanawerable
questions that had been asked by Zeno the Eleatic,
At last Georg Canter has found the answer, and

has conguered for the intellect a new and vast
province which had been given over to Chaos and

Night.

1. Mysticism and Logic (1929), p. 64,




3. Space. This aspéct of our subject has to
do with the branch of mathemstics _known‘ a3 geometry, Ruse
sell's second book was entitled "An Essay on the Foundaw
tions of Geometry" (1897)., In addition to this Part VI of
the Principles deals with the sﬁbject. In volume III of
the first edition of Principla and again in the second e~
dition a fourth volume of the work is promlised in which
geonetry would ba treated, but this additional volume has
‘ndt‘beenrpublish&d, Consequently'geometry has not been
given as_precisaksymbolic treatment as the other branches
‘of mathamaﬁics, tut some of the essentlala of the subject
amﬁoovered in the Principles. When the first book on

gécmetry was publishéd in 1897, Russell had not developed
 his Logice—mathematical‘thesis. Consequently, the book is
‘of 1ittle value for our purposes.

’Until about a céntury ago there was only one
geometry, namely; Fuclldean, which was based on ﬁhe common
sense'belief in the space in which we live, But during
the nineteenth century several non=Euclldean geometriles
based on noneEuclidean spaces were developed. This raised
serious quostlons concerning the nature of space, Russell
concluded in his first work on the subject in 1897 that
space must be regarded as ordinal end not quantitativeg This
| was & step toward his Imter logico-mathematlcal thesis, and
1t helps in proving the thesise The conclusion of his bpok
on the Foundations p_f_'_ Geometry is tho followlng: "Space,
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if 1% is to be free from contraditiona; mist be regarded

exclusively as spatial order,Aaé relatlons between une
extended.material.atdmss Empty space, which arises, by
an 1nevitabla 1;lusian, out of the spatial element in |
sense=-porception, may he fegaraed, if we wish to retain
1t, s the bare principle of relativity, the bare logical
possibility of relations between diverse things. In this
sanse,vﬂmpty space 1s wholly conceptual; spatlal 6rdar
alone is immediately experienced.Jl

In tho Pfincipies% Russell says: "As a breth of

pure mathematics, Geomotry 1s strictly deductive, indif=
fereht to the cholce of 1ts premisses and to the queétion
whether thero exist (in the strict sense) such entlitles as
-_its premiasés défine. Many different and even inconsistent
sets of premlsses lead to prdpésitions which would be callew
ed genﬁetrical, but all such aets have a common element,
Thié element is wholly summed up by the statement that
Geoﬁétry deals with series of more than one dimension." Thus
the definitlon is:"Geoﬁetry 1s the study of geries of two
or more demenéions."5 Such series are found %o arlise whenw
ever we ﬁé#ﬁ”h"héfiéé'cbmpbéed of terms which are series
themaeivea.

By the abstract lagical;methad based on the 1ogiq$1

1. Foundations of Geometry (1897), pp. 197f,
2¢ Principles, p. 372+ L

3, Principles, pe 372+




relationsg, Russell shows how the ssveral geomotrical

spaces may be defined end how the propositions of pro-
jeétive, descriptive, add metrical geometries may be provod
without introducing any new primitive idea.s or propositions.
Let us consider the definitions of the several spaces, He
 glves a definition of projective space, vhich serves as a
model for descriptive and metrileal ~spaces; but he does not
give the definitions of the latter two. The ‘definitiC;Ln of
vrojectlve space of thres dlmennionsg 1s as follows:

‘A projective space of thres dimensions is any
oclags of entities such that there are at least
two members of the claps; between any two disew
tinct members there 1g one and only one syme
metrical allorelative™, vhich iz conneecteld, and
is transitive so far as 1ts being an aliore-
latilve will permit, end has further propertles
to be enumerated shortly; whatever such allow
relatlve may be taken, there is a teorm of the
projective space not belonging to the field of
the seild aliorelative, which field is wholly
contained in the projective space, and 1s called,
for shortness, a straight line, and is denoted
by ab, if a, b be any two of 1ts Lerms; every
‘straight 1Tne which contains two terms contalns
at least one other term; if &, b, ¢ be any three
terms of the projective space, such that ¢ does
not belong to the class ab, then there is at

" least one term of the mwojective space not he-
longing to sy class cx, where x 1s any term of
ab; under the same circumstances, if a'! be a
term of be, b! a term of ac, the classes of aal,
bb! have a common part; if d be eny term, other
than a and b, of the class ab, and u, v any two
terms such that 4 belongs to the class uv, bub
neithér u nor v belong to the class ab, and if
¥ be the only term of the common part of au and
bv, & the only term of the common pert of av and
bu, x the only term of the comuon part of yz and

 ab, then x is not identical with d {under these

 eiroumstances if may be proved that the term x
is independent of u and v, and is uniquely dem
termined by &, b, d; hence x and d have a sym-

1. An "eliorelative" is a relation which no term has to
1tself,
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metrical one«one relation which mayrbe dew
noted, for brevity, by xH.,pd; 1f 7, e be two
further terms of the projective space, be=
Jonging to the class xd, and sach that there
are two terms g, h of the class xd for which
ws have gH_.h and gH_ h, then we write for
shortness ?&xda to eXﬁresa this relation of
the four terms x,d,7,0.)3 & projective apace
is such that the rslation Qg s whi tever terms
of the gpace x and d may be; dis transitive;
and that, 1f a, b, 0, d be any four distinct
terms of one stralght line, two and only two
of the propositions aQ 4, aQ.? ¢, aQ.qb will
hold; from these propeffies o dprojeo ive
space 1t resulis that the terms of a line
form a series; this series 1ls conbinuous...;
finally 4T a,b,c;d4,6 be any five terms of a
projective space, there will be In the class
&8s at least one term X, smnd 1In the class cd
at least one ferm ¥, such that X belongs to
the class by. ‘

This is e rather long and complicated definition,
but any purely formal dcfinition would have to be, Any
class of entities that fulfilds this definitlon is sald
to be projective space. There 1s a whole class of pro-
jective spaces send thls class has an infinite -mimberlof
members, Rusaell says, and we know four such members,
namely, arithemtical space, the projective space of descrip-
tive geometry, the polar form of elliptie space, and the

antipodal form of slliptic vgeometry. |
In his treabtment of spé.ce in the Principles, Ruse

gell concludes that space 1s composed of points and that
the number of points must be equal to or less than the nume
ber of {he .continuum. This is known as the theory of ab=
solute ﬁcsition.- T+ holds that the relations with which

1. Principles, pp. 430-431,
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we have boen concernsd hold betbtween spatiai points, which
essentially and timelessly have the relations which they
do have, This is opposed to what is lmown as relative po=
sition, which holds that spatinl relatiehs have to do with
material pointsrwhich are capable of motlon or change in
their spatial relations, Russell shows how there 1s no
logleal argurments against space being composed of points,
Hence he concludes that there 1s such a thing as absolute
spaces But later Whitehead persuaded Russell to abandon
points of space along with instants of time, and particles
of matter end to sugstituéa for them logical constructions

compoged of eventa,’

4, Motion, In dealing with the problem of the

iﬁfinite; Zeno was forced to scnclude that there 1s no such
© 'thing as motion, The pz;bblem.; of motion, which is the basis
| of dynamics, baffled phi15§oph§rs until the time of the work
bf Wolerstrass. Russeill@resents,a theory of motion vhich
‘15'd§££ned'in purely 10310&1 térms. But before we can give
this theory 1t is necessary for us to say something ebout
his theory of matter, since motlon 1s usually regérdéd as
concerned with particles of matter, But, if a deﬁiniticn of
motion is to be derived from the loglcal calculus, motlon
muat be divorced from material partlecles,

He sums up his conception of the nature of matter

2
in 1903 as follows:

1, See the Introduction to the second edition of the Prina

ciples, ps Xi. Also see Russell, Philosophy, (1927),pp.276ff.
24 Prgnciples; Pe. 468,
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Material unit 1s a classeconcept, applicable to
Whatever has the following characteristics: (1)
A simple material unit occupies a spatial point
at any moment; two units cannot occupy the same
point at the same momcht, and one cannot ocecupy
two points at the same moment, :(2) “Every ma=
teriasl unit persists through time; 1ts positions
in space at any two moments may be the same or
different; wut if different, ths positions at
times intermediate between the two chosen must
form a continuous seriess (3) Tp material units
differ in the same immediate manner a&s two points
or two colourss they agree in having the re«
lation of inclusion in a claas to the general to
concept mabter, or rather to the general cone
cept material unis,

Thus matter seems to be g colléctive hama for the consti-
tuents which make it up. It 1s the class-concept of the
class of blts of matter, or, according to the later re~
'vision due to Whitehead, the class of loglical constructions
composed of events, in the same aensé that man 1s a class
| oconcept for the class of men. .
| After the mature of matter is set forth in the

above manner, we have an abatract statement of matter as
1t i85 used inv rational dynamiecs, and 1t 1s motion as cone '
cerned in rational dynamics that we are Interested in. First,
time md spsce are replaced by a one=dlmensional and ne
dimensional series respectively. Then it is evident that
"the only relevant function of a material polnt E)r a loglcal
construction composed of an event as he would have said |
latér| is to eatablish a correlation between all moments
of time and some points of space, and that this correlatlon
is many-»one._"l The actual material point loses 1ts ime

1. Principles, p. 486,
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portance since the correlatlon 1s given, Thus the material
_ point is replaced by a meny-one relation vhose"domain 1s a
certain one~dimensional series, and whose converse domsin is
contained in a certain three-dimenslonal 'geriea."l

Now with the material particles, or loglcal cone
sbructions composed of events, replaced by many-one rew
lations of all times to some places, or "of all tems of
a continuous one-dimensional series t to some terms of =
continuous throe-dfmensional series 8," we may state Ruse
‘gell's theory of motion, vHa gayaz_a :

Motion oconsists broadly in the correlation of
different terms of i with different temms of g,
A relation R which has a single term of g for
1ts converse domain corresponds to a material
~particle which 1s at rest throughout all time,
A relation R which correlates all the terms of
% in a certaln interval with a single term of 8
corresponds to a material particle which 1s at
reast throughout the interval, with the possible:.
~ exclusion of its endeterms (if any), vwhich may
ba torms of transitlon between rest and mobiony.
A time of momentary rest is given by any term _
for which the differential coefficient of the el
i3 zero, The motion is continuous if the cor '
relating relatlion R d€fines a contlinuous function.
It is t0 be taken as part of the definition of - :
motion that it is continuous, and that further
it has first and second differentlel coofficienta.

In this theory of motlon, whlch 1§ based on the
denial of the infinitesimal, motion consists merely in en |
entity's occupation of different points at differont times,
subject to continuity., There is no such thing as 8 stgte,
of motion. Thers is no transitlon from point to point, and

no consecutive positions or moments since there is no such

1, Princinles, p. 408,
2, Ibid, pe 457



thing as the next point or the next moment. This is due

to thé fact that between any ‘twn points or inomcnts there
must be a third. Consequently Beloclity end ascceleration

as physical facts are rejected, All that we can say is
that an emiity 1s at one point in a serles at one moment
and at another point at anothor moment. We can say ﬁothing
about what happens in the intorval. This conclusion 18
made imperative by the work of Welerstrass in abollshing
the infinitosimal.

Thus Russell defined all of the fundamental
mathematical concepts, namely, number, infinity, contim
nuity, space, and moition, in terms of his loglcal 'c;zlcuo-
Juse These concepta and tha theories Involved in them glve
us the fundamental definitlons necessary for arithmetic,
geometry, and dynamicss These deflnitions arc always the
definition of a class or of a single mémber of & unit class.
This is necesaary since the only way of giving a definition
of these ’cer{xﬁs is to give a px'c:npositiénal function vwhich
| the object or objects to be deflned is tb satisfly,.

Be Tho Lxistence Theorems

In addition to these definitions, we need the
exlstence theorems of mathematl cs, which are thg proofa
thaf; these various classes defined are not null, in order
to show that all. of mathematics can be deduced from the-
logical calouiua. We have already given some of these a=

long with the considoration of the definitions. Bub let
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us state the most important of them in summary fashion

at this point. Almost all of them are bbtainad from arithe
metic. The existence of zero is derived from the fact the
null-class is included in it,end 1 1s proved to exist by
the fact that zéro 1s a unit class, since the null-class 1s
1ts only member. The exlstence of all the finite numbers
is proved by the fact that if n 13 a finlte number; n+1

18 the number of numbers from O to n (both included). Hence
the exiatence ofX, 4 the smallest of .:the infinite cardinal
‘numbers, follows from the dlass of finite cardinal numbers
themselves, since the numbef of finite numbefs 1s not fi-
nite. It 1s clear that the number of finlte numbers is
Anfinite since the number of even finite numbers 1s equal
to the number of all finite numbers (By definition, the in-
finite 48 thet which contsins a part which has Just as many
terms e s that of which 1t 1s a part.). In like manner the
existence of W , the smallest of the infinite ordinals,
follews from the series of finlte cardinals in order of
magnituds., The exlstence of’), the type of endless come
pactldannmargble‘aeries, follows from the definltion of
rational numbers md of their order of magnitude. And from
the segments of the series of rational numbers the existence

2 .
of real numbers and of & , the type of continuous series,

1. A compact serles is one in which thers 1s a term between
any two terms,

2. Russell regards the real numbera as a part of the
rational numborse
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follow., From the fact that the number of well-ordered
types from 0 to<1sc{ +1, and from the fact that "if u

be a class of woll~ordered types having no maximum, the

- series of all types not greater than every u is itself of
& type greater than every u' the existence of the terms of
welleordored types are proved. The exiétence of the class
of Euclidean spaces of any number of dimensions is proved
from the axistence of & by the definition of complex num-
bers. Also Russell proves the exlstence of projective,
non~Euclidean demseriptive, md metrical spaces; but it is
not necessary for us to consider thsse‘prooﬁs here, Lastly,
ﬁhe‘clasa of dynamlical worlds is proved to exist by "core
relating some of the points of a space with all the terms
of a continuous seriesc“l

Throughout the Principles all of ﬁhese definitions

and exlstence~theoremd are derived without the introduction
of any entity that 1s not definable In tenms of the indee
finableé of the loglcal calculus or demonstrable in temms

of the primitive propositions., He concludes that "the
purely logleal nature of mathematles 1s establlshed throﬁgh~
outs” VWe will not pasa 3udgment on this conclusion until

we have éubjeoted the more important parts of his proof to

a oritical examination in the next chapter.

1. All of these exisbence=theorems are collected in the
Principles, ppe 497«498.
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Chapter VII

Examination of Russell's Proof of His Thesis

The purpose of this chapter 1s to determina the
validity of Russell's proof of his losico-mathematical
‘thesis¢ Ve have already seen how: he has defined the vae
rious fundamental mathematical concepts and deduced the

fundamental exlstence-theorems in the Principles, These

facts are cogent, but Hussell gnd Whitehead were not satlse

f1ed mersly with them, 'They sought o give preclse mathe-.

matical demonstration of the deduction of all of pure mathe-
mitics from their primitive i1deas and propositions in the

Principle. However, as we have ﬁointed out, the volume on

géometry has not been published, In Principia the conclusions
vhich had been stated in the Principles, with some modi-

fications, are deduced in symbolic form step by step in
ninute detall., In our eritical examination of the proof
presented for the establishment of the thesis , we shall
vse Principla ss our source material. Jﬂfganaen,lin his
ﬁagnificant work on formal logle, gives an excellent cri=
+1eal examintion of the Russell-iWWhitehesd proof of thelr
loglco~mathematical thesls, in our discussion, we shall
rely heavily upon this vork since we belleve it to be the
best and soundest oritical examination of the thesls of our

philosopher to dates

1. Jfrgen Jgrgensen, A Treatise of Formal Togic {Copenhagens
Levin end Munksgaard Publishers, 1931), Vol, III, pp.59-200,
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Our purpose 1ls %o determine whether or not the
proof of the thesis 13 valid. ?Q“dc.this,it iz not neceg=
sary for us to examine the deduﬁtian of all the properties
of pure mathematics from the logical calculus. If we dld
this we have the ?rincipia reproduced here. We need to con=
sider only some of the more fundamental mathematicallccnu
cepts, and we choose to examine how the theory of natural
numbers, from which the theories of quallifled, rational;
real and complex numbers cen be’darived, and hcw*thé theory
of infinite mumbers can be deduced from the primitive ideas
and propositions of the Principias, This wlll firmly es-
tablish the deduction of both finite end infinite arithe
metic, that is the ari thmetic of both finite and infinite
numbers, We will bave %o gccept the proof of the deduction

of geometry given in the Principles as ﬁrohably true since

4% has not been given symbclic.dembnatration. We have ale

ready pointed out how the primitive ideas and propositions

of Principia differ from those of the Erinciplea, but these
differences, a3 we have sald elsewhere, merely conslst of
the defining of one term in terms of others and of demon=
strating one proposition by means of the others. Either 118t
15 sclnowledged to be arbitrary. Such differences between
the components of the caloulus do not affect the walidity

of the proof of the thesls.
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A. The Theory of Natural Numbers

Mathematicians regard the series of natural nume
bers as the basls of the whole structure of mathematlics and
this series is considered to be known, It is understooé,to
be the infnite series Qf‘finite absolute integers expressed
in Arable symbols as 0,1, 2, 3.s..ssts Each of these
figures can be regarded either as a number of objects or
terms or as & numeral indicating a spediffc place in the
series., The former is known as a cardinal number and the
latter as an ordinal, The cardinals are the'mnst iﬁportanﬁ
‘and,mnst fundamental since the ordinals cannot be different
from what they are if they are arranged according to magnial
tude and if we know the meaning of belng "greater than" or
"less than" by one unit. Each ordinal is determined by |
its rolation of a unit magnitude to its predecessor and
its successor. Therefore, in order to glve the natural se=
ries of numbers we miat know every item in it and the re.
lation that exists between everyone of them.and the one ime
mediately before and the one immediately aftér. Congem
quently we have to know the cardinal numbers and be able
to arrange them so as to form the series of natural num-
bers before we can define any arbitrary ordinal number.
From thls we conclude that cérdinal numbers are more fune
damental than ordinals.

Qur first problem then 1ls to determine what a
cardinal number is. Many mathematiclaens have sald that this



is an impossible task, but some mathematliclans and lo-
gilclans have Insisted on giving a definition. As we have

seen,Russell, in the Principles, defines the number of a

"1
class as "the clasa of all classes similar to a glven class,"

In the Princlpia, this definition 1s given as follows?

#100,02, NC=DNe Df. (definition)
where NC is the class of cardinal mumbers and where Nc¢ is
defined as under:

| #100.1 No= & Df.

which,memns that Ne 41s the relation "simllar" between
classes, D is the field of the relation., Tims the defia
~ nition reads: The class of cardinal numbérs ls the field
of the rela tlon between similar classes, or, Iln other wordé,
the class of cardinal numbers ls the class of clagses which
are similar to esach other. If*Xbe a class, its cardinal
aumber (Ne®¢) will be the class of all classes similar to
it, which means that the cardinal number of a clags 1s the
- ¢lass of all classes simllar 1t a glven class,.

The problem now is %o determine whether fhis dew
finition is loglcally correct and whether it fits the mathe-
matical meaning of cardinal numbers and nothing else. The
latter is not difficult to prove since 1t asserts that the
" class of cardinal numbers is ldentlical with cardinel nume
bers; which 1ls a pure tautniogy end perfectly'obvious. But
objectlonsg have been raised conserning the loglcal core

rectneas of this definition., Let us consider some of these.

1. These objections are listed end summarlzed by Jgrgensen,
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1. F"Kausdorftl objects to this definition on

the basia that the concept "class of all classes" is in=
- wvalid since it leads to the "Russell Paradox;“ that is that

- "the class of all clasée&* includes itself as a member of
1tself and therefore 13 guilty of the viciaus-circle fa1~
‘lacy. As we have already seen Russell regolves this dife
_fioulty with his theory of types and the axiom of reduc1~
bility. | | :

2¢ A second ohjaction to this definition of care
dinal numbers is raised by J. MQllefup? This abjection
says that the definition is,self«contradictaryﬂ;n that 1t
makes the number one the aggiegate (oi manifoldf'of all
thingsa Cne, according to thekdefinitian, 1s the class of
all unit classes, which includes all individual things. But
this does not oconstitute a cantradiction. Even 1f there
were an 1nf1nite number of uniﬁ classes; one is not said
to be equal to infinitye+ Onme, according to the definition,
3g 3dentical with the class of all unit classes, but this
18 not identical with the number of all unit classes. It
1s identical with the class of all classes which are sl
miler to the elass of all unlt classes, Mollerup's difw
fioulﬁy seems to be the confusion of "class of all classes

gimilar to s given class" with the “"numbor of all classes

similar to a given class.”

1. Grundzlige der Menglehre (Leipzig, 1914), pp. 46,450,
2."Die Definition des Mengenbegrieffs, in Hath. Ann.,
Vol. 64 (193‘7)" Pe 23)s :
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3. Also it has been ab;;ectgdi that the cardinal
number of a class cannot be regarded as the aggregation
of all agéregates equivalent $o the class, since thls is
not lmown., But thers 1s no need of knowing all the meme
bers of a class in order for the olasa to be regarded as
well-known and welledefined, All that 1ls required 1ls a
way of knowing whether or not any given object is a meme
ber of the class. Therefore this objection also is over
ruled. |

The series of natural numbers 1s characterized
by the fact that every berm in 1%t can be obtalned by the
addition of 1 to the bterm immedlately preceding 11:; and 1%
13 an accepted fact that all of the known mathematical
properties of the natural numbers can be deduced from the
series of natursl numbers. Then all that is necessary to
prove that the theory of natural numbers can be derivegi
'exolusiveiy from the logleel caleulus is to show how O,
1, and the addition of 1 to a givem number can be defined
in purely loglcal terms. From thege three definitlons we
can construct every term in the seriess Then we have to
determine whether this seories has the characteristic pro-
perties of the series of natural numbers. |

First, let us consider the definitions of O and
1. In ths Prinol 1953;- 0 1s defined as "the olass of

1, Weber~Wellsteinj EncyclopBdie der Elementar-Mathematilk
(Leipzig, 1909), VoI, l., p. 10,
24 Do 128,
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classes whose only member 15 the nmulleclass," In the
Erinoipls this definition is stated symbolically:

we.01, 0= LA
where A means.the nullwclass and (A means the class whose
only member is the null class. We have the same .definition
of 1 in both the Primiplea?’and:' 1:1*?:*1:::‘:1215‘, ‘which 1a stated
symbolically in. the latter in this mannert

wsz01, 1= & [@ED.x= LAY
which means that 1 48 the class of all unlt classes, or,
as 1% 18 stated in the Principless "1 1s the olass of all

clagses whiah gre not null and are such that, if x belonga
to the class, the class without x is the mlleclassy or such
that, 1f x and 7 ‘balo:ngzba‘the class, then x and ¥y areé |
fdentlcesls -

TYese definitions are in accord with the defiw
nition of cardinal numbers sinces 1t can be proved thé.t;:

#101.11s -+ O Z K¢ and -

#101.21. s 1 2. XC
These respectively: "It .is asserted that 0 is included in
the elass of cardinal numbefs," and "It is asserted that 1
is included in the class of eardinal numbers."’e'

Our next problem is to determine whether or not
these definitions are logleally unassallable. It has been
maintained byj;mny. that any definition of O or 1 must be

1.9.128. B
2, For the demonstration of the proof see these numbers in

the Principla.




@ll) =

gullty of the viclous circle fallacy-l Our task is to dee
termine whether the above definitions of Russell end White.-
_head are gullby of circularity. To do thls we must dee
termine whether or not the ides of the nulleclass presupe
_poses tha idea of O and the idea of g unlt class presup--
poses the ides of 1lé¢ _

The nulleclass, vehich is symbolizeds as /\, 15 de+
£ined ag the class which% members, or as the naga’cian of
the universe of discourse, which is symbolized —V, which 1is
the class of all objeots idenjbicgl with themselves. These
definitions are expressed in this way. in the Prinelplas

#24,01, V="x(z=x) - Df,

w402, A =—v . . Df.
in which—V, according to #22,04, is equal to x(x~%V), .
which means the slass of objects not included in the clasg
of the universe of discourses In dofining the milleclass,
therefore, only three things have %o be Imm;- namely, (1).
what is meant by universe of discourse, (2). what 1s meant
by E,v.;-the relation of individual to the class of which 1t
is afmember; and (3). what 1s meant by negation. In no way
has the idea of O been preéuppoaed in this definitlon of the

null-olass.  Consequently the charge of the viciouswcircle
fallacy in the definition of O is unwarranted. '
We now have to consider whether or not the idea

‘of ‘a unit class presupposes ‘the idea of 1. A unit class is

1, Ses Hy Poincara. Sc;iene.e ot Hothode (ﬁaria, 1916), p.168f.
and P, Natrop, Die 1o Tschen Grundia gen der exakten ' '
Wissenschaften {Teipzig we Berlin, 1910), pp. 112 112 Ife
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"g" 45 indefinite, "One" 1s definite, "a" 1s a varlable
with indefinite meaning. "One" is a constant with defihite
maaning; This meening of “one" 1s determinable by mesgns of
the indefinite "a," bub the ‘meaning of the indefinite "a"
- 4p not determinable by the numeral ana,ks;nae.a single
constant can never define or explain in any way the mesn=
1ng~of a~vaﬁiab1ea~ Therefars thelindeftﬁité aéticle ”a?
is loglcally more fundamental than the numeral™oneMand the
former does mot in any‘way“presuppdée the latter, 'Thug
Russell's and Whitehead's definition of 1 is valldated.

‘ '8ince we have shown that the definitions of O
and 1 are logloally correct, that is we have shown that they
contain no logical fallacies, we must now ralse the gquese
‘tion as $0 whether these objects (0 and 1) as defined are
jidentical with;what,méﬁhamaticiané dall 0 end 1, We can
determine this only by showing whether or not they have the
qualities which O and 1 bave in arithmetic. These qualities
are expressed in arithmetic in the following manners '

04+0=0
O4+p=1+0=1
1+1=2
0X0=0
0X1= 1X0=0
1X1=1
1xg=11T1

'In the Principla, these qualitles are proved to
“belong to the logically defined O and 1 by the following
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propoaltionst
#110.64, .0 T 0 =0
wheée the suffix 4 following the additlon sign indicates
that the two objects added are cardinals of assigned types.
#1104641, 1= 1+ 0 =0+1=1 '
$110.643, 1 o1 1= 8
#113.6, | Ho%< X0 =0 and
ws.er, B M XV =V ke M
vhers z  and’ are two cardinal numberse
#118,66, A/ X 2= M T |
But we have gone a little ashead of ourselves.
These formulae preauppcéa the definitlong of additlon and
miliiplication. We have seen how these were defined loe
gloally in the Principles. In the Principia those dofie
x;ita.ma are glven symbolically Ax}a followss : . /=
530,02, U Fo V' = §3G 4B i = Ny
| No“—'%' 25M@+’@} DX’ ¢ V=
013,080 4 XV = ’g‘{(}?%/z@vf/ = Npo=¢.V =
N, ok - ésMLDU/f)S By

The sum and the product of two eardinal numbers -

defined in this menner can boe proved to be themselves care
dinal numberst

#110,48, . MU TV & nc

#115,23, . M XV & 1o

Also it cam be demonstrated that the formal rules
of addition end mltiplication hold good for finite cardinal
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pumbersd

4:»110.51.1*,(1—!1;/ e M - R

m0.56, 1 WHy) 1 W =4 Te e @) .

sus.er, Bl Xe V=V X M . N

#113.6¢ - (U Xe V) Xe® = M X"— Q/7(° UCS_) ’

w1z b (Ve R Xed = M Xe e U7

| Q/Xc.@‘f'c, (M Aa w -

From this 1% follows that Russell's and Whitehead's
formal definitions of addition end multiplication are equi=
valent to the mathematicians's definitions.

We now have all of the information neoessary“fbr
_the eonstruction of the naturel series of natural numbers
by beginning with O and adding 1 successively to egch nune
ber.  Thua we hiavé:j ' ' ' '

O4+1=1

1ri=2

2+1-=5

B+1z 4

’ w.uuatcu o

 This aerﬁ.ea, according to J;lrgensen, is characteri-
ged by the following fifteen propositions, regardless of
 whether the series 1s regarded as composed of cardinals or
- oydinals tl |
(1) 0 1s a natural number.
{2}« Every natural number is by another natural

numbem, :

1. These are glven verbatim from J#rgensen, [): 7Y cit., Vol.
3’ PPs 68-69,
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{3). BEvery natural number is ldentical ﬁith 1ts8lf,

:{4)s Every natural number is greater than every
preceding and less than every succeeding number.

(5)s If a system of nmusbers to which O belongs,
has the property that, if it contains a number g it a‘}.\se :
contains n+i, then it contains every natural number,

If a, b, and ¢ are any natural numbers, then:

(6)e If a=a' and =D, then a4 b=a'+b,

{7)e (zTB)+ c=a+ (b +o)

{8)s & +b =b+a

€9). If aya', then a+b>al+-d

(10). a+b=a

(11}, If a—a!' and B =b', then a *+ b=a! . Bt
(12)s (23D} ¢ ¢=a s e+ Db ¢ o

(18)s (& eb) »0=ae« (boe)

(14)e a*b=4-n |

(15}. Ifa> &', then é% b>ea'e b,

In these propositions we have some expressions
and signs %ﬁeh wo must define, namely, = (greatw» than or
equal to), > (greater than}, "aueéeédmg,“ “pmﬁezﬁng.“
and "natursl number.” In Principis we find the following
definitionst , ‘

#1701/ >V, = (%“"lf?)"‘/: Ne %74[ ro= . j>

Mac . 5 1CLEC N Ne g -~ 16 A Re o P

w1705,/ 3= V- = 4V Vi VENL H=E A P

from which we can decduce the fundamental propertics of these
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| 'iﬂivv.aez. /o/ 7f /»/ Z */ ’\)Q/ |
"«mv.a. M7VV7W‘D"/>§
un'?.mz. UV ‘/7m3’d> v

But before we go’ fu:c'lmm-, we need to explain
two symbola 'ased ebove in#ll7.0L, E’irab fl s which means
the logieal product or t:’ne common pari 01‘ two classess A
l‘aimilar sym‘bcl U ' means the logicel sum cf two classea.,
The former is. atata& in Princigia as follows:

922,02, o< n/ X(xe=.xe A . 12¥
'rhe la’ster 182

L w0k U8 =RoEA V. Xc,é Df

The cther symbol which' needs explaining 1s C1l, or Cl&X ,
Gl is a rah*bion defined as follows: '

#6040, O1 = KX Kk~ (6 C"‘)} ‘&f{
c1 is the relation to a class of the class of all 1lts sub=
olas’ss‘avs:..’ fl‘he-aub«»classes'af a class are all the classes
‘thatv»can» be fém&ii from memqu_-s of the class, Thénumber,
of Vaub«alaaaaa of‘ a gi.ven oléss 18 a;lwaya*gragter than the
number of members of &m olasa. 01 of a given clasa is m |
i.mportant ﬁmction of the claas. cl ocis the cla.ss of sub..
classes’ ofo< . N |

| E‘Very natura?. number 1s sueh that U +/ 7 MU since

1t can be proved that -

w6l A, VE NdC/ myy s =Mt VEY

where the equality s gn,p gmnted that we are dealing with
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natural numbers, holds good. cmiy if‘f: 0. Thus we can
place the namré,l numbers in e series acﬁscokrding to magnie
‘tude with O as the first term end every termv a unit greater
than the preéedmg one or & unit less than the succeeding
one. But we 85411 have tc. give the c_lefiniti.cm of "natﬁral
. number,” or "inductive number” as it 1s calle;i in thavg__r_g._n;
cipia. The definition ls given ds followat
| $120,01, NG induot = A -Cte DYy  RE
or | in other words the natural or inductive cardinael numbers
are the posterity of O in regard to the relation n and
n+ 1. - \ |
All of the fifteen propositions givehabove which
"bharacterize‘ the serles af?z':a“ﬁuml (cardinal ad ordinél) |
_ numbers araiproved or eé;ix ea'sily be' proved from the propo-
_sitions in Princigiag ‘In the following list,the first nume
ber (11ke 1, 2, 3, ete.) refers to the proposition of that
number in the above list of fifteen propositions, and the
next mimbar 15 the number in Prinecipla, |
 For (1) we havest
#120,12. | 0ENC induet,
For (2)2 |
#125,12, | $.Infin ax,=, 4 ENCG inducte 2+ F 1< Tads
(3) follows from the definition of cardinal nume

bers in conjunction withi )
*100:5211"—: a‘fM/g b NQ, (04 = NQ.. /é -

(4) follows fromi

I B0 heans the Tiold of U, that is the inductive field,

2, Infin, ax means the axiom of infinity.-the assumptlon
that infinity existe. | ‘

S« The pymbol "sm" meana simllar,
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#120,429. F 1. YENC indust.D :/l/>-l/—-/£/>f+¢, /.
For (5) we have:

*120.101.]—33948.30 induet & = _g a,é/ Dj &"11 e Y.
' | Oa/é/ D 04871/

'(6) fallcwa frmmz |

| *110.15.1‘-\/5M0< s;5\”"/4 =t XHSWO‘*/

”?cr (V) we haves
#110.56, H,%»/) %/h.(ﬁe w)

For (8): |

'%110“51‘}—/(17@/ t/—/-c,/é/

{9) follows fromt C
#117,561. /17|/ ws_ N,,C, D/(j—f-q" (+¢,w.
o For (19) We have? - 7
eV Nol Dok f/,(//aﬁ,/

l‘(ll) follcws from:

-ms.md- < sm YRS DW\lf/é >
B A T (é’xv@smasxx) g

| For (12) we have!

s118.45, - (T w) xc_/é/ chf-f-o.
W) e CWe

For (13): o

w0, (YT OB,

For (14):

- #118.27, F Fld xe V= f’“//

~ (15) folloWs froms o D
#117,571, F;uz;ﬁ@e_Nac,j,/L/x¢@-— ¢
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We can nwmnnlude with certainty that the whole

theory of natural nqgnﬁérs'can be, or rather have been , dew
duced hy purely iogiﬁtzaiv methods from the logical calculué
given by Russell and Whitehead, From the theory of naturai
numbers the theory of relative, rational; real and complex
‘numbers can. be"deduaéd by various»methods.l It remains only
for us to examine the theory of infinite numbers in order to
determine whether or not Russell's proof of his thesis is
fundamentally valid.

By _Theory of Infinite Numbers,

Our' probj.em is to determine whether or not 5#%-'
Falbe infinité_nmﬁbers cai; be defined in purely loglcal
terms, Howevex",.. this really _c:onstitutes'tma problems,
namely, can in'iv“ir;ite‘ qar’dingl pumbers be so defined? and
can ini‘iniﬁa 61-6.1119.18 be so defined? . In our discussion of
- patural numhersl, t;hi.s distinetion wés not necessary since
from the mathem tical point of view finite cardinals and
finite ordinals follow from the same laws, But this is not

true with thefinite cardinals and ordinals. |
Let us consider infinite cardinal numbers first,

Russell!s definition of cardinal numbers as classes of classe
es which are siﬁiﬁarto each other 1s designed for both
finite e.nd«infiﬁlt‘a cerdinal numbers. Therefore, we already
have & purely légiéal definition of infinite cardinal nume
bers, md 1t is necessary only for us to determine whether

T 555 0 BBIder, Die Arithmetik in strengzer Beprundung and
8

Stolz and GmeinsT , Theoretische AT etiks
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or not fhe objects defined have the properties attributed
to infinite cardinal numbers by mathematicians.

" We have to cantent ourselves with determining
whether or not the principle axioms of the theory of ine
finite cardinal numbers are contained m-ori&‘éduaible from,
the proposlitions of the Principia, smcg“ﬁﬁére'16 no unie
versally sccepted system of such axloms, If we find that
these principle axicms a;revinclﬁciad in or implied by the’
pro;i'&s‘iﬁioﬁs of Pi*imigis sWe may raasonably conclude that
the objects def:lnad by Russell%s definition of Infinite
cardinal numbers do passes the preperties attributed ‘ay
mathematicians to such numbers. The most important propo=
sttions concerning the infinite cardinal numbers, which can
be _pr’o?e,d‘., _;ndependefntly from the 1n£§.n3.te ordinal numbers;
are tha folioaing according to. prrgensens (1) . the theorem
ur equlvalence, (2) the theorem of inequality, (5) the
Ve.rﬂ.oua Tules of aalbuﬁ.ation for. inf‘inite cardinal mmbera s
and (4), the principle propositions dealing with J{‘ (aleph).

{1). The theorem of equivalence appears in the

Princi.gia in the mnowing forms

117,25, k4 Ne <7<.—I\l«.~_(;? No/’ NQ—<74
| Nta< = Neba

- —
—
e

(2)& The theorem of inequallity is i‘ound likewise

in Principia as followst .

1. We say Russell instead of Russell-Whltehead because the

- same definition as we find in Principla was glven by
 HRussell in the r.’mcigles in 1§65 L
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#117.664 F, N ‘¢ L5« > Ne &4
e117.661, R e NoC .. 2 A
(5)« The formal rules of calculation {the com-
/mutaﬁ.va and assoclative prinaiples; ete) no’ced'a‘bvcme-m‘
Section A apply also to infinite cardinals since they are
provéd in Principia on the basis of the geﬁeral ‘definition
of cardinal numbers without distinctiog,‘between .finite and
infinite cardinals.
| C{4). Flm.lly, we come tox which is defined as
fallowa: - |
#123,0L ;D ¥ Prog |
where\“Prog“ means f‘prugreasic:},“ meén;ng ‘any seg’ies'Asixﬁilar
to the'mtural series of numbers. Concerning Ko, we ha,ve

- the following propasitiona proved in the Pr incipia:
18,86, H X 2 NC
w123.18, b k2N, » D Nebe = NQ"‘ z
from whilch 1t follows that X, is not an Inductive mumber
(cardinal). ’ | |
| %125;45.1-.-3’& D:Ve NC WM-'DV-KJ_‘/

that 1s }{\ is greater than any inductive eardinal numbers.

923,18, F: 3R, (). D+ shfin o
123,31, 1 HeR, D < § NC AM

«-12:54.}-?( N, +e |- v
w123.41. b Ve NC Uodred :,N}-—:Wﬁa{
#123,411, I Ve NC indnd . D o X, =X,V

s123.421 . X, = N, f Xo = 2. Xe X
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measae, BN C ook “7(,[
%124:-25/~/U€.NQ,*"’PL{ ,u_>,§‘§
#124,66, 1 X, € NC mudt. D. o,%

s MH. Nol—NC widuc?=N *")U

which means thab it mekes no difference whether we define

o
me2s.52. kX, = §(“><¢§‘{' R‘o'

the infinits cardinal numbers as- reflexive or non-inductive.
So far in our examination of the mathema.tical proe

pertiea of Infinite oardinal numbers, we have found nothing
that 1s incompatible with‘ the purely loglcal definition of
such nixm‘bera given by' Hussell. However, there still are
two mortaﬁt propositiona," namely, Cantorts theorem and the
theorem af comparisou, which we nmst. examine before we can
‘be sure that the theory of infinite cardinal numbers can
‘be deduced from the Russell-mhﬂ.tehead logical calcu:ms, but,
in the Pr ’ incipia, these two theorems ere regardeé, as provable
only in conjunction with the theory of infinite ordinal num-
bers. Therefore, we now pass to the consideration of these,

. our firet question is: what 1s an ordinal number?
We d1d not raise this question in our consideration of the
‘theory of natural ‘numbers because it was not necessary to
make a distinctién between cardinals and ordinals at that
time. In Principia an ordinal number is defined as the
ordinal type or the "relation number” of a well-ordered
aggregate (or manifold) or series. This 1is .t‘tated symbolicale

iy in this manners
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226161, H0 =¥z SO (shere NP=ordinal mumber)
whewe‘_Q denotes the class of welleordered series, that is
a series in vhich. every existim class haa-a"'mins.mm”; or
& first term., This is expressed as followas |

#250,01+ Bord = B(o1 ex‘C rcm‘:nmp)

5o that'S2 15 dofined: | o

%50.02. G2= Ser N Bord SR nr BRI
where "Ser®" (seriocs) is deﬁned as aeymnetrieal, transitive
and connected relatlont

' %2%.03._._ Ser-—- Bl J ﬂ trans /‘tconnax ‘D

"We can rightly ‘regard this definition of ordinal
numbers as moa* probably correct Af the most Amportant pros
porties of the ordinal numbers can be dednced from 4%t by -
purely loglcal moans. Bu.t to determine thls we nn;ah dist&n-
‘guish between finite aixd infinlte ordinal numbers § the.;tdx‘*_.;;-
mer being the relntim numbers of finlte wellwordered serw
les, and the latter being the relation mnnbars of infinite -
well-ordered serles, These dafinitions are stated Bm‘bolﬁ.nﬂ-*
ly as followat “ R ' '

#262,01, WO fin= N,»"Q@ftn - Df
#262,02. NO infin= N r'flinfin Df
whera\sa £in an.dg? infin" are defined as fcllows:
#261.04, 52 £in = 5252 tnfin Pt

261,02, R tnein=S2NE “o1s rerr- e

The finlte ordinal numbers have precisely the
game properties as the ':i’inﬂ:e cardinal numberss On i;he
basis of | |

T. “Bord" Is an a.b'brev:.aticn for "bene ordinata® or "bien
ordonnée," which means class of "well-erdered" series,
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4

226215, | . o & NoO. Dt e NO )L\M“——_‘*
e g NC o -

1t can be proved th.gt there 18 a one-one correspondence

' -betwean tha 1nduct1ve eardinal numbers and the finite ore

dinals, Alsa 1t :!.e pass&ble to raduce all relats.ons bew
tween finite ordinal numbers to relations between correspons
ding cardinal numbera by means of the following propositionz <

262,28, I - PQiQ )Cw Dl FSMQ_ QR.=.

. - ? swmotT (G

Since ths properties of the finite ordinals are exaetly
the same as those of the finite cardinals, and'sihce we
have already proved the properties of the latter to be pro=
pertiea possessed by the o'bjects- deﬁ.néd by the loglcal de=
finttion 0f cardinal mzmbers; there 18 no need for us to
prove step by step that these pmoperties can be deduced from
the logieal definition given of finite ordinals,

But this relation between the ordinals and oardinals
" does not hold m regard ta infinite ordinala.s' For example »
the comutative prinoipxe of addition -angd mitipbicaf;iom
‘ doea not apply to infinite ordinala. and the distribntive
 principle holds only in the forms h SR

@+ = 74—/ + o~ Y B
and not in the formt

o5 D = o F 1

The formal pr;neiple for addition and multiplie
catlon of infinite ordinals apply to ordinal types as a
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1
whole and to relation numbers, The sum and product of two

relation numbers are defined as follows?
| «180.02./u+fsﬁ§:(sﬁa) A= No-r‘F,V:_
Nor@ - R swer (Pr &} by
«134.01.,&/5(\/:/7\{' i@ PR U= NoT PY =
N~ G - R 3w (Px Q) Py
And it is proved that:
#180.42, .U + YV & N R
ssa.s. b o X VENK

#180.56. . (U +Y) + T = A+ M—'_g)
w1ea.31. b (ux VD) X W= 4 X > ,q).
#184,55, - (Y+ ) X M = i)+ Z
These propositions conceming relation numbers
in general apply to infinite ordinals since infinite orw

Also that s

dinals are a special kind of relation numbers.

The ordinal type of the natural series of numbers
is denbted by O , and 1t can be proved that w is the smallest
infinite ordinal. The Principia eaila ‘series which are
similar to the natural series of numbers "progressions ;"

and therefore W 48 defined as follows:
RPOAS M‘

#263,0148 = ?{CE R.Re ’j"“"a‘ P=

Vondeasn o d] wm».g

1, The differences betwwen ordinal ,types and relation nume
bers are: (1). Ordinal numbers are the relation numbers
of welleordered manifadlds (or serlies), that 1s classes
of all relations similar to a given wellwordered series,
(2). Ordinal types are the relation numbers of ordered
series; that is classes of all relations similar to a gfen
gerial relation. (3). Relation numbers are the classes of
all relations similar to a glven relation. See Jfrgensen,
Vol. 3, Ps 78, fun. 28,
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it is proved that &w.1s an ordinal number:

#263.2. . we NO
thatcwis an infinite ordinel number:

263,24, 31 0D we NO v,
that every ordinal less than cOis finites

268,53, F ot G W . D=4 & NO o,
that W'is the smallest infinite ordinal:

#263,54, £ 0% TN O vnfin — WDt T W
and that | ‘
| 263,34 . 1+ W = O

w265.35, F o £ N O oo D otF w2 = €
426366, Fot. & NO finn — (07 - WXt = 1

However, where <7 0.,», Wtot > W sad
and this holds good for all ordinal numbers, The following

propositions of the Principia express this: .
#255,32. .V, D eNo 0.2: VAD>V.=. ¥ Or
#256.571. }\o, A N, O - C Or :)/4404,\(/
255,321, F1 Ve K, 0.2: V' # O = V4172V

The unlimited series of infinite ordinsls can ge
constructed without difficulty in principle, as follows:

L W, WS+ -~ W2y WeRF,, . -3, LY Wy,
LR, -ns W, e W02, oo 0% 2 e WF M0 WAT
AU, W e ST L m“ﬂj-_g.?‘". N

b+ W, + M), - .. ws wi:.iu.: W™ Ve Y

* ’\ w-- té 4 e ol ’ - - -
+4 us w wd 3 VN
L w‘f} -t— I 1»-._;.,('5) ..’l- rod Mg, = == \A) ] w <‘ :

1. See Fraenkel Einleitung,etc.. p. 132, and Jg!rgensen,
v01. 5'. pl 69' -
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There 48 a correspon;iing cardinal number for
each of these ordinals, namely, the cardinal number of the
corresponding welleordered series. Thus the cardinal number
N corresponds .with (D in that

wgs3.101, RN, = D "W =C 7w
end the existence .of Lo and &o , each of which assumes the
axiom of'infin;tyy is proved in the Principla to be equle
valent within ‘every logical type:

x263.181. - I (N .= E’UJﬂlpo

- But there are infinlte numbersof infinlte ordinals
dewering o N, einice a manifold of the power N, can be ordered
in an infinite. nu‘x:ﬂaer of ways. The: mni.fcld of all this
infinite number of infinite ordinals correspondmg to& is
Imown as the "number class" corresponding»ta&c and LY , ‘the
smallest number in this number class, 16 called its g.nit;ial
number. - A11 the térms in this series of infinite ordinals
are members of this nwhhér elass, but hogethér’ they have a
power that is greater than &Dand this greater powey is 3‘(’" -
Again the elements of this class oan be arranged in an ine
" finite number of ways, with an ordinal number for each way,
and the menifold of these makes up a new number olasss The
inttlal number of this new class is () ¢ This process of
constructing successive powers and number classes can bal
carriod on ad infinitum, |

The series of initilal numbers and alephs s.s 1n-.
troduced in Prineip_ia by the following defimtionat‘
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#2654014 L0, = ?EEZ "P= (R, uS2 )w:} DA-
#265.02. 8, = C" W, 91 0%{ 84
266,08, 1o, = TS L P (X)) A 4)4*“3 |

#266.04« 5 = (0o, |
sto. * 5 | '
In other words, ), "is the class of relations
(sertes) which are so constituted that every series which
1s similar to a part of and only a part of the first mentione
ed series 1s a welleordered finite series or well-ordered
serles having NTterms" and K| "1a the class of those classe
es which can be arranged in series whose ordinal number is
W o
. These numbers can be proved ﬁoAba ordinals and ::
cardinals respectively, since the following propositions .
are proved in Prinecipiat
265,12, P~y & NO
ses.33.0:8, € NC |
But for the existerce of these n\mbe‘r?a, we have to accept
1t on the basis of the axiom of inrinity, since their exe-
istence cannot be=praved;~ \ |
Conserning the axiom of infinity, 1t 1s stated
symbolically in Principie as follows: |
120,03, Ifin ax.= t( e NO induct.D-3/ & of.
which says that ’, ifo< 1s an inductive cardinal number, there
48 at least 6nb class of the type in question which has o<

1. J’;frgensen, OB« E_i&tﬁ Vols 3, pe« 80,
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terms, This i& en existence theorem, and 1t is applicable
to ordinale aleo, . Conceraing 1t the authors sayt "This
assumptionse.will be edduced as a hypothesls whenever it is
relovant. It seems plein that there is nothing ﬂ.n logle to
necassitate 1ta truth or falsehood, and that 1t can only
be legitimatoly believed or d&abanave'd on empirical grounds.®
' 8o far we have considered only ordinal numbers,

that s the ordinal types of welleopdered manifolds, Wt the
theory of manifolds has other types also, the most mpartan%
of which are thoso designated by Cantor by the synbols h end
© ¢ the former being the ordinal type of the manifold of
rational numberg end the lattar the ordinal type of the linear
continuum, We mugt dotermine whether 61*- not Russell and White.
headls definitions of these types ere comrect snd this can
enly be done by determining whether or not tho characteristioc
pwparts.ea ‘of the types can be deduced from the given defie
nijbicmw

Tho ordinel typaly s defined in Pr azgg as:
followas o L
v 432'?3;316'7-—'&4‘/7 w ol g—(%n P(.D\P" LE) ‘D?(
which means that') 4s & compact series without & bezianing
or end end containg &o tormes This eorrospouds exaotly with
Cantar's characterization of this tynoe |

The followlng propaaltions can thon be Wi
abm:t"l t

-

1, Irincipia, Vols £ P+« 180,
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(o mumber) s A& N RNUYEr (L =R, D05 =7

wordaas R X, =0

274,42, I-:o.ta_N,,.VD.a_!”yngc'_%«

| #304,33, - ¢ Infin ax, D HEN |
Thus, assuning the valldity of the axlom of infinity, we
£ind that the series of rational numbers has the ordinal
type*]-. A | ,

| The ordinal type 6 , the ordinal type of linear.
continuity, is cheracterized,according to Cantor, by the
fact that 1t 1s perfect and contains‘awmanifold,wiﬁh the "~
cardinal number X so that elements of thls manifold lie be=
tween overy two elemonts of © « A perfect manifold is one .
that 18 closed and dense in 1ﬁself¢' Such a menifold is sald
by Russell and Whitehead to havé "Dedekind Conbinuity.“

We must consider briefly/what the phrase "Dedekind
continuity“ means. Ded.ekind1 gives a definition of the cone
timity of a straight line as followst "If all the points
of a 'line can be divided into two ciasses such that every.
point of one class 1s %o the left of every point of the
other elass,'then there exists one and only one patnt‘whiqh
brings about this division of all polints into two classes,
this section of the line into two parts.” This definition,

1. Dedekind, Stetigkelt und irrationale Zahlen (Bmmswiclk,
1892, 2nd. edIE%cnS, pe 11, Guoted by Russell in Prineiples,
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which 48 known as the}Dedekind axionm of continuity, 1=
stated rather loosely« Russelllstates what he thinks that
Dedekind meant by the axiom in the following words: Ma ser&ea,
we may say, 15 continuous in Dedekind's sense when, and ,
only when, if pll the terms of the ‘series, without exoaption, )
be divided into two classes,,suehnthat the'wbole of the
first claeswprecedea:tbeAwholezof.the second, than; however
the divia;on,befeffeotedf.either the first clas; has a -
last term, or the second class has a first term, but never .
both. This term, which comes at one end. of one qf the two
classes, may. then be used, in Dedekind's menner, to define
the section.”. |

In addition to the concept of "Dedekind Continuity,"
8 daftnition'of~ﬂm£dian” class is required before @ can bd -
defined, - Russell and Whitehead?aayz "o shall call a class
oA~ 8 'mediant class in P [where P is a serles] if <& cP
and thare is a member of o< betwsen any two terms of which
one has the relation P to the other,." This definition is
stated aym‘byeﬁca)}g,gs fglc‘:lo%szp é PV%\?B )}V(

. By virine of the Bedekind axiom of continuity and

the definition of a ™median class," the authors define &
ag followas

75,01 O =5urn B N md “&
where 1t is possible to prove that

aavs.s.l’ PGZee 5. Pajmar &

1. Principles, prs 279=280.
2, Principia, Vole 3, De 186+
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#275,31, | PE G P smor Qo .red

so75.58. R @ € N R
wp76.45, F.C '@ = 2°
. 510,15, I +.2.® +7Q— H, @ "“_7
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From this 1t follows that the ordinal type of ® 1z equal |
to © exclusive of O and o , which cbrresponds with the fact
that ® 1s defined as the series of positive real numbers
excluding O and <0 - | |

It nmay now be concluded that the theory of orw
dinal numbers snd othez' ordinal types can bs dedncea from-
the primitive 3dees and primitive propogﬁ_:icns plus tha axe
som of infinity by purely logical means.

. 'In sddition o the axiom of infinity, Russell and.
’xmihehead emploﬁ another axiom, vhich 48 not among the -
primitives of the loglcal caleulus and is not proved, in -
~ their deduction of pure mathematics from the primitive
1deas and propositiona by logical means, 'This second axiom,
which is aéui’va}.mt to whiSh 1s. kmown to mathmmaticlans as
Zermelo's axiom, is called the #ultiplicative axiom in Prine
¢ipia. This sxlom is defined as follows?.

L., #88,03. Mult ax.=t,XeCls eox enols D $
Qe X D/ Nece 1 DY
Comceming thls,;-tha authors aay,:;."'mls, ax‘.‘s.om 1s equivalent
to the assumption that an arithmetical produot’ cammot be
soro unless one of its factzora 1s zero, and 18 regarded by

some mathematicians as & aelf»evident tyuth, This can be
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proved when the number of factors is finite..,but not
‘when the number of factors is infinite. We have not ase
sumed.its truth in the general case when it canno® be
proved; Mt have Included it in the hypothesis of all pro=.
positions vhich depend upon 1t."

.. We have now seen that Russell and Whitehead's
deduction of the theory of«natx';.ral: numbers, from which the
theorles of ra],at;ve, rational, real and complex nurbers can
be easily deduced, and the theory of infinite mumbers, both
cardinal and ordinsl, from the primitive 1deas and the
primitive propesitions of the logleal calenlus {plus the .
axlom of infinity and the multipllcatlve axiom) by purely
logical means is valld, ‘-

Geometry, as we have pointed cm‘s previously, has
not been subJected to detailéd treatment, but from the work
: done on the subjeot In the Principles, we may csoncluda that
in all probability geometry follows from the lorrical palculus
in mch the sare way as the theory of natural numbers end:
tho thaory of infinite numberss '

Although the akiom of infs.nity and the rultiplie
cative axlon have to be assumed, geomebtry has not yel been
deduced atep by phep from the logleal caleulus, and the
axlom of ré&:cﬁ.bilﬁ.ty is not% aatisfactory, we may safely
ccncluda that in all probabllity these difflcultles can be
alwed up end tms that Ruaaell’a proof 1s fundamentally
valid, and,aonsequant 1ye that his thesis is established,
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Chapter VIII

The Philosophical Importance of Mathematical Logic

By the way of summary, we have seen that the theéia
which runs through all of Russell's: logico-mathematlcal works
18 the contentlon that logic and pure mathematlcs are one-'
in the sense that they constitute a continuous whole wlth
logic coming first and ma thema b1 o8 second, b ut that there .
1s no particuler point'pf-ﬁhich 1t can be said that logle
ends and mathematics begins. We traced tha deovelopment of
this thesls from its expliclt arigin in Lelbniz down through
the development of loglclans like Eoolé 3. échrcedar s Pelrce,
Frege, Peano tq.Russell"and Whitehead and such matheméﬁiciane
as Welerstrass, Dedekind, Cantor, and Russell, The loglciens
were deducing logic to an arithmetical Tform by the develop~
ment of symbolism and the mathematicians were generallzing
or logicalizihs mathematics., These two processes continued
without full apprehension by those who were carrylng out the
proceases until the two lines of development merged in Ruse
sell vho was both a master mathematiclan and loglcian. Many
of the results of the thesls were worked out before the
ﬁhesis-itéelf wésiaxplicit to. say nothiﬁg)of 1ts proof; for
erample, Welersirass! abolition of the infinltesimal, Dede=
kind's and Cantor's definitions 6f the mathematical infinite
and continuity. But ﬁhe&e came into more certainty and. fuller |

moaning with the work of Russell and Whitehead. We saw how
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Russell defined pui'e mathematics es the class of propositions
vhich are expressed éxelusively in terms of Vaﬁables and
logical constants, that is to say as the olass of purely
farmal propositions. We have traced the development of Rus~-
sellt's logleal caleulus from which he deduces mathematlcs by
purely logicel means., ‘Although the number of primitive ideas
and r imitive propositions vary at different times 4n his
system, they remain a very few at all times. We discussed
the theory of types and how they resolve the loglcal paradoxes
resulting from the vicidua-circle fallacy. We outlined Rus-
gel's proof of his thesls and examined his and Whitehead'ls
demonstration of it. We concluded that Russell's mroof of
'his theai.-s is valid and consequently that hls thesis 1s well.
established. |
We must now consider the phllosophical importance

of mathematical logiec, which, although it had it beginning
with Lelbniz and bhaas been‘ contrituted to by many, has recelved
its fullest development and proof by Russell in collaboration
with Whitehead. Concerning it, Hussell says:l ' |

It bas, in my opinion, introduced the same kind

of advance into philosophy as Galileo introduced

into physics, making it possible at last to see

what kinds of problems may be capable of solu-

- tion, and what kinds must be ebandoned as beyond

human powers. And where a solution appears pos«

sible, the rew loglc provides a msthod which
snables us to obtain results that do not merely

1. Russell, OQur Knowledge of the External World (Chlcago:
The Open Court PUbLishing COes 1944), Peods :
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... embogdy persdnal idiosynerasies, but must command
the assent of all who are competent to form an
- opinion, ‘ - R |

This 1s rather a generous appraisal of the signiflecance of
mathematical logle, but let us consider the several contrie-
butions that 31t has mede to philogophy.

1. The first significance of mathematical logic.
15 that 4t gives us a new logic. Traditionally, loglc was
eoncerned with classes, propositlons and syllogisms. For
many it became a mpans of refuting common sense,  Aristotle
had spoken and no one dared to queation the Judgments of the |
great magter, But finally a new logle was borm out of the
examination of mathemat 1(:3,‘ This was begun by Boole in 1854
and the moat important contritmtors to the development of .-
the new loglc have been mamemt;icians. The fundamentals of
this new logic are proposltions, propositional functions,
clagses, and raiationa.~ Propositional functions and relaw-
tiona are the two most impartant introductions into the new
IOgic and Russell is larpgely responsible for both of them.
We ﬁave' discussed this matter elsewhere, btut at thia polnt
1t 48 nscassary for us tc consgider briefly Rusaell's treat-
ment of pmpasitiona and relationas

Traditionally, loglclians divided all propositions

into mbjeots and gredicates, Thig left out the verb ensw
ti.rely; In ma proposition "Socra'ces 1s mortal," the sub=
Ject !.s "Sooz*ates" and the’ predi.eata is "mortal®. 'Ehua the
praposit.tan is- s.nalyzed inbo a subjaci; md & quaiity of the
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subject, but nothing ia done with the verb. Russell chose
to malyze such a proposition into a subject and an gsser=
tion, With the mssertion being "is mortal." In this way
all of the elémants of the proposition are accounted for in
the analysis.

According to traditional logic a proposition had .
to be true or false. The law of the excluded middle ruled
out any neutral ground, Yet there appeared to be statements
of the propositional form which seemed to be neither true
“nor false, Russell called such statements propositional
functions, that 18, statements containing a varisble which
become propositions upon %‘ insertion "\of a constant in place
-of the variable., Such statemsnts may be sald to be neither
" trus nor felse and as they become propositions they are sald
to be true ab one time end false at another acscording to the
" value given to the vari'.ablé; This rade propositional forms
© much more flexibles
| " 'ppgdltional logio was unable to admit the reality

“of relations since 1t held that all propositions are of the
- subject-predicate form. This made it nec’ésaary-to reduce
‘pelations to properties of the terms related, Thus there
© eould ’be”né'éalculus of relations since they were included
-~ in the calculus'of propositions, Poano's system was incom-
“plete at this point. Schroeder and Pei?ce developed the logle
of relations to a great extent and Russell worked it into |
:his system. Tradl tioml”ldgic reduced everything to subjects
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end quallties of the subject;a.u Ths new 1ogic reduces every=
'thi.ng to subjecta, qualities, and relats.ons. Ag we shall
observa later, thi.s results 1n significant philosoyhs.cal CON=
sequeneas.

In adis tion to theae ;:amdamentals of the new logia,
a rather complete and aetaﬂed logical’ aymbonsm has been
developedg In a tme aanse this 1s a acierme ‘and not part
- of philoaophy, | It bega.n as ph!.losaphy, but the preciaenesa
~of 1ts symbola a.nd laws prcmoted it from the area of the con+
~troversial to the area of certainty., Yet this solence of
| aymbclic damens tration is a product of philosophy and 1s of
great phlloso;;hical 1mport:anae¢ The sub ;}éah mt’c'er with ﬁhieh
it is concernsd was pax't of.‘ the subjeet matter of philosephy
prior to the davalopment of mathemtieal 1agic; Thua, the
} fiz?s’c part o.t‘ the new 10510 is philosaphieal and the second
| part is mthemtﬂ.cal. o

2; Mamemtical lcgio has provided a sound philo»
sophical b‘aais, er mathematics. Prior to the development of
this new loglc mathemastics wasf regarded as largely empiricala
1t '&aa defined as the' science 'of quantl ty and méasuremente
Number wa s ragarded as aelf«-avident and 1ndef1nable.f Geome«-
try was thought to deal with phyaiaal space aamposed of
peinta.. . Eaah branch of mthemtics had 1ts own set of in-
definable meas ana indemonstrable propositions. Bub math-
‘_emtiaal logic has mde it possivle to give a purely formal
,"éefi‘n‘ltion of mathematics, to meke pure mathematics independ-

ehﬁ of qmﬁti ty and mpasurement, to def!.né in purely logleal
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terms all of the fundamental mathematical concepts, and to
deduce by 1ogca1 meens all of mathematics from one set of
very few indefinable ideas and 1ndemonstrable pmpositions.
'I'hus mathamtics (ha}a been given the loglcal calcoulus as its
foundation and has been unified 1n that all branches of
me.thematioa are deduced from the one set of primitive ideas
and primitﬁ.ve propositions,
Be Mathemtical logﬂ.c has given philoaophy 8 |

' scimti ﬁ.c method., JHuch of the philosophy of the past has
been bgsed on either the S.ntziitive, a literary, or an inade-
quate légicalv mfﬂ‘xod, if any method at'ﬁ}lﬁ Even wtger:e’ an")
;ﬁédaquaté logical method has been gnpioyed, it has, _foxé the
moat‘pa'rt.l ‘Been' used only to éstablig‘h 1&31@1 ‘bases for |
concluslons reached by the intultive vision. Philosophy has
not:. had a.n adaqua_bevmethod of epproach to knowledge. Fhysles
unt‘il’ the t_irha of Gallleo also lacked an adequate me thod,
and until that time physics was unproméssive, vague and e
paz»stitiaus.; But Galileo gave physics a solentific methods
He cloéaly observed physical facts end subjected them to
mathematical manipulation. With méﬂxexmhics a8 its method
of research, physlcs has advanced miraculously. Advances
hi all branches of "sci.exice have to walt for adequate sdvances
in matb‘.ematica. | ‘l‘ha new 1031:3 proposes to be the method of
raaaarch in philosophy as mathematics is the method in science.

| 4 The way in which the scientific method; based on the
new 10@16, works in phﬂ.loaophy may be bri,efly summarized.
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First of' ail a mental diécipline must be developed. This
consists of two processes, nanely,,déubting the familiar
and imagining the unfamilisr. "I‘he fii'at process 18 thal :
‘Carteslan method. We must not be lesd into believing the
treditional and the obvious without orltical examination.
Thig process qf doubting the faaﬁiliar consists of never takw
ing anything at its face value. The matter of imagining the
unfamiliar is to provide 'aé many logically possibla hypothe~
ses as possible, = Yhen there are a number of possible hypothe
es6s. to be exsmined, it is more likely that one of them 1s
eorrect. If oh‘ly one hypéthesia appears to be possible,
there 1s & tendency to attempt to make it appear loglcal,

In doing this,; logic is used as a defensive weapon rather
than as an offensive one. The lack of fa’rtility in imagine-
ing abstract hypotheses has been one of the great faults in
philosophy heretofore. The traditional logleal apraratus
was 80 ‘meag'er that most of the hypotheses philosophers could
| mgim were found inconsistent with the facts.

| After our problem has been aéleéted and the neces=
sary meutal discipline sequired, the method to be followed
has been fairly well esﬁaﬁiisﬁa&* The big problems are
found upon. examination to be complex and dependeﬁt upon a
nmumber of component problems. These are mors abstractf.than _
those of which they are components. In moat caées it vill
be found that all of our initlal data, all the facts which
we thought that we knew aﬁ the bYeginning of our inquiry, are



w152

vague, confused, and complex. It is necessary to create an
epraratus of precise conceptiona which are abstract and sim-
ple before the data can be properly amalyzed into the kind
of premifses we want, In this process the source of the
difficulty is traced back further and further with each stage
becoming more abstract and more difficult to apprehend. A
number of these pursly abstract questlons usuglly underlie
any one of the big obvious philosophical problems. Often
we reach & stage beyonﬂ'which 1t is impossible to go by our
method . Then only the philosophical vision of a genius can
come to the rescue. What is needed at this point is some
new effbrt of loglcal 4magination, some glimpsa.af B possi-
b1lity never éonceived before, Failure to think bf the right
possibility results In iﬁsclubls‘difficultias and varying
degrees of bewilderment and déspair. But the right pésaib11~
1ty usually quickly establishes itself by sbsorbing what had
appeared to be contradictary facts. From this point on the
work of the philosopher on the problem ceases to be analytic
and bvecomes synthetlc,

This method in philosophy may not bevés revolution-
ary as the mothod of Galileo proved to be to physics, but
1t has produced results already, for example, the solution
\of the problems of number, infinity, continuity, space, time,
and motion,. What is more, 1t holds great promises for the
future. However, the immediate effect of such a method is

to drastiocally reduce what had heretofore‘baen regarded as
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Imown,. It cleans house and beglns at the botiom. Tradition-
2l ly philosophy has 1iked to work on the big problems, but
this maﬁhad.makaa i1t concerned with what might appear to be
intéinaically trividl,'far it ¥novs that knowledge is vale
uable and may lead to other knqwledge regardless of how insige
niflcant 1t may #ppear; The procedure is to accumulate a
storehouse of well established knowledge regardless of whether
1t appeafs to be usable or not. The time may coms when it
may sontribute ta the solution of a big.pboblem. This proce-
dure tends to rob phllosophy of mpch of the glamor that 1%

has enjoyed through the centuries, but it makes it more frult
ful and more practical.

4, Hathematical logic has made.poBSible the solu~
tion of the problems of the infinitesimal, the infinite, and
continuity.  We have already Qiscussed these in another part
of our study, but we shall consider them at this point slso,

The 1n£initeaima1 was regarded as the 1nf1hitely
1ittles This was considered naceaaary,for’continuity;‘ Yot
it oreated great difricultlieas, It was clear the 1nf1n1tes&ilr
mal was not zerc and the sum of a number of infinitesimals
seemed to be finitey Thus Weleratrass abolighed the ldea
entirely and accomplished all of the desired results without
it .
| In the article "Recent Work on the Principles of
| Mathematics" in the International Monthly, Russell glves

three rather odd sounding consequences of the banishment of
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of the infinitesimel, which are very interesting. (1) 'The -
first of these is the statement that "there is no such thing
‘a8 the next moment." That which forms the ‘continuity bvetween
~two moments has been consildered as an infinitesimal element

of time, but, with the banishment of the infinltesimal, we
have to say that between any two moments there is a ‘finité.
element of time. A finite element 1g divisible.  So between -
eny. two moments of time there is s moment in between. Cone
sequently there can be :io such thing as the next moment.  From
this we must conclude that there is an infinite number of -
finite moments between any two moments, The philosophy of -
the infinite comes in and solvesghat at i’imt appears to be

a hopeless situation. (2) In the second place, there is no
gsuch thing as the next point in space. "Pointa™ have been
thought to be infinitesimal lengths. Yet if any piece of mat-
ter be halved, and the remainder helved, etc. points would
never be reached, Regardless of how small the pleces 'becaz;za »
they would always be finite in sizes Yet there are points,
vut they cannot. be reached by successive divisions. Hers again
1t 1s the philosophy of the infinite that shows us how points
ere poasible and why points are not 1nf1n1tesima1 lengths.

(3) The third paradoxlcal result of the sbandoning of the
infinitesimal 1s the fact that whem a thing changes it is not
in a state of change and when a 'thil.ng moves 1t 1s not in a
stote of motion. All that can be sald of a body in motion is
that 4t 1s in one place 'at ons tims and at enother place at
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snother time, We cannot say that at the next instant 1t
will be at ths next place, At any instant the ﬁody 48 in
some one place. Consequently it is not in a state of mo-
tion at any moment .

The problem of the S.nfinite has been s atumbling
block to mathematiclans, ph_ilosophers, and theologlans
throhgh the centuries., ¥o one until the time of Dedekind
and Cantor were able to resolve the problems involved. They
dlscovered that the contradictions involved in the idea of
the infinite resulted from the common sense axiom that a
part cannot have as many terms asz the jwhé'la of which 1t is
a part, This axlom appears td,ba porfectly true and it can
be proved to be trne as far as flnite -nﬁmbers are concerned. s
| Put Cantor concluded that it does not hold for infinite cole
lections, So he postulated the paradoxical sounding definie
tion of an infinite collsction as one vhich can be so divi-
ded that a part of it has as many terms as the whole collec~
tion of which 1t is a part, - This definition sounds llke none

‘gsense, but it solves all of the contradictions involved in.
the ides of the infinite and it bears no evil frult, ©So why
follow common sense? It seems that among infinites a part |
can be equal to the whole of which it ism a part., For example,
| t’he,ra are Just as many even finlte immbars as there are rinite
numbers za;:!.'1:4:35:5‘:1;11‘e:f.*.;lt glnce every number can be multiplied by
two and every such product is an év@n nunmber. This could not

have bean acoepted on the basis of Aristotellan loglo,
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A very strange oddity results from this definltion
of mfinityq but it za only an oddity and not a gontradiution;
It states that U Achilles and the tortolse travelled forw
ever, the tortoise would travel Just as far as Achilles. |
Russell calls this "the paradox of Tristram Shandy“.-l The
name "rpigtram Shandy"” comes from & man by that name who 'épent
two years chronicling the first two days of his 3.11'5_._ He
then gave up lamentingtﬁat‘at that rate mterial would accumie
iate faster than he amld}'racazd 1t and as the years passed
hs would be further from completing his job than he was at
the beglnning, Russell maintains that, if Tristram had lived
forever, and had not wesried of his task, then, even if all
the other years of his 1life had continued to be as eventful
as the first two days, no part of his blography would have
remained unwritten. In recordiing two days in two yoars, he
recorded abt the ratio of one day'a events in one Year's time.
Thus the hundredth day of his 1ife would be recorded on the
hundredth year of his life, the thousandth day in the thouge
andth year, ete. ad infinitum, If he lived forever, then

no day of his life would remain unrecorded. This paradoxical’
tut e rfectly true proposition depends upon the fact that the
number of days in all time 48 no greater than the number of

yoars,

1, See Int. Monthly, vol. 4, 1901, P.96 and Principles, 368,
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The problem of continuz.ty 18 solved with the
solving of the problems of the mﬂnﬁ.tesima}. and 1nf3_nity.
Zeno, as we shall show in a momenb, demcnatrated ‘that apacea
and times could nof; consi.at of 8 finite number of points
and matants, respectively, since amr apace or time can be
halv_ed. 'L‘hua between emy two points of space or mstants
t;f time thsre is a third poi.nt or 1n3tant. Philosophers
'bels.evad the :.nfinite xmm‘ber te be aelt«contradictory. 'l’hus
gpace ‘and time could neither be composed of 8 ﬁnite mxmber
of points and matanta ‘nor an ini‘inite pumber., This has |
been one of the great prcblema m the history af philogophy.
But the aoluts.on of the prohlana of the 1ni‘1niteasmal ana |
1nfinity has made ‘.H: poaaible to baliava t.hat space and time
eonsi.et of an mfiniﬁe number of finit.e pomta and mstanhs.

 Howevey, the problm of contimity, as ma themat 1cal
iogia has proved, 15 not a pu'oblem coneemed with ;apaca and
time and their component parta. It 1s ooncerned with ore
dered series, It is only incldental that points and instants,
" whether they be regarded as actually spatial andl‘ temporal
or only logical constructions composed of events, happen to
form ordered mories. o | o

Mathematicians distinguish between different de=
grees of continuity, but for philosophical purposes all that
1s important in continuity is introduced in the lowest de-
gree of continuity. Thusnontinuity is ddfined as a compact
gsories.s Such a series is one in which there is an element

botween any two elements, or we might as well say that there
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elements, These elements are all finites There is no
mehlthihg as a next element in sach a series. A simple
example of & compaot series is the series of fraetioné in
ordey of mgnituda;. No two fractlons are cohsecutive.:('
There are always other fractions, an infinite number of other
fractions, between any given two. - S ,

‘This definition of continuity is mede possible
by the gbolition of the infinitesimal and the definition
of infinity. The olements in the compact serles have to be
finlte instead of being infinitely 1ittle or infinitesimal..
Also the numbé::* of elements between any two elegwnts of an
 infinite compact serles must be as gréat as the number of
elements In the who}.e gerles,

This solution of the problem of ccntinuity ia not |
iogicaliy possible on the basis of the sub Ject-predlcate
logic bocause it denies the reality of relations. - The best
proof that redations are real and not merely propertles of
the objects related 1s asymmetricel relations, vhich are re-
lations of the &type that is such that 4f a relatlon holds
between A and B, 1t never holds between B and A, Syme
metrical, nonesymmetriocal, tra.nsitive;r intransitive, and
n on-transitive relations can possibly be explalned as pro=
pertles of the terms they_ralate,, mt- aaymetrical relgticns,
which are such as "before," "after," "greater," "above," "to
the right of,” ‘eto'.', cannot possibly be explained as pros.
perties of the terms related. They have meaning indeperdently
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of the terms they relate. Thus they seem to be real in
themselves. If they are, then we may concluie &mt the
others are alsos - o
If asymmetrical relations cannok 'Ee properties

of the terms related, and ere not real in themselvea; ‘then
we st deny asynnnetrical‘ rektions,  If wo do this , we oaﬁ-
not have series, since asymuetrical relations give rise %o
all series.  If we cannot have compa ct series, we cannot |
have ‘aur“aolutim of continuity. But according to mathe= -
metical logic, relations are resl and thus we have compact
serles snd conseqently the problem of continuity is solved.

5+ The gobitiona"of‘ the prohlems of the infinie
tesimal, Infinity, and continuity bave made possible a 80
1ufion"for Zeno's paradoxes. - zenc,.: the Bleatiu; in'orde;-
to prove the difficulties involved in the idea of motion,
produced fouxr aréu’meﬁﬁssto prdve that motion is impossibles
Bach of the four involvesthe some d1erioultios. Therefore,
we will consider only the two most widely imown, namely, the
paradaxes of Achilles! race with the tortoise and the flying
gr:cdw{; o o

‘-"‘Go.nce’ming the first, Zeno argued: lst Achilles
and the tortoise start on-a road at the same time, the tore
tolse being allowed a handicap, Achilles vill never reach
the tortolse although he may travel twice, ten, or a hundred-
times as fast, for at every moment fthé tortoise 1s in some

place and Achilles is in some place, and neither is ever
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twice in the same place during the racd, Thus the tore
tciae goes to Just as many placea during the time of the
race aa Achilles does. But ﬁ‘,' Achilles caught up with the
tortoise he would have bsen in more places during the re.ée
than the toz;toisea Eére Zeno appealed to the old common
sense prinociple and said that the distance travelled by éhe
t.ortoisa. 1f Achilles should catbh up with him, which would
be only a part of the dista.nee travelled. by Achilles, would
necessarily have fawar places (or poinf;a) in it than the
distence of which it is a part, namely, the distance travelled
by achilles. But 1t was obvious that the number of points
they had been was the same since they‘ had been travelling
the same nmumber of instants of time and at each instant each:
of them hed been at one aﬂd only one point, Thus 1t was asald
‘that 4t was logleally impossible for achilles to catch up
with the 'tortoisag With the new definitiom of infinity
there is no problem at all. The part travelled by the tore
toise had just as many points in 4t as the greater distance
travelled by Achllles. Thus in ﬁze same number of moments
and being in the sme mmber of points, Achilles could catch
up with him sinoe the nurber of tarms of the part can be
equal to tha numbaz- of “terms ~of the whole of which it 1s 8
parts

The paradox of the arrow'!s befng at rea‘b’in flight

" 15 paraphrased by Burneteim sarly Greok FPhilosophy, as follows:
fThe arrow in flight is at rest. For, if everything is at
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rost when it occuples a space equal to itself, and what 1s
in flight at any given moment always occuples & space equal
to itself, 1t cannot move."

The dii‘ficulty ‘here 1s the assumption that a finite
part of time oonsists of a finite series of successive ine
stents, Throughout an instant it 1a said that a moving
body 48 where 1t 1s. A‘b the next instant it is somewhere
olse, but 1t got there in soms mirsculus way eutside .of time,
or that is not at any particular instant, Thus 1% is never
moving tut 1t occupies different posltions. The solution of
the problem 1%es in the theory of thg eontinuous series of
instants in which there is no next instant Just as there is
no next.-) point in the continuous compact serles of points in
space. This theory 4s made possibdle by the sabolition of the
infinitesimal, All that cen be sald of & body in motion is
that 1& 1s in one place at one instant and at another place
at another instant. We cannot say that at the next instant
1t will be at the next place or point. At any given instant
the body is in some cne place.

‘Th@ seems to give a rather diecontinuous picture.
of motion, but in reality 1t is continuous. Imegine a tiny
speck of light moving along a scale, Any two positions
occupied by the smpeck at any two instants have other inter-
. mediate positions occupied st Intermedlate instants, Howe
ever close together we take the two positions the speck will
not Jump suddenly from the cne to the.other, tat rather it
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wi.‘ll pass through an 1nf1n1t;e nmnber of other posit&ona
m the way‘ Every dﬂ.atmas, ragardleas of how small 1% may
be, 3.8 braveraed ‘by passing thmugh all the mfinita serles
of posﬁ.tiona ‘between me two poin’cs znarking off the 4is- o
tanua. The 3.5 true cf' time. '.Phe:ve :.s a one-ona coraespoh..
dence betwean the points traveraed m any g:!.ven distama ‘
-and the mstanta in the time requi.red. 'I‘Ims motion is poa«-
sible 1n a apaca and bime aompased af an 1nﬁn1te mmber cf_
i‘init:e pointa and 1nstants,respecti.ve}.y. This is mada pos—— :
sible by tha abantim 0f the mfmitesimal, and the theoriea
af mfinity and continnity. P o ‘ A
. 6¢ 'I'he new ngio !)é.s made ii; 3.og1cally poseible.
by the admiasion of the reai&ty of re]a tions. be ccnstruet
a philoaophy of matt:er. syaee, time, add motion in aocord ;
with the advanoes of the new phyaioa. Wa saw in the pre-
eding aeeﬁon how the new lcgm made tha ald physical exe;
ple.natians of apace, time, and motion logican‘y poasiblm )
But 1t is now impossible to rsconcile the 1ldeas involved
i.n ’chs theory that aolid bo&ies nove in a metaphyss.cal spa.ce
and time with the new physius. Lot us outlina ‘briefly Ruge
sellls phlloaoghy of these concepts, which is made paasrole
by his bellef in the reality of relations. B
In the ri.rst place, he says, followlng Whitehead
that partioles of matter, pointa,‘ of.' space, amd instants of
time are only logical aonatructions. The realities whioh

thny repreaent in physics are“eventa "and relats.cns between
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eventae Inph}‘raibé, an %}’fevéni:" 13 anything w‘hich; #eé o
cording to the o‘ld'nots.cﬁs, has a date and a plaée.v CAte
eording to the new physics, an event 1s defined as that |
which accupies é. small i‘lnite smount of space«-!:ime. AN 6Xw
plosicn, a i‘lash of lightning, or any occurrence would be
an event. If an avem; has parté, then its parts ars eventa
a.lao, ‘mt 1% does not necessarily follow from the’ fam‘; that
svents are finite tlm'o they have pa.rts.‘ In every evant that .
has parts, thera 3.5 a. minmel aven‘b which has no parts, ami
this evcmt occupiaa a rinite reg&on in gpace-time. It may "
orverlap with ee.ch of ﬁse twb others, a].though tha first; of
these others whony precedea the second s For emmple, you
may hear & 1ong note on the vi.onn while ’you hear two shork

" ones m the piano. This cverlappfmg makes continuity pos-— :
sibles | ,

A string of events with certain aérrelaticns Do |
twaen the:m make up what is mown as ths history of ome body,
or the courae of one 1ight wave, etos The unlty of & body |
1s the unity of historys It is like the wnity of a tune |
which takea tima to ple.y, end does not exist whole at any
one mcmant. What exists ot any one momant is only sn event.
However, this event may bs a collection nf a ﬂnite mxmbar
of events. ‘In this sensa, avents replace what was knom.
according to the hld notions, a8 partielea of matters

Events in the physical world have relat!.ons to

one mother vhich are lmown as spa.tial and temporal. Thesa
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relations havegiven rise to the notlons-of sﬁzace an.dﬂtims.
' These relations have a relat.wn of order so that we can say'
that one event is nesrer %o a sscond than to a third,..
this way we arrive at what 18 celled the "neighborhood‘* of -
an event, which conplsts of the events very near the given
event. VWhen relations éxistvbetw‘een two avénta, the nearer
the events are to each other, the more nearly they have these
relations. . |

- Two “neighboring events have e relation known as
en"interval” which is measurable quantitattvely. Somef;imes
1t 18 analogous to distance in space and%e of time.
The former relation is ealled space-llke and the labter is
knovm as timeslike, An interval between two events is spaca-
1ike when one body could be at cnly one of the tm events. .
It 1s. timewlike when one body could be presemt at both avents.

Foux numbers are x‘eqp;ire& to fix the posi tion of
an even‘& in space~time, They are the numﬁers corregpdnding,
according to the old notions, to 'shé.time and the three
dimamiona of spaces These four are Imown aé the enaordinaLtes ~
of an event, and thezr glve us what 18 known as four dimensi-
onal spacestimes For exampla, suppose an alrplne has em
accident In mid-aim’ T™d fix 4ts pc_asitian, you need to esw
tablish its latitude, longitude, altltude above seawlevel,
and Fastern War Time (or any other tilma).-
There are no diredt relations between dlstant

events, such aa distace in time ar spaces  Bodles take the
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course of least resisbtance, according to the nature of
space~time in the particular reglon in which they arve. Thils
is called p geodeslc.

Motion has been thought to involve the presence of
one body in different positions at different times., As we
have sam befome, a body 3.8 a seriea of events conneated
kby aertain disaovarg‘ble 1sms ao tha.t it has encugh unity to
dasarva 4 aingla nams . ‘We call 1t by that name and imagine
that the atrs.ng of evants concemed 1s & singla thing. i
'tha events are no{; all in the same pla.ce, we say thaf; the
'thing has mevem But Eussell aays thaﬁ "what we call motien
of matter really maana tha.i: tb.e centra of such a set of pvents
at cna i;s.me doea net have the same Bpat:!.al relations to |
other evmts aa tha ao:mected centre at another tima haa to
the connectea 0thar aventa. | It does n.at mean that there is
a deﬁnite an’c:.ty, a piece ér ma'bter, whieh is now in one
plame and now in amther. 1

N Thus according to Russell matter 13 a series of
evants uannected by certain causa‘l 1a.wa, spacsutime 15 p o -2
»1a‘b£ons amang events, and motian is & mere change of roe
lationa. There ia no such bhs.ng as cosmis apace or time,.
.'rhere 13 aothing but evernts end rela.t:lons among events. But
again the rehtians are eventa also‘ Therefore ¥ everything
18 composed of eventao |

Such a philoaophy as Russell has put forth could
not have bam possi.ble on the ba.si.s of the old 10@10.

1. Rusaell, Philosophy {Noew York: W,W. Nor‘acn and Company,
‘Ino., 1927), Ds 165
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7, The new loglc, by means of the theory of types,
has solved‘tha paradoxes resulbing from the viaioug-;ircie
fallacy. These peradoxes result from propositions,which
Pofor toall of a kimd} being applied to themselives, They
result from self-reference., For exmplg; the pz-opasition:
"I am 1ying." If the statement is true, it must be false,
and 1f 1%t is false, 1t must be trme. All such paradoxes row
g0t from the proposition itself being inserted as a value
of the variable in the propositioch's propositionsl funwtion.
The theory of types resolﬁe‘s this problem by setting up
ranges of significance .mv types of orders A pmpaaition
¥ almys‘in a type higher than its own range of significance.
~ Therefore, it éamwt refer to0 itself and have meaning,

But the truthevalue of the proposition in question is de~
termined by a proposition of the next type in the hiemrchy.
This theory of types s part of the logieal caleulus of
Russellts loglce _ | ,

8. Epistemologically, the new logic refutes both
striot empiricism and idealism. Mathematlcal logic requires
Imowledge that 1s not based on sense-data, in fact most, if
not all, of the primitives of the iogical ua;culua belong
in this categorm Let us cite only one case, namely, the
principls of inductitn, which is a fom of deduction ac~
cording to Russell, If we may that the exkention of &
given case to the general, ox of the particular to the uni- |
versal, is effected by the mesns of induction, we must admlt
that induction M:sélr 18 not proved by experience., It 1s
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evident that the principle is general and that 1t cannot, a
withmt a vicious circle, be demonstratad by inctuction. Thus
11; 15 mt we ealz. primitivs knowledge. A:u 1n&uctive know-
ledga needs logical princlples which are 8 22.@.222; and uni-
versal. _

_ Know}.adge consists of tm kinds, namely, lmowledge
of parti.cular racts, whiah alcma enables ua to affs.rm exn
iatmoa, and knowledge of logieal truths, which alcne anablaa
| us to reasun about data. n daﬂy life and science we find
theaa two mtermixad. Befare there oan be reascming. thera
must be aalfnevidant logiaal tmths, that is tmths whieh
are known without demnstratian. Theae truths are the |
pramisea of pure mthemti.ca and t;he deéuctive alementn 3.n
evez-y danonshration on whatever aubjecb.

~ This refytes the theory of knowledge hald vy strict
empiricists, ’mt 5.1; doas not imply that idealism is rﬂ.ghi:.
It ganeral truths expressed only psychological facts, we
eould ‘not kncm that they would be true for all people or '_ :
whethar they wcmld. be conatant from one momemt to another,
What is more ,we could never use genaral tmths lagitimately
to dednea one t’act from mcther since thay would not connect
faots at a.ll mt only our ideas about factm :

Iogic and mathematica force us to admit a kind

of acholaatio maliam 4n which we admilt thai; thera is a
worla af univeraala which subsi.ts, end a world of partioulara

miehAexiat;a. Scme of the universals are known a grior!.



%168

a,af" primitive mbwledge"em‘é ‘ti:a others are deduced :t‘rém*
jﬁhemiby the a m rules of &eduction, Theref‘ope, al).
of tha univarsals lmczwn to us are maanendmt of 1mcwledge
by Bxperienca of the aamal world, 'l‘he worm 0:8 pax'ticulars
are. known by experience. It is hh&s aspeot of knowledge '
that enables. us to affirm exiabence. The world af‘ universala
enables us m reasm. o ' |

| B Mathematiua‘l logie has hamoniseé logic and
-aensé»déta. This has been possibla 'b:y the admisaion of
the reality of relationa and the solutions of the various -
problem maﬁe possible by the new seients.fia method given
to phnoaophy. The old logto of ten cantradicte& sense-&ata.'.
For e.mmple, we have meen how the old 1035.0 za.used people
’co declare that either space and time ate merse 111uaiona oy
that they are not composed of points md ingtants. It is o
tme that on the baslas of the new physlcs, meny p‘hﬁ.losophara.
1ne1ud$.ng Rusgell himself, admit that there is mo metaphysical
space or time, points and instm ts, vexcept as logleal cONe
structions composed of events and their relations. However,
the new 1031:3 makes both theories possible and both theories
compl;r.wlth ouy knawledge o:‘ the sense da.ta";proviﬂeﬁ we .
ﬁuvge our supposed lmowledge of all prejudices concerning
matter. Also the new logic makes possible theories of
ﬁoﬁtinux.ty and motion which are in hamony with the sense
data. This was impossible on the basis of the dxd loglos



10, And lastly, as Russell has paid; "The old
logic put thought in fetters, while the new logic glves
1t win@.“l The old logle limited the number of hypotheses
which could be put forth for the explanation of a fact. It
channelized thought and 1magﬁnaﬁs.¢n. In this way 1t put
%thought:in faiiters’x | On the ‘Other hanﬁ, modern logic en=  ‘

- flargea our abai:raat magination and makes 1t more fertide.

:;It prgvs.des an’ infinii;e number cﬁ' logically passible hypo«-
Vt:heaes_tc'g be a,ppliagi‘in the a;;ag.ysis of any complex fact.
The ‘qm' llogiu‘deczfqeﬁ inadvgn“q,,e._that reality must be of
sﬁoh and, sudh a .cha‘.r'a'ctw. | Tha ‘maflern logic makes it pos-
'Hsible for us to imagine hypotha ses which could not have been

o ,ma.ginad othm*wlae end it makes 1% posslble for us to ace

~ eept f;hem u' bhey axplain tha facts, This truely gives
| ‘winga to tzmmghb. o

Ve know that we have not included in this iist
ve.ll of the phnosophical importances of mathematical lagic,
but-thoae_which ‘have been listed aufficg to indlcate that .
“the new loglo is ome of the great achlevements of all ages.
It has already born nmch fruit and 1t seems to be destined
to eontinue to be £ruitful indefinitelye.

| Qo Kosaon g 2 Do Sl boasl), P
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’ Chapter X

 Summary of iThe Findings

In this smdy, we have found thats

'1¢ Russell'a logico-mathematical thess.s is the ﬁontents.on
 that logle and pure mathematles form a continuous whole,’
logle being the beginning of mathematics and mathematics ™
the extentiom of loglos | R

. 24 This ‘bheais dates back to Lelbnis anﬁ its davelcpmm‘a

‘has bem contr:.mt:ed to c¢hiefly by Bod}.e, Sohroeder, ?eirce.
~ _.Frege, Paa‘no,,: Welerstrass, Dedekind, Cantor, Russell, snd
‘Whiteheads ' | o
3. Russell, taking advantage of the work of his predecessors
end the ald of Waltehead, has developéd a new logle in his
endee.vor to prove this theais. | | S ,
" Ruasau and Whitehee.&, meking considerable use of Paano*a
wom'k, have developed a strict logleal symbollsm whi.ch makes
B 3 ;poasi‘ble, to'give many 10@1393. ,.ma»tbersy the s_éame v;‘:z;ecisa |
menipulation as s possible in maﬁhemticax operations,
8. Rusaell, with his new logics s has been able to prove his
loglmwmathematzcal thesis, and Russell and Whitehead have
been abls to give this proof precise demonstration with
their new symbolism, " "
6y Mathamt:tcai. logic has given mathematics a sound philo-
sophical baslse
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7. Mathematioal logic has given philosophy a sclentific
method in much the seme way as the work of Galileo and
Newton gava sciema a mthemab 1031 method.

8+ The new logle. ha& mada possibla the solution of the
problems of the. mﬁniteaimal, _the mﬂnite,. and continuity.
9. The new. logia has made possible a somtim for Zeno's ‘
paradoxea aancaming apace, ts.me, and mots.m. e -
10, The new logic has made it 1ogica11y pusaible to cone.
stret a pha.zesaphy of matter, space, time, and motion in
acmrd with the advmees of the new thSiGSi

11. The new login. by means of the theary of types » has. made
1t possible to solve the paradoxes resulting from the vicious
cirole fallacw | |

3.2. The new logle refutes the t‘necry of !mcwledge held

by both striajh empiricists and idealists and forces us to
accept a type of scholastic Peallsm in vhich universals are
‘adnitted to subsist snd to be know by g priori methods snd
pa.rtiaulam ara a.dmitted to exist and to be kncwn empirmally;
| 13, Moaez'n Iegia has harmonizad 103:1@ and aenaa-data. t

” 14; And, where the ald logio put ‘thought in fettea:'s, the N
new Iegie g:l.ven it wings. " ‘
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