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ABSTRACT

Measurements of cosmic microwave background (CMB) anisotropies by interferometers offer several advantages
over single-dish observations. The formalism for analyzing interferometer CMB data is well developed in the flat-sky
approximation, which is valid for small fields of view. As the area of sky is increased to obtain finer spectral resolution,
this approximation needs to be relaxed. We extend the formalism for CMB interferometry, including both temperature
and polarization, to mosaics of observations covering arbitrarily large areas of the sky, with each individual pointing
lying within the flat-sky approximation. We present a method for computing the correlation between visibilities with
arbitrary pointing centers and baselines and illustrate the effects of sky curvature on the ‘-space resolution that can be
obtained from a mosaic.

Subject headinggs: cosmic microwave background — techniques: interferometric

1. INTRODUCTION

The study of anisotropies in the cosmicmicrowave background
(CMB) radiation has revolutionized cosmology. Key to this rev-
olution have been coupled advances in theory, data analysis, and
instrumentation. In particular, the design of experiments with ex-
quisite systematic error control has been crucial for progress in
the field. Interferometers offer several advantages in this respect,
with simple optics, instantaneous differencing of sky signals with-
out scanning, and no differencing of detectors. The shape of the
beam can be well understood, and the measurement is done di-
rectly in Fourier space where the theory most naturally lives.

Pioneering attempts to detect CMB anisotropywith interferom-
eters weremade byMartin&Partridge (1988) and Subrahmanyan
et al. (1993). Several groups have successfully detected primary
CMB anisotropies (O’Sullivan et al. 1995; Baker et al. 1999;
Halverson et al. 2002; Pearson et al. 2003; Taylor et al. 2003)
and polarization (Readhead et al. 2004; Leitch et al. 2005), using
interferometers. The formalism for analyzing CMBdata from inter-
ferometers has been developed by Hobson et al. (1995), Hobson &
Magueijo (1996),White et al. (1999), Hobson&Maisinger (2002),
andMyers et al. (2003), aswell as in the experimental papers cited
above. Park et al. (2003) and Park & Ng (2004) examined inter-
ferometric polarimetry.

In the Fraunhofer limit an interferometer measures the Fourier
transform of the skymultiplied by the primary beam. The primary
beamdetermines the instantaneous field of view of the instrument,
and its Fourier transform is simply the autocorrelation of the Fourier
transform of the point response of the receiver to an electric field.
The angular scale probed by any pair of telescopes being correlated
is determined by their spacing in units of the observational wave-
length.1 The range of scales probed by the interferometer is then
determined by the spacing of the elements, while the resolution
in spatial wavenumber is determined by the area of sky surveyed.
By ‘‘mosaicking’’ several smaller patches together, the resolution

in spatial wavenumber can be increased, although the range of
spatial scales remains fixed by the geometry of the interferometer
elements (Ekers&Rots 1979;Cornwell1988;Cornwell et al. 1993;
Holdaway 1999).

In most cases it has been assumed that the field of view is
small, so that one can use the ‘‘small-angle’’ or ‘‘flat-sky’’ ap-
proximation, but this assumption will need to be relaxed in future
experiments. The CMB angular power spectrum has relatively
narrow features in spatial wavenumber (i.e., multipole ‘), so future
experiments will aim for fine Fourier-space resolution, requir-
ing a survey of a large area of sky. On the other hand, since these
features are found at relatively small angular scales, fine angular
resolution is also required. In an interferometric experiment, these
goals will presumably be achieved by observing amosaic of many
pointings with small individual fields of view. The purpose of this
paper is to extend the formalism presented in the above papers to
the case in which each individual pointing of the interferometer
is still within the flat-sky approximation but by mosaicking many
pointings together a significant area of sky is surveyed. Our ex-
tension allows one to see how large an error is being made in
assuming the flat-sky approximation and shows how corrections
can be systematically incorporated.

The central idea of this paper is the following. The key in-
gredient in analyzing a mosaic of interferometer pointings is the
set of two-point visibility correlations. For each pair of point-
ings we can calculate the correlations in a spherical coordinate
system that places both pointing centers on the equator. If each
pointing has a small field of view, then we can approximate the
sphere by a cylinder in the vicinity of the equator, allowing the
use of Fourier analysis, rather than a more cumbersome expan-
sion in spherical harmonics. With this formalism, correlations
can be found for pointings with centers separated by arbitrarily
large angles. Knowledge of these correlations is essential if we
wish to achieve fine ‘-space resolution.

The outline of this paper is as follows. We begin in x 2 by
reminding the reader of some basic results in the flat-sky limit.
We then show how this can be extended using a cylindrical pro-
jection in x 3 and make contact with the exact spherical harmonic

1 We assume monochromatic radiation throughout; the generalization to a
specified frequency band is straightforward.
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treatment in x 4. Section 5 extends our results to include polari-
zation, and we conclude in x 6.

2. FLAT-SKY LIMIT

We begin by considering the flat-sky limit and focusing on
temperature anisotropies. Thus, our interferometer is measuring
a scalar field, T (x), defined on the two-dimensional plane. In this
limit the fundamental observable, a visibility, can be written as

V (u) ¼ @B�
@T

Z
d2x�T (x)A(x)e2�iu = x; ð1Þ

where @B� /@T converts from temperature to intensity units and
A(x) is the primary beam (typically normalized to unity at the
peak). From now on we neglect the flux-temperature conver-
sion factors and write T for �T.

For Gaussian fluctuations, such as the primary CMB aniso-
tropies, we need to compute the visibility correlation matrix:

V ij � V (ui)V
�(uj)

� �
; ð2Þ

where ui and uj represent the baselines to be correlated and
h: : :i represents an ensemble average. This can be related to the
usual temperature correlation function,

T (ni)T (nj)
� �

¼ 1

4�

X1
‘¼2

(2‘þ 1)C‘P‘(ni = nj) ð3Þ

for temperatures measured in directions ni and nj, where C‘ are
the multipole moments. In our flat-sky limit, for a single patch
(e.g., White et al. 1999)

V ij /
Z

d2w S(w) Ã� 2� wþ uið Þð Þ Ã 2� wþ uj
� �� �

; ð4Þ

where the angular power spectrum S(u) is defined by

(2�)2u2S(u) ’ ‘(‘þ 1)C‘ for ‘ ¼ 2�u ð5Þ

and Ã is the Fourier transform of the antenna pattern,

Ã(k) ¼ (2�)�2

Z
d2xA(x)e�ik = x: ð6Þ

The extension to multiple different patches, each with its own
pointing center P, merely inserts a phase factor,

VP1P2

ij /
Z �

d2w S(w) Ã� 2� wþ uið Þð Þ

; Ã 2� wþ uj
� �� �

e2�iw = D
�
; ð7Þ

where D is the separation between the pointing centers P1 and
P2. From now on we drop the superscripts on V ij.

The small-angle approximation made throughout this paper
says that A(x) differs significantly from zero only when xj jT1
radian. If we do not wish to make this approximation, we can
replace equation (1) with (Thompson et al. 1994; Hobson &
Maisinger 2002)

V (u) ¼
Z �

d2x T (x)A(x) 1� xj j2
� 	�1=2

; e2�i u = xþw
ffiffiffiffiffiffiffiffiffiffi
1� xj j2

p
�1

� �� ��
; ð8Þ

where w is the component of the baseline vector along the line
of sight (i.e., perpendicular to the plane containing the vectors x
and u). The visibility covariance equation (7) must be modified
by replacing Awith an effective antenna pattern,

AeA(x;w) ¼ A(x) 1� xj j2
� 	�1=2

e2�iw
ffiffiffiffiffiffiffiffiffiffi
1� xj j2

p
�1

� �
: ð9Þ

Care must be taken in using this expression, however. When the
small-angle approximation breaks down, so does the correspon-
dence (5) between the flat-sky power spectrum S and the exact
spherical harmonic power spectrum C‘. In general, if the field of
view is large enough that one is considering ‘‘w-corrections’’ of
the form (9), it is probably necessary to do a full spherical har-
monic analysis, rather than one based on projecting the sky onto
a plane and using Fourier transforms. For the rest of this paper
we assume small fields of view and neglect w-corrections.

3. CYLINDRICAL METHOD

The flat-sky approximation above is valid only if both the field
of view of an individual pointing and the separation D between
pointings are small. We now assume a mosaic of pointings that
cover a large area, although each individual pointing observes
only a small patch of sky.We therefore relax the second assumption
while retaining the first.
For a statistically isotropic temperature field, we are free to use

any coordinate systemwe like to compute the visibility correlation
V12. In particular, we can arrange to have the two pointing centers
lie on the equator of a spherical coordinate system (� ¼ �/2) and
be separated by an angle �. We introduce a cylindrical coordinate
system, with the cylinder tangent to the sphere at the equator,
denoted by x ¼ (�; z). Since both observations sample only re-
gions near the equator, we can pretend that the data live on the
cylinder rather than on the sphere. In this approximation, it is natural
to expand the temperature T (x) in a discrete Fourier series in �
and a continuous Fourier transform in z:

T (x) ¼
X
m

Z
dn T̃m(n)e

i (m�þnz) ð10Þ

with

T̃m(n)T̃
�
m(n

0)
� �

¼
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p� �
(2�)2

�mm 0� n� n0ð Þ: ð11Þ

The power spectrum is P(k) ¼ (2�)2S(k /2�) with S as defined
in equation (5). It is related to the spherical harmonic angular
power spectrum by P(k) ’ Ck for large k.
The visibility becomes

V (P1; u1) ¼ (2�)2
Z

dn
X
m

T̃m(n)Ã
� 2� u1 þ wð Þð Þ; ð12Þ

where the vector w has coordinates (w�;wz) ¼ (m; n)/(2�) and

Ã(k) ¼
Z

d2x
(2�)2

A(x)e�ik = x ð13Þ

is the usual Fourier transform of the primary beam. Since we
imagine that A is nonzero only over a small region, we can ex-
tend the integral over the entire plane.
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The visibility for the second pointing center is analogous,
except for a phase factor eim�, so the correlation between two
pointings becomes

V12 /
Z

dn
X
m

S(w)W12(u1; u2;w)e
im�; ð14Þ

where we have defined the window function,

W12(u1; u2;w) � Ã� 2� u1 þ wð Þð ÞÃ 2� u2 þ wð Þð Þ: ð15Þ

It is convenient to define a window function that is averaged
over direction:

V12 ¼
X
‘

W
(12)
‘ C‘: ð16Þ

To computeW
(12)
‘ we divide the integral and sum in equation (14)

into bands with ‘� 1
2
< 2�w < ‘þ 1

2
. Within each band we as-

sume that the power spectrum is constant and remove it from the
integral. We can calculate this window function in the flat-sky
approximation instead of the cylindrical approximation if we like,
simply by replacing the sum over m by an integral.

Figure 1 illustrates the difference between the flat and cylin-
drical approximations for large �. Note that the window func-
tion in this case oscillates rapidly as a function of ‘, averaging to
zero. As a result, if the power spectrum is nearly flat over the
width of this window function, the correlation V12 will be quite
small due to cancellations. However, even for extremely large
� the window function is not small in absolute value. For in-
stance, the sum

P
‘jW

(12)
‘ j for � ¼ 120

�
is 0.76 times the value

for � ¼ 0. This means that narrow ‘-space features in the power
spectrum will give rise to significant correlations even at large
�; indeed, this sort of correlation is precisely the reason that mo-
saicking leads to improved ‘-space resolution.

For wide separations, W12 differs significantly from zero,
and the difference between flat and cylindrical approximations
is most important when the baseline vectors ui are nearly equal
in magnitude and parallel to the separation direction f̂.

We can use this prescription to calculate the full visibility
covariance matrix for a mosaic of many pointings. For each pair
of pointings, we must transform to a coordinate system in which

both pointings lie on the equator. In performing this rotation, the
components of the baseline vectors ui will naturally be trans-
formed. The Appendix contains an explicit recipe for performing
this rotation.

Figures 2 and 3 present a simple illustration of howmosaicking
increases the ‘-space resolution of an experiment. In each point-
ing, the beam pattern is a Gaussian with beam width � ¼ 5

�
. We

assume a 10 ; 10 grid of pointings, separated by 5� in both � and
� in a spherical coordinate system, with the center of the grid
on the equator (� ¼ �/2). For each pointing we consider only
a single baseline u ¼ 22f̂. Figure 2 shows the locations of the
pointing centers and the baselines in Aitoff projection. Note that
although all the baselines have identical components in the spher-
ical coordinate system, they do not when rotated to the appro-
priate coordinate system for computing the covariances. As an
example, to compute the covariance between the two pointings
in the upper corners of the grid, we must use a coordinate system
in which the great circle represented by the dashed line becomes
the equator. In this coordinate system, the two baseline vectors have
â components of opposite sign.

The visibility obtained from any single pointing provides an
estimate of the power spectrumwith a fairlywidewindow function
(Fig. 3, solid curve).We can obtain an estimate of the power spec-
trum with a narrower window function by simply adding together
all 100 visibilities. To find the window function for the sum, we
write down the absolute square of the sum of all 100 visibilities,

X100
i¼1

Vi

�����
�����
2* +

¼
X100
i; j¼1

hViV
�
j i ¼

X100
i; j¼1

V ij: ð17Þ

The window function for the sum of all the visibilities is there-
fore the sum ofW

(ij)
l over all visibility pairs i; j. We can compute

eachW
(ij)
l using the recipe described above. Specifically, for each

Fig. 1.—Window functions for the covariance between two interferometer
pointings in both the flat and cylindrical approximations. The antenna pattern is
Gaussian with beam width � ¼ 5�. The two pointings are separated by 120�.
Each visibility has a baseline of magnitude u ¼ 20 pointing in the f̂-direction.
The plus signs are the cylindrical approximation, and the stars are the flat ap-
proximation. For clarity, only the real parts of the window functions are shown.

Fig. 2.—Pointing centers ( plus signs) and baseline vectors (horizontal bars)
for the mosaicking example described at the end of x 3. In calculating the
covariance between the two visibilities at the upper corners of the grid, we must
rotate to a coordinate system in which the great circle connecting them (dashed
line) becomes the equator. Note that the two baseline vectors are not parallel in
the new coordinate system.
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pair of pointings, we find a rotation that brings both pointing
centers to the equator, apply that rotation to the vectors u1 and
u2 using the recipe in the Appendix, and apply equation (15).

The dashed curve in Figure 3 is the window function for the
sum of all pointings. As expected, the ‘-space resolution has
improved. The dotted curve shows the window function obtained
by incorrectly assuming that the sky is flat over the entire mosaic,
that is, assuming that all of the baseline vectors illustrated in
Figure 2 lie in the same plane and are parallel.

The difference between the dashed and dotted curves is almost
entirely due to ‘‘baseline rotation’’—the fact that, e.g., the baseline
vectors at the corners of Figure 2 are not in fact parallel to each
other when viewed in a coordinate system inwhich both lie on the
equator. It makes virtually no difference whether we use the flat
method (integral over m), the cylindrical method (sum over m),
or an exact spherical harmonic calculation as described below in
calculating eachW

(ij)
‘ , as long aswe get the baseline rotation right.

Of course, other linear combinations could be used instead of
a simple sum of all 100 pointings, resulting in window func-
tions with peaks in different places (within the envelope set by
the single-pointing window function).

4. HARMONIC METHOD

We can also make direct contact with the usual spherical
harmonic treatment in which

T (r̂) ¼
X
‘m

a‘mY‘m(r̂) ð18Þ

and

a‘ma
�
‘ 0m 0

� �
¼ C‘�‘‘ 0�mm 0 : ð19Þ

The visibility for a single pointing is

V (u) ¼
Z

d2r̂A(r̂)T (r̂)e2�iu = r̂ ¼
X
‘;m

a‘mF‘m(u); ð20Þ

where

F‘m(u) ¼
Z

d2r̂A(r̂)Ylm(r̂)e
2�iu = r̂: ð21Þ

It is of course possible to perform these integrals numerically
and calculate the visibility covariance matrix without any approx-
imations at all. In this section we see how to obtain the cylindrical
approximation from this exact expression.
In previous treatments (e.g., White et al. 1999), the flat-sky

limit for a single pointing was taken by approximating the spher-
ical harmonics near the pole of the spherical coordinate system
(� ¼ 0). To obtain the visibility covariance for two different point-
ings, it is more convenient to place the pointing centers on the
equator as in x 3.
Near the equator z � cos � ’ �/2� �. Using the recurrence

relations for the associated Legendre polynomials (Abramowitz
& Stegun 1972; Gradshteyn & Ryzhik 1980), one can show

Y‘m(�; z) ! N‘me
im� cos n‘mz; ‘� m even;

�i sin n‘mz; ‘� m odd;

�
ð22Þ

with

n‘m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘(‘þ 1)� m2

p
; ð23Þ

N‘m ¼ (�1)(‘þm)=2 2mffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4�

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(‘� m)!

(‘þ m)!

s
‘þ m� 1ð Þ=2½ �!
‘� mð Þ=2½ �! ;

ð24Þ

which can also be written

N‘m ¼ (�1)(‘þm)=22�‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4�

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(‘þ m)!(‘� m)!

p

‘þ mð Þ=2½ �! ‘� mð Þ=2½ �!
ð25Þ

by using (Gradshteyn & Ryzhik 1980)

nþ 1

2

 �
! ¼

ffiffiffi
�

p (2nþ 1)!

22nþ1n!
: ð26Þ

In all of these expressions the factorials should be interpreted as
� functions for noninteger arguments. In the limit when all of
the factorial moments are large, we can use the approximation
(Abramowitz & Stegun 1972)

ln N ! ’ N þ 1

2

 �
ln N � N þ const ð27Þ

to write the normalization factor as

N‘m ’ (�1)(lþm)=2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l þ 1=2

p
(l2 � m2)1=4

: ð28Þ

Note that the Y‘m are eigenfunctions of the two-dimensional
Laplacian with eigenvalues �‘(‘þ 1), and the form of n‘m
guarantees that this is preserved in the cylindrical coordinates:

92Y‘m ! @2

@�2
þ @2

@z2

 �
Y‘m ð29Þ

¼ �m2 � n2‘m
� �

Y‘m ð30Þ
¼ �‘(‘þ 1)Y‘m; ð31Þ

where the arrow indicates the cylindrical coordinate limit.

Fig. 3.—Improvement in ‘-space resolution due to mosaicking. The solid
curve is the window function for a single pointing. The dashed curve is the
window function for the sum of all pointings in a 10 ; 10 grid, after correctly
accounting for baseline rotation. The dotted curve is the window function that
would be obtained by incorrectly assuming a flat sky over the entire mosaic. All
three window functions have arbitrary normalization.
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If we define

�‘m ¼ (�1)‘þm N‘m

2
a‘m; �̄‘m ¼ N‘m

2
a‘m; ð32Þ

then we can rewrite equation (18) as

T (x) ¼
X
‘m

�‘me
ik = x þ �̄‘me

ik̄ = x; ð33Þ

with the definitions k ¼ (m; n‘m) and k̄ ¼ (m;�n‘m). From now
on we take the sum over both �n‘m as implicit and write

T (x) ¼
X
k

�ke
ik = x: ð34Þ

This way of writing the spherical harmonic expansion makes
the correspondence with the Fourier representation explicit.

The visibility becomes

V (u) ¼ (2�)2
X
k

�(k)Ã� kþ 2�uð Þ; ð35Þ

and the correlation matrix is

V12 ¼
(2�)4

4

X
k

N‘mj j2C‘W12(u1; u2;
k

2�
)eik = b; ð36Þ

plus oscillatory terms that average to zero in the sum over ‘ and
m. Here b is the vector difference between the two pointing
centers.

If we work at large values of ‘ andm, we can replace the sum
over kwith

P
m and

R
dn and recover our cylindrical result, equa-

tion (14). One can verify by explicit computation that using

d‘

dn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘(‘þ 1)� m2

p
‘þ 1=2

ð37Þ

to turn the sum over ‘ into an integral and using the asymptotic
form of N‘m in equation (36) leads to equation (14).

As Figure 4 illustrates, the differences between the harmonic
and Fourier expansions lie in the nonuniform gridding of the
wavevectors k. For any given wavenumber ‘ the modes are
packed more sparsely near the m-axis, corresponding to mj j ’ ‘,
and more densely near m ’ 0. The normalization factor N‘m
weights the higher m modes more strongly to make up for this.

Surprisingly, in some cases the cylindrical approximation
proves numerically more accurate than the approximation in this
section, as illustrated in Figure 5. Specifically, in cases where the
baseline vectors point in the f̂-direction, the sum in equation (36)
is dominated by modes with mj j ¼ ‘, which are precisely the
modes for which the plane-wave approximation to Y‘m is worst.
We found no instance in which the cylindrical approximation (22)
does worse than the approximate spherical harmonic expansion
of this section, so for numerical work one should use either the
cylindrical approximation or the exact full-sky expressions. In
general, we find that the cylindrical approximation starts to be-
come poor for Gaussian beam widths � ’ 8

�
(FWHM ’ 20

�
).

5. POLARIZATION

In this section we generalize the results of the previous sec-
tions to observations of linear polarization. Instead of considering
a single scalar observable T, we must consider observations of
the two Stokes parameters Q and U. (The CMB is not expected
to be circularly polarized, so we ignore the Stokes parameter V.)
Tinbergen (1996) provides a useful introduction to astronomi-
cal polarimetry, and Thompson et al. (1994) discusses the formal-
ism of interferometric polarimetry in detail. Bunn (2006) discusses
the different systematic error sensitivities of linear and circular
polarization experiments in interferometric CMB polarimetry.

It is convenient to combine the Stokes parameters into the
complex quantities

P� ¼ 1ffiffiffi
2

p (Q � iU ); ð38Þ

because these quantities transform in a relatively simple way
under rotations; under a rotation by an angle  about a given
point r̂, P� (r̂) ! P� (r̂)e

�2i . In other words, Pþ is a quantity of
spin weight�2 and P� has spin weight +2. These transformation
properties make (Pþ;P�) a more convenient basis of observables

Fig. 4.—Fourier modes k�lm ¼ (m;�nlm).

Fig. 5.—Comparison of approximations. The window function is shown for
the covariance between visibilities with u ¼ 20f̂, beam width � ¼ 5�, and point-
ing centers separated by � ¼ 15�. The solid curve is the exact spherical harmonic
calculation; the dashed curve is the cylindrical approximation; and the dotted curve
is the approximation obtained by approximating the spherical harmonics by plane
waves.
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to work with than (Q;U ). The two bases are related by a unitary
transformation,

Pþ

P�

 �
¼ 1ffiffiffi

2
p

1 1

�i i

 �
Q

U

 �
; ð39Þ

so any results derived in one basis can easily be transformed to
the other.

An interferometer that works by interfering circularly po-
larized radiation from the two antennas measures the visibilities

V� (u) ¼
Z

d2r̂P� (r̂)A(r̂)e
2�iu = r̂: ð40Þ

Specifically, interfering left-circularly polarized radiation from
antenna 1 with right-circularly polarized radiation from antenna
2 yieldsVþ, and reversing the senses of both circular polarizations
yields V�. (Interfering right with right and left with left yields
visibilities that probe total intensity and circular polarization.)

An interferometric polarimeter can also work by combining
linear polarization states instead of circular ones. In this case, a
visibility Vxy obtained by correlating horizontal polarization in
one horn with vertical polarization in another probes the combi-
nation of Stokes parameters U þ iV . Averaging Vxy and Vyx to-
gether gives a visibility VU proportional to Stokes U. A visibility
that probes Stokes Q can be obtained by measuring linear polar-
ization states that are oriented at 45� from the x- and y-directions.2

We assume that the measured3 quantities are V� rather than VQ;U ,
but all results are easily transformed to theQ;U basis using equa-
tion (39).

As in the case of temperature anisotropy, the key ingredient
in analyzing CMB interferometric observations of polarization
is the visibility covariance matrix:

V��
12 � hV� (u1;P1)V� (u2;P2)

�i; ð41Þ

where ui and P i represent baselines and pointing centers for a
pair of visibilities. Note that in this equation the two signs� can
be varied independently; that is, there are in general four dis-
tinct covariances, Vþþ

12 ;V
þ�
12 ;V

�þ
12 ; and V��

12 .
Our primary interest continues to be the case in which the flat-

sky approximation is appropriate for each individual pointing,
but the separation between pointings is not necessarily small.
We present the flat-sky approximation first, followed by exact
expressions for the visibility covariances in terms of spherical
harmonics.We then show that the spherical harmonic expressions
reduce in this limit to cylindrical-sky expressions similar to the
anisotropy results above.

5.1. Flat Sky

Assume our observations cover a small enough patch of sky
that we can replace spherical harmonic expansions with Fourier
transforms:

P� (x) ¼
Z

d2k P̃� (k)e
ik = x: ð42Þ

The two Fourier transforms satisfy the relation

P̃�
� (k) ¼ P̃�(�k): ð43Þ

A key insight into the analysis of CMB polarization was the
observation (Kamionkowski et al. 1997; Zaldarriaga & Seljak
1997) that any polarization field can be decomposed into a scalar
part (conventionally denoted E ) and a pseudoscalar part (de-
noted B). The E-B separation is particularly simple in Fourier
space; modes with polarization parallel or perpendicular to k are
Emodes, while modes polarized at 45� are Bmodes. In terms of
P̃� , this means that

P̃� (k) ¼ Ẽ(k) � iB̃(k)
� �

e�2i k ; ð44Þ

where  k is the angle made by the wavevector k with respect
to the x-axis.
Assuming that the polarization was generated by a homoge-

neous, isotropic, parity-respecting process, the two-point corre-
lations between E and B are determined by two power spectra PE

and PB:

hẼ(k)Ẽ�(k0)i ¼ (2�)�2PE(k)�(k� k0); ð45Þ
hB̃(k)B̃�(k0)i ¼ (2�)�2PB(k)�(k� k0); ð46Þ

hẼ(k)B̃�(k0)i ¼ 0: ð47Þ

This means that the covariances of the polarization P̃� are

hP̃� (k)P̃
�
� (k

0)i ¼ (2�)�2 PE(k)þ PB(k)½ ��(k� k0); ð48Þ

hP̃� (k)P̃
�
�(k

0)i ¼ (2�)�2 PE(k)� PB(k)½ �e�4i k�(k� k0): ð49Þ

Just as in the scalar case, the visibility associated with a
pointing center b and a baseline u can be expressed in terms of
the Fourier transform of the antenna pattern:

V� (u; b) ¼ (2�)2
Z

d2k Ã�(kþ 2�u)P̃� (k)e
ik = b: ð50Þ

The correlation between two visibilities is

V��
12 ¼ (2�)2

Z n
d2k Ã�(kþ 2�u1)Ã(kþ 2�u2)

; e ik = (b1�b2) PE(k)þ PB(k)½ �
o
; ð51Þ

V��
12 ¼ (2�)2

Z n
d2k Ã�(kþ 2�u1) Ã(kþ 2�u2)

; e ik = (b1�b2) PE(k)� PB(k)½ �e�4i k

o
: ð52Þ

5.2. Spherical Harmonics

Since the quantities P� are quantities of spin weight�2, it is
natural to expand them in spin (�2) spherical harmonics:

P� (r̂) ¼
X
‘;m

a�2;‘m �2Y‘m(r̂): ð53Þ

The decomposition into E and B components is particularly
simple in terms of the spherical harmonic coefficients:

a�2;‘m ¼ E‘m � iB‘m: ð54Þ

2 In principle, Stokes Q can also be measured from the visibilities Vxx and
Vyy, which probe the combinations I � Q. In practice, however, since I 3Q for
CMB polarization, this is an inferior way to probe Q.

3 We are ignoring some sources of systematic error in this expression. For
instance, in an instrument with cross-polar beam response, each measured
visibility would contain contributions from both Pþ and P�, with different
effective antenna patterns.
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The two-point statistics are completely described by two power
spectra CEE

‘ and CBB
‘ :

hE‘mE�
‘ 0m 0 i ¼ CEE

‘ �‘‘ 0�mm 0 ; ð55Þ
hB‘mB�

‘ 0m 0 i ¼ CBB
‘ �‘‘ 0�mm 0 ; ð56Þ

hE‘mB�
‘ 0m 0 i ¼ 0: ð57Þ

As in the case of temperature anisotropy, the spherical and flat-
sky power spectra are related via C‘ ’ P(u) with l ¼ 2�u.

The visibilities can be expressed in terms of the spherical
harmonic coefficients as

V� (u) ¼
X
‘;m

a�2;‘mF�2;‘m(u); ð58Þ

where

F�2;‘m(u) ¼
Z

d2r̂A(r̂) �2Y‘m(r̂)e
2�iu = r̂: ð59Þ

Consider first the covariance between two visibilities with
identical pointing centers. Combining equations (41) and (54)Y
(58), the visibility covariances can be shown to be

V��
12 ¼

X
‘

CE
‘ þ CB

‘

� �
W ��
‘ ; ð60Þ

V��
12 ¼

X
‘

CE
‘ � CB

‘

� �
W ��
‘ ; ð61Þ

where

W ��
‘ ¼

X
m

F�2;‘m(u1)F
�
�2;‘m(u2): ð62Þ

In the case where the two observations have different pointing
centers, we once again transform to a coordinate system with
both pointing centers on the equator, separated by an angle �.
Because the spin-weighted spherical harmonics have azimuthal
dependence eim�, the only change is an additional factor of eim�:

W ��
‘ ¼

X
m

eim�F�2;‘m(u1)F
�
�2;‘m(u2): ð63Þ

In order to calculate the correlation between a pair of ob-
servations with arbitrary pointing centers, we simply rotate to a
new coordinate system that places both centers on the equator
before applying the above results. In performing this rotation, it
is important to remember to transform P� (and hence V� ) by
e�2i�, where � is the angle through which the polarization basis
directions are rotated by the transformation. To be specific, if the
change of coordinates results in a rotation of the â- and f̂-directions
at each of the pointing centers by �1 and �2, then V��

12 !
V��
12 e2i(��1��2). See the Appendix for an explicit recipe for finding

these angles.

5.3. Connecting Flat-Sky to Spherical

As in the case of temperature anisotropy, we can see the con-
nection between the spherical and flat-sky calculations of po-
larization by considering observations that lie near the equator
of our spherical coordinate system and approximating the sphere
by a cylinder. By applying the spin-raising operator (e.g., Lewis

et al. 2002) to the plane-wave approximation to the spherical
harmonics (22), one can show that in this limit

2Ylm(r̂) ¼ N
(2)
lm eim�

cos (nlmzþ �lm); l � m even;

�i sin (nlmzþ �lm); l � m odd;

�
ð64Þ

with

N
(2)
lm ¼ Nlml(l þ 1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l � 2)!

(l þ 2)!

s
¼ Nlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(l þ 1)

(l þ 2)(l � 1)

s
; ð65Þ

�lm ¼ 2 cos�1 m

l(l þ 1)
: ð66Þ

By reasoning similar to that in x 4, we can use this to connect
the spherical harmonic formalism to the flat-sky limit.

5.4. Example

Consider a 10 ; 10 mosaic of pointings of an interferometer,
with the same parameters as in the example of x 3: the Gaussian
beamwidth is � ¼ 5

�
, and the pointings are centered on the equa-

tor and separated by 5� in both � and �. We consider only one
baseline per pointing, withu ¼ 22f̂. Assume that both visibilities
VQ and VU are measured (either directly or by measuring V� ).

Fig. 6.—Polarization window functions. Top: Window functions for the cor-
relation hVQV

�
Qi of the two baselines at the upper corners of Fig. 2. Bottom:

Correlations calculated by incorrectly assuming that the entire mosaic is flat, that
is, ignoring the rotation of the basis vectors â and f̂when moving from one point
to another. Note that the vertical axes of the two WE

1 plots differ by a factor of
200. These window functions were calculated in the cylindrical approximation,
but the exact spherical harmonic calculation yields negligible differences.
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For any pair of pointings we can define E and B window
functions such that

hVQiV
�
Qji ¼

X
‘

WE
‘ C

EE
‘ þWB

‘ C
BB
‘

� �
; ð67Þ

where VQi is the visibility for Stokes Q corresponding to
baseline i. In the limit of infinitely sharp ‘-space resolution, we
would expect WB

‘ to vanish, since the polarization would be
parallel to the baseline u. Inevitably, however, when only part
of the sky is covered (leading to imperfect Fourier-space res-
olution), there is some mixing of E and B modes (Lewis et al.
2002; Bunn 2002; Bunn et al. 2003).

For the case of the two visibilities at the upper corners of the
grid, these window functions are shown in Figure 6. As in the
scalar case, the correlations are strongly affected by the rotation
of the coordinate basis. If we incorrectly model the entire mo-
saic as flat, treating the basis vectors â and f̂ at each point to be
parallel, the correlation between these two pointings would be
dramatically overestimated. In fact, by treating the sky as flat,
we would be making two separate errors: treating the two base-
line vectors as parallel ( just as in the case of temperature anisot-
ropy in x 3) and failing to apply the appropriate transformation to
the Stokes parameters (Q;U ).

Figure 7 illustrates the improvement of resolution due to
mosaicking in this example. Like Figure 3, this figure shows the
autocorrelation window function for a single pointing, as well
as that of the sum of all 100 pointings in the grid. If we neglect
sky curvature, we overestimate the correlation between distant
baselines and hence also overestimate the improvement in ‘-
space resolution.

6. CONCLUSIONS

Interferometers have been used to great effect in measuring
CMB temperature and polarization anisotropies. The formalism
for analyzing interferometer data, however, has only been fully
developed in the smallYfield-of-view or flat-sky limit. Future
experiments that aim for exquisite ‘-space resolution will need
to survey large areas of sky outside the realm of validity of the
existing formalism.
In this paper we have extended the formalism to the situation

where we can approximate the sky as flat for each individual
pointing of the instrument, but we relax the assumption that the
angle between pointings is also small. We have connected the
full-sky spherical harmonic approach to the flat-sky Fourier ap-
proach in two distinct ways and derived approximations for the
visibility covariance matrix in each. We find that the cylindrical
method of x 3 and x 5.2 works better in all cases than the har-
monic method of x 4 and provides accurate approximations to
the full-sky expressions for individual pointings smaller than
20� FWHM.Mosaicking together many pointings increases the
‘-space resolution, but in the cases considered here the improve-
ment is less than would be predicted from the flat-sky formalism,
in large part due to the effects of baseline rotation. If we neglect
sky curvature we overestimate the correlation between distant
baselines and hence also overestimate the improvement in ‘-space
resolution.

E. F. B. is supported by NSF grant AST 05-07395 and a
Cottrell Award from the Research Corporation. E. F. B. thanks
the physics departments of Brown University and MIT for their
hospitality during the completion of this work.M.W. is supported
by NASA. We thank Asantha Cooray and Manoj Kaplinghat,
the organizers of the March 2006 workshop on Fundamental
Physics with CosmicMicrowave Background Radiation, where
this work was initiated.

APPENDIX

In calculating the covariance between visibilities at two different pointing centers r̂1 and r̂2, we must transform to a coordinate
system that places both pointing centers on the equator. This affects both the components of the baseline vectors u1 and u2 and (in the
case of polarization) the Stokes parameters Q and U . We present here an explicit recipe for performing this transformation.

Throughout this appendix, unprimed symbols refer to the original coordinate system, and primed symbols refer to a coordinate
system (x0; y0; z0) such that r̂1 lies on the x

0-axis and r̂2 is in the x
0-y0 plane. First, choose the z0-axis to be perpendicular to both vectors:

ẑ0 ¼ r̂1 < r̂2
r̂1 < r̂2j j

: ðA1Þ

Next, choose the y0-axis to be perpendicular to both ẑ0 and r̂1:

ŷ0 ¼ r̂1 < ẑ0: ðA2Þ

Finally, choose x̂0 ¼ ŷ0 < ẑ0. In spherical coordinates (�0; �0) defined with respect to the primed coordinate system, we have
r̂1 ¼ (�/2; 0) and r̂2 ¼ (�/2; � ) with � such that (cos �; sin � ) ¼ (r̂2 = x̂0; r̂2 = ŷ0).

Fig. 7.—Window functions for a single pointing (solid curve), the sum of all
pointings (dashed curve), and the sum of all pointings neglecting sky curvature
(dotted curve).
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Say that the baseline vector ui (i ¼ 1; 2) is expressed in the original (unrotated) spherical coordinate system as

ui ¼ ui�âþ ui�f̂: ðA3Þ

We need to know the corresponding components in the rotated coordinate system. The components of the basis vectors â and f̂ in the
rotated coordinate system are

â ¼ (cos �i)â
0 � (sin �i)f̂0; ðA4Þ

f̂ ¼ (sin �i)â
0 þ (cos �i)f̂0: ðA5Þ

The easiest way to find the rotation angle �i is to compute the components of f̂ ¼ (ẑ< r̂i)/ ẑ< r̂ij j and take the dot product
sin �i ¼ f̂ = â0 ¼ f̂ = (�ẑ0), since r̂i is on the equator in the primed coordinate system.

Once the rotation angles �1 and �2 are known, the components of the baseline vectors are

ui� 0

ui� 0

 �
¼

cos �i sin �i

� sin �i cos �i

 �
=

ui�

ui�

 �
: ðA6Þ

In calculating the polarization visibilities we replace (Q;U ) with

Q0

U 0

 �
¼

cos 2�i sin 2�i

� sin 2�i cos 2�i

 �
=

Q

U

 �
: ðA7Þ
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