
University of Richmond
UR Scholarship Repository

Math and Computer Science Technical Report
Series Math and Computer Science

8-10-1994

A Macro Extension for the Woody Assembly
Language
Lewis Barnett III
University of Richmond, lbarnett@richmond.edu

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-reports

Part of the Programming Languages and Compilers Commons

This Technical Report is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Technical Report Series by an authorized administrator of UR Scholarship Repository. For more
information, please contact scholarshiprepository@richmond.edu.

Recommended Citation
Lewis Barnett. A Macro Extension for the Woody Assembly Language. Technical paper (TR-94-06). Math and Computer Science Technical
Report Series. Richmond, Virginia: Department of Mathematics and Computer Science, University of Richmond, August, 1994.

http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


A Macro Extension for the Woody Assembly 
Language 

Lewis Barnett 
Department of Mathematics and Computer Science 

University of Richmond 
Richmond, Virginia 23173 

email: barnett@cs.urich.edu 

August 10, 1994 

TR-94-06 



A Macro Extension for the Woody Assembly Language 

Lewis Barnett 

August 10, 1994 

1 Introduction 

We discuss an extension to the Woody Assembly Language (Cha94] which allows new 
instructions to be defined. The mechanism is similar to the C language's #define macros, 
allowing a name to be supplied for a piece of code which will be expanded in line. 
Provisions are made for writing new non-destructive branching instructions as well as 
instructions which are simply new names for commonly used bits of code. 

2 Syntax 

Each new definition should be enclosed in a DEFINE/END pair. The syntax of the DEFINE 

line is 

DEFINE name [ labe~ 

where name is the name by which the definition can be referred to in a program, and 
label is an optional label which refers to a memory location. The label is a parameter 
for the definition. When a reference to the named instruction is expanded in line, the 
la.be! in the definition will be replaced with the label supplied in the reference. The 
syntax of the END line is 

END name 

where name must match the name given in the corresponding DEFINE line. 

Any valid Woody instruction can appear between the DEFINE and END lines. Refer­
ence to previously defined macros are also allowed in definitions. In addition to straight 
assembly language code (which can make reference to the label parameter and any label 
present in the program where the macro is referenced), instructions can also refer to 
a temporary memory location which will be automatically generated by the expansion 
process. One such temporary variable is allowed per definition, and is referred to as 
"$TEMP". If the last line of the definition is "@", the expansion of the definition in 

1 



line will also cause the code at location label to be changed to restore the contents of 
the Data Register from the automatically generated temporary storage location created 
by a previous reference to "$TEMP" in the definition. This feature allows new branch 
instructions which preserve the current state of the register to be written. 

Definitions may also make reference to labels $NEG, $ZERO and $ONE. Memory loca­
tions with these names and the values -1, 0, and 1, respectively, will be automatically 
generated during the expansion process. 

The #include directive is supported to indicate that a file consisting of macro 
definitions is to be loaded. Its syntax is 

#include filename 

where filename is the name of the file containing the definitions in the syntax of the 
computer file system Woody is running on. 

Examples: 

DEFINE ReadTo target 
CopyTo $TEMP 
Read 
CopyTo target 
CopyFrom $TEMP 

END ReadTo 

DEFINE GoTo target 
CopyTo $TEMP 
CopyFrom $NEG 
IfNegGoto target 
© 

END GoTo 

3 Usage 

Any macro definitions referred to in a program must either be previously loaded before 
the program is executed or must precede the program in the file where it is stored. 
The first instruction which appears outside a DEFINE/END pair is assumed to be the 
first instruction of the program. Macro definitions are allowed to reference other macro 
definitions as long as those definitions precede the reference in the file. Self-reference is 
not allowed. 

2 



4 Implementation 

The macro language is implemented in the HyperCard version of Woody for the Apple 
Macintosh in versions 2.0 and later. During a session (in which many different programs 
may be executed) the program builds up a. "library" of macro definitions which may 
be referred to in the programs that are executed. Definitions may be incorporated in 
the library in one of three ways. First, definitions may appear in the same file as a 
program to be executed. Second, definitions may be placed in a separate file which is 
then included in a program file using the #include directive as described in Section 
2. Third, definitions in a separate file may be loaded directly using a menu item. The 
first and second methods a.re preferred, since they make explicit the dependence of a 
program on the macro definitions it needs to execute. 

Macro expansion takes place in two stages. First, the definitions are parsed and 
stored in a macro library. Second, macro references in the program itself are expanding 
according to the definitions in the macro library. All macros in the library a.re available 
to any program that is subsequently executed. If this is not the desired behavior, a 
menu item is provided to empty the macro library. 

The first sta.ge requires that all macro definitions be collected into a macro library. 
The form of the definitions which appear in programs or macro files is shown in Section 
2. Ea.ch definition is stored in the macro library as a. single line in a. HyperTa.lk container 
with the form 

name I instr-11 instr-21 ... I instr-n[ I@] 

Where name is the name used to refer to the definition, instr-i is the ith instruction in 
the definition, and @ is the symbol indicating that the Data. Register should be restored 
at the target address for the reference to the macro being expanded. Any occurrence 
of the target address in the definition is changed to "!". References to $TEMP remain 
unchanged in the library version of the definition. At this stage, any definitions in 
#include files referenced by the program or macro file are a.lso added to the library. 
Adding definitions to the library can be initiated either by requesting that references in 
a program file be expanded or by requesting that a macro file be loaded. Recall that 
macro definitions can themselves reference other macros. These references are left as 
is in the library version of the definition, since their expansion must be specific to the 
context in which the macro containing them is referenced. 

The second stage is expanding macro references in the program itself. This in itself 
requires two passes through the source, the first to expand the references to the corre­
sponding definition where the reference is ma.de, and the second to patch up the source 
at target addresses where definitions required that the Data Register be restored. Recall 
that this may be necessary to implement new branch instructions which preserve the 
value of the Data Register, for example. In the first pass, ea.ch line of the program is 
examined to determine whether it contains a regular instruction or a macro reference. 
For those that do contain macro references, the reference is expanded from the library 
definition as follows: The reference is removed from the program and the address pa.rt 
is saved. Ea.ch instruction from the library definition of the macro is inserted into the 

3 



program. For each of these instructions, the operation is tested to determine if it is a 
regular operation or a nested macro reference; in the latter case, the reference is ex­
panded at this point. If the address part of the instruction is a reference to the target 
address from the macro reference (indicated by a "!"), the saved target address is sub­
stitu ted. If the address part is a reference to $TEMP, an appropriate temporary variable 
name is generated and substituted. Temporary variable generation is straightforward: a 
global counter is maintained, which is appended to $TEMP to form the label. At the end 
of each expansion, the value of the counter is incremented, so that the next expansion 
which requires a temporary variable will use a different name. If the final instruction in 
the library definition is "@", then the saved target address and the generated temporary 
variable are saved in a list of locations where the code must be modified to restore the 
Data Register. 

Since the location referenced by a macro which requires restoration of the Data. 
Register may be earlier in the program than the location where the reference occurred, 
a. second pass through the program is required to complete the expansion of macros. 
During this pass, the table of target addresses and temporary variables collected during 
the first pass is used to update the code. For each line of the program, the label is 
checked to see if it occurs in the table. If it does, code to restore the data register from 
the temporary variable specified in the table is added. Finally, the temporary variable 
index is checked to see if any temporary variables were used and thus need to be added 
to the end of the program. 

5 Limitations 

The current implementation allows only a. single use of the $TEMP temporary label per 
definition, which is understood to be used for restoration of the contents of the data. 
register if the definition alters it. This precludes the use of labeled memory locations 
within a. macro definition. For example, there is no way to create a. label for an in­
struction in a definition (to allow a. loop within a definition, for example) which will be 
unique for ea.ch expansion of the macro in a program. 

No provision is ma.de for automatically and uniquely labeling the instruction follow­
ing a macro reference. This facility would be useful in defining additional branching 
instructions. 

References 

[Cha.94] Arthur Charlesworth. Nary One Bit O' Magic: How Computers Work. (pro­
duced by the University of Richmond print shop), 1994. 

4 


	University of Richmond
	UR Scholarship Repository
	8-10-1994

	A Macro Extension for the Woody Assembly Language
	Lewis Barnett III
	Recommended Citation


	tmp.1444242336.pdf.T7OHW

