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HOUSTON JOURNAL OF MATHEMATICS, Volume 15, No. 3, 1989. 

PARTIALLY CONFLUENT MAPS AND n-ODS 

VAN C. NALL 

Abstract. Let f : X -+ Y be a map between topological spaces. A Wrset 
in Y is a continuum in Y which is the image under f of a continuum in 
X. The map f is partially confluent if each continuum in Y is the union of 
a finite number of lV,-sets, and n-partially confluent if each continuum in 
Y is the union of n Wrsets. In this paper, it is shown that every partially 
confluent map onto an n-cell is weakly confluent. Also, the relationship 
between partially confluent maps and continua which do not contain n-ods 
for some n is explored. 

A continuum is a compact, connected, separable, metric space, A map 
is a continuous function. If f : X --+ Y is a map between topological spaces, 
then f is monotone if, for each continuum J( in Y, f-1(K) is a continuum, 
and f is confluent if, for each continuum J( in Y, f maps each component of 
1-1 (K) onto](. A W1-set in Y is a continuum in Y which is the image under 
f of a continuum in X. The map f is weakly confluent if each continuum in 
Y is a W1-set. The map f is partially confluent if each continuum in Y is 
the union of a finite number of Wrsets. The map f is n-partially confluent 
if each continuum in Y is the union of n Wrsets. Thus, each monotone map 
is confluent, each confluent map is weakly confluent, each weakly confluent 
map is 1-partially confluent, and each n-partially confluent map is partially 
confluent. 

Each type of mappings listed above places restrictions on the degree 
to which the function can piece together continua or points in the domain 
to produce new continua in the range. It is for this reason that these maps 
do not raise the dimension of some one-dimensional continua. For example, 
it was shown in [5] that the partially confluent image of a one-dimensional 
acyclic continuum is one-dimensional. 

I.Partially confluent maps onto n-cells. An arc is a homeomorphic 
copy of the unit interval, and a subcontinuum J( of a continuum X is a 
free arc in X if J( is an arc and the boundary points (or point) of K are 
end-points of ](. 

The following lemma is both useful and easy to prove. 
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I.1 LEMMA. If]( is a free arc in the continuum X and f is a map from a 
continuum onto X, then ]( is the union of two or fewer Wrsets. Moreover, 
if only one end-point of]( is a boundary point of]( in X, then ]( is a 
W1-set. 

PROOF: The image under f of each component of 1-1(K) contains ari 
end-point of J(, So there are Wrsets in J( which are images of components 
of /-1(K) and which are maximal with respect to containing one of the 
end-points of J( and other points of J(, The arc J( is the union of two 
or fewer of these W 1-sets. If only one end-point of J( is a boundary point 
of J(, then there is a component C of 1-1(K) whose image is maximal 
with respect to containing the boundary point of J( and other points of K. 
Clearly /(C) = J( and J( is a W1-set. 

A fan is a homeomorphic copy of the subset of the plane 

F = { (r, O)IO = ~ and 0 ~ r ~ 1 for n = 1, 2, 3, ... }, 

described in polar coordinates, together with the limit line {(r, O)IO = 0 and 
O~r~l}. 

1.2 LEMMA. If J( is a fan in the continuum X and f is a partially confluent 
map from a continuum onto X, then the limit line of J( is a Wrset. 

PROOF: The fan J( is the union of a countable collection of arcs which will 
be referred to as A(a,b0 ),A(a,b1),A(a,b2 ), ... , where A(a,b0 ) is the limit 
line of J(, and, for each i > 0, A(a, bi) is an arc from the junction point a of 
J( to bi, a point of order one in J(. Since f is partially confluent, J( is the 
union of a finite number of Wrsets, and there is a W1-set W in J( which 
contains infinitely many of the bi's. Since W contains more than one bi, W 
contains the junction point a, and if W contains bi, then W contains all of 
A(a, bi)· By Lemma 1.1, each A(a, bi) in W is a Wrset. So, the limit line 
of J( is the sequential limit of Wrsets, and therefore, is a Wrset. 

1.3 THEOREM. Every partially confluent map from a continuum onto an 
n-cell is weakly confluent. 

PROOF: Every map onto a 1-cell is weakly confluent. Suppose f is a par­
tially confluent map from the continuum X onto an n-cell Y for n 2 
2. Suppose J( is a subcontinuum of Y, then there is a sequence of fans 
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{Fi, F2, FJ, ... } in Y whose limit lines converge to K. By Lemma I.2, each 
limit line is a Wrset. Since J( is the sequential limit of W1-sets, J( is a 
Wrset. The map f is weakly confluent since each subcontinuum of Y is a 
W1-set. 

I.4 THEOREM. Suppose X is a continuum. If there is a partially confluent 
map from the continuum X onto a continuum with dimension greater than 
one, then there is a weakly confluent map from X onto a 2-cell. 

PROOF: Suppose Y is a continuum with dimension greater than one, and 
f is a map from a continuum X onto Y. Then there is a weakly confluent 
map g from Y onto a 2-cell (3, Theorem I, page 328]. Since g· f is a partially 
confluent map onto a 2-cell, g · f is a weakly confluent map from X onto Y 
by Theorem I.3. 

Theorem I.5 was proven in [5] in Theorems II.6 and II.7. But this 
proof is short and provides an application of the previous theorem, I.4. 

I.5 THEOREM. Suppose Y is a continuum with dimension greater than 2, 
and f is a partially confluent map from a continuum X onto Y. Then X 
contains uncountably many nonhomeomorphic subcontinua and X is not 
acyclic and one-dimensional. 

PROOF: Note that Theorem I.4 implies that there is a weakly confluent 
map g from X onto (0, 1] x [O, 1]. 

Consider the collection of continua in (0, 1] x (0, 1] called the Warasz­
kiericz spirals. There are uncountably many of them, and each is homeo­
morphic to a compactification of the positive reals with remainder equal to 
a circle. 

If <I> is a countable collection of continua, there is a Waraszkiewicz 
spiral S such that no member of <I> maps onto S (7, Theorem 2]. The weak 
confluence of g implies that, for each Waraszkiewicz spiral S, there is a 
continuum in X which g maps onto S. Thus X contains an uncountable 
collection of nonhomeomorphic continua. 

If X is acyclic and one-dimensional, then each subcontinuum of X is 
acyclic [2, Theorem 2, page 354], and no subcontinuum of X can be mapped 
onto a Waraszkiewicz spiral [1, page 542] which contradicts the fact that f 
is weakly confluent. 

II. Maps which are n-partially confluent. In this section some older 
results concerning maps onto and from atriodic continua will be generalized 
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in terms of maps onto and from continua which do not contain an n-od. 
An n-od is a continuum J( which has a subcontinuum H such that K\H 
has at least n components, and a simple n-od is the union of n arcs which 
intersect only at one common end-point. For a proof of the following theorem 
see [6]. It is a generalization of a theorem of Sorgenfrey concerning atriodic 
continua. 

11.1 THEOREM. Suppose Xis a continuum which is the union of a collection 
<I> of either a finite or countable number of continua, such that n<I> =f:. ¢,and 
such that each continuum in <I> contains a point not in the closure of the 
union of the other members of <I>. Then, if a is the number of continua in 
<I>, X contains an a-ad. 

Mackowiak has shown that every map onto an atriodic continuum 
is 2-partially confluent [4, Theorem 6.12, page 53]. The following theorem 
relies on Theorem 11.1 to produce a much more general result. 

II .2 THEOREM. If n is a positive integer and Y is a continuum which does 
not contain an n-od and f is a map from a continuum X onto Y, then f is 
(n....:. 1) x (n - 2)-partially confluent. 

The proof of the theorem will follow two lemmas. In these lemmas 
assume that f, X, and Y arc as in the statement of the theorem, and, for 
each subcontinuum J( of Y, let ~(K) be the collection of all subcontinua E 
of J( such that there is a component C of J-1(K) with f(C) = E. 

11.3 LEMMA. If J( is a subcontinuum of Y and D is an element of ~(J(), 
then there is a collection E 1,E2 ,E3 , ... ,E; of elements of ~(K), where 
j ~ n - 2, such that if E is an element of ~(K) wl1ich intersects D, then 
E c DU (u{= 1Ei)· 

PROOF: Let x be a point in J( whic~ is contained in an element of ~(K) 
which intersects D. If C1 , C2 , C3 , ••• is a sequence of components of 1-1 (K) 
such that /(Ci) contains x and intersects D, and J(Ci) UD C J(Ci+i) UD 
for each i, then some subsequence of the Ci's converges to a component C 
of 1-1 (K), and J(Ci) U DC f(C) U D for each i. So if C is the set of all 
components C of 1-1(K) such that /(C) contains x and intersects D, and 
C is ordered by containment in /(C) U D for each C in C, then every chain 
in C has a greatest clement in C, and by Zorn's Lemma, C has a maximal 
element. That is, there is an clement Ex of ~(K) which contains x and 
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intersects D such that if E is any other element of c;(K) which contains x 
and intersects D, then EU Dis contained in Ez U D. 

Suppose there are n - 1 distinct points x1 , x2 , x3 , .•• , Xn-l each of 
which is contained in an element of c;(K) which intersects D, and such 
that, for i =f:. j, Xi is not contained in DU Ez;· Let F be a continuum in 
X such that f(F) contains D, Ez, \J(F) is not empty for each i, and J(F) 
is not contained in J(. Then, according to Theorem II.1, DU J(F) U Ez1 U 
Ez2 U · · · U Ezn-i contains an n-od. This is a contradiction, and the lemma 
follows from the fact that there is no such collection of points. 

II.4 LEM.MA. HJ( is a subcontinuum of Y, then there do not exist n 
pairwise disjoint elements of ~(K). 

PROOF: Suppose Di, D2 , D3, ... , Dn is a pairwise disjoint collection of ele­
ments of ~(K). Let F1 , F2 , F3 , ••• , Fn be continua in X such that J(Fi) n 
f (Fi) = 0 for i =f:. j, and f (Fi) is not contained in J( for each i. Then 
KU f(F1) U J(F2) U · · · U J(Fn) contains an n-od. This is a contradiction. 
PROOF OF THEOREM 11.2: Let J( be a subcontinuum of Y. According to 
Lemma 11.4, there is a collection of disjoint elements Di, D2, D3, ... , Dm of 
~(K) such that m:::; n - 1, and such that every element of ~(K) intersects 
one of the Di's. According to Lemma 11.3, for each i from 1 to m, there is 
a collection of elements Eii,Ei2 ,Ei3, ... ,Eiai of ~(K), where ai ~ n -2, 
such that every point in J( which is contained in an element of ~(K) which 
intersects Di is contained in one of the Eii 's. Clearly, the collection of all 
the Di's and the Eii 's is a cover of J( consisting of ( n - 1) x ( n - 2) or fewer 
WJ-Sets. Since this can be done for each subcontinuum of Y, the map f is 
(n - 1) x (n - 2)-partially confluent. 

A continuum will be said to have bounded branching if there is a posi­
tive integer n such that the continuum does not contain an n-od. A contin­
uum will be said to have finite branching if it does not contain an infinite-od. 
There are simple examples of continua with finite but unbounded branch­
ing. Theorem 11.2 says that every map onto a continuum with bounded 
branching is n-partially confluent, and that n is determined by the bound 
on the branching in the range. The method of proof in Theorem Il.2 does 
not seem to work under the slightly different condition that the range has 
finite branching. Hence the following question. 
II.5 QUESTION: Is every map onto a continuum with finite branching par­
tially confluent? 
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Recall that a continuum is suslinean if it does not contain an un­
countable pairwise disjoint collection of nondegenerate subcontinua. In [5] 
the author has shown that if X is a suslinean continuum with finite branch­
ing and f is a partially confluent map from X onto a continuum Y, then 
Y has finite branching. The lemma and theorem that follow establish a 
companion result for continua with bounded branching; that is, if X is a 
suslinean continuum with bounded branching and f is an n-partially con­
fluent map from X onto a continuum Y, then Y has bounded branching. 
The proof differs only slightly from the proof in [5]. 

11.6 LEMMA. If n and m are positive integers and f is an n-partially con­
fluent map from a suslinean continuum X, which does not contain an m-od 
onto a continuum Y, then Y is not a simple (n x m)-od. 

PROOF: Suppose Y is a simple {n x m)-od. Then Y is the union of n x m 
arcs which will be specified by maps ai from the unit interval into Y such 
that ai(O) is the common end point for each i from 1 to m x n. 

For each a in (1/4,1], the union of ai([O,a]) from i = 1 tom x n 
is, by·the n-partial confluence off, the union of nor fewer wrsets, and 
one of these wrsets contains at least m of the points ai(a). Let F~ be a 
continuum in X which maps onto that wrset, and let Ia be a collection of 
m positive integers such that f(F~) contains ai(a) for each i in Ia· Note 
that J(F~) does not intersect ai((a, 1]) for each i in Ia. In addition, for 
each a in (1/4, 1] and j in Ia, let J(~j be a subcontinuum of F~ which maps 
onto aj{[l/4, a]). 

Suppose there is an E in (1/4, 1) such that, for each j in If, there is 
an aj in (E, 1] such that j is in Iaj and F: intersects J(~jj· Then there is a 
contradiction, since F: would be the core of an m-od in X. So, for each E 

in {1/4, 1), there is a j(E) in If such that if 8 is in {E, 1] and j(E) is in lo, 
then F: does not intersect J(~j(f)" Since there are only a finite number of 
integers in all of the index sets I6 , there is an uncountable set E of numbers 
in (1/4, 1) such that if E and 8 are in E, then j(E) = j(8). 

If E and 8 are in E, then J(:j(f) C F: and F: n J(~j(f) = 0. But 
j(E) = j(8), so J(:j(f)nJ(~i(6 ) = 0. Thus {J(;j(f)jE is in E} is an uncountable 
pairwise disjoint collection of nondegenerate continua in X. This contradicts 
the fact that X is suslinean, so Y is not a simple ( m x n )-od. 

II. 7 THEOREM. If m and n are positive integers and f is an n-partially 
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confluent map from a suslinean continuum X which does not contain an 
m-od, then Y does not contain an (m x n)-od. 

PROOF: If Y contains an (m x n)-od, then it is an easy exercise to construct 
a weakly confluent map g from Y onto a simple (m x n)-od. The map gf 
is an n-partially confluent map from X onto a simple (m x n)-od. This 
contradicts Lemma II.6. 

The next theorem merely summarizes some of the results of this sec­
tion in terms of bounded branching and n-partial confluence. 

II.8 THEOREM. If X is a suslinean continuum with bounded branching and 
f is a map from X onto a continuum Y, then Y is a suslinean continuum 
with bounded branching if and only if f is an n-partially confluent map for 
some positive integer n. 
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