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Implied Binomial Trees in Excel without VBA

Tom Arnold, Timothy Falcon Crack and Adam Schwartz
University of Richmond, University of Otago and Washington and Lee University

We implement a Rubinstein-type (1994) implied binomial tree using an Excel
spreadsheet, but without using VBA (Visual Basic Application). We demonstrate
both the optimization needed to generate implied ending risk-neutral
probabilities from a set of actual option prices and the backwards recursion
needed to solve for the entire implied tree. By using only standard Excel
spreadsheet functions, and not resorting to VBA, this complicated option pricing
technique is now Iimmediately transparent to academics, students, and
practitioners alike. The intuition gained from our simple spreadsheet can be
applied directly to the estimation of more complicated implied trees using more
advanced software. Our spreadsheer-based implementation can be used in the
classroom at the advanced undergraduate level with minimal preparation.

INTRODUCTION

We demonstrate how to build an implied binomial tree (IBT) in Excel, without
having to use VBA. By not using VBA, the method is immediately transparent to
academics, students, and practitioners. The intuition gained from the simple Excel
spreadsheet aids tremendously in the implementation of larger Rubinstein trees and other
more complicated types of implied trees in more sophisticated software packages.l Our
spreadsheet can easily be incorporated as a demonstration or as an assignment in an
advanced undergraduate classroom—assuming the students are already familiar with
basic Excel functions and basic multi-step binomial trees.

An IBT is a generalization of the Cox, Ross, and Rubinstein binomial tree (CRR) for
option pricing (CRR [1979]). IBT techniques, like the CRR technique, build a binomial
tree to describe the evolution of the values of an underlying asset. An IBT differs from
CRR because the probabilities attached to outcomes in the tree are inferred from a
collection of actual option prices, rather than simply deduced from the behavior of the
underlying asset. These option-implied risk-neutral probabilities (or alternatively, the
closely related risk-neutral state-contingent claim prices) are then available to be used
to price other options.2

Jackwerth (1999) reviews two inter-related strands of the literature: how to infer
probability distributions from option prices, and how to build IBTs. The best known
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Table 1. Properties of the Best-Known Implied Binomial Tree Models

Properties of Competing Implied Derman/Kani | Rubinstein | Jackwerth
Binomial Tree Models 1994 1994 1997
IBT Constructed backwards from No Yes Yes

ending nodes?

Ability to use intermediate-maturity Yes No* Yes
options in IBT constructions?

Ability to use other than European- No No Yes
style options in IBT construction?

Requires extrapolation and Yes No No
interpolation in IBT construction?

Assumes all paths leading to given No Yes No
node are equally likely?

Approximately lognormal No No® No
distribution of ending nodal

probability

*Practitioners are often interested in calibrating an IBT using options of multiple maturities. The
Rubinstein tree that we illustrate does not allow for this. The more general Jackwerth tree
(Jackwerth [1997]) does allow this.

t’Althcmgh the objective function in Rubinstein (1994) aims to get ending nodal probabilities as
close as possible to the CRR tree’s ending nodal distribution (which is approximately lognormal
when there are many steps in the tree), substantial deviation from lognormality is often seen.

practical methods for implementing IBTs include Rubinstein (1994), Derman and Kani
(1‘994),3 and Jackwerth (1997). We compare and contrast these three in Table 1.

Rubinstein (1994) is conceptually easier to implement and more stable than Derman
and Kani (1994), while only slightly more mathematically restrictive than Jackwerth
(1997). Rubinstein’s 1994 IBT is thus the ideal candidate for our exposition. Rubinstein’s
IBT can be broken into three steps. In Section 1, we review these steps: build a
traditional CRR tree to provide priors; solve an optimization to infer ending node risk-
neutral probabilities from option prices; and finally, build the IBT using a recursive
algorithm. In Section 2, we implement the model in Excel using actual option prices.
Section 3 concludes and discusses directions for future research. An appendix gives some
Excel solver optimization advice.
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SECTION 1: BUILDING THE IBT IN THEORY

This section reviews the method for constructing a Rubinstein (1994) IBT.
Rubinstein (1994, p782) gives a quadratic program to infer the posterior ending-node
risk-neutral probabilities P, given a prior P;’ based on a CRR tree, given options prices,
given the initial underlying price, and given the price of the underlying at ending nodes
of the CRR tree. The implied posterior risk-neutral probabilities are obtained
independently of the recursion scheme used to work backwards to construct the implied
tree from these probabilities. Rubinstein’s prior for the distribution of the risk-neutral
probabilities P, is the distribution P;' associated with the ending nodes of a CRR tree
which, for small step size and very many steps, is approximately lognormal. Rubinstein’s
objective function minimizes the sum of the squared deviations of P; from this prior
while satisfying the other constraints as best as possible. Rubinstein allows for a bid-ask
spread on the stock and the options, but we are using index options (on the S&P500), so
we will not use the spread on the underlying. We break our Rubinstein IBT review up
into three steps as follows.

Step 1: Construct a basic CRR tree.

Assume we have m European-style call options on the same underlying and of the
same maturity. Use the Black-Scholes formula to infer the implied volatility o of the
nearest-to-the-money option. Use US Treasury bid and ask quotes from bills or bonds of
maturities that bracket the maturity of the options to infer a continuously-compounded
riskless rate Rp per annum (so a 1% rate implies R; = 0.01 ). Break the life of the option
up into 22 time steps of length A¢ years and build a CRR tree using

ovar

u=e" 104 d=e°V¥

Denote the nodal ending underlying asset prices of the CRR tree by S, for j=0,1,,,,n,
where S is the lowest price, and Sy is the highest price.

r—d
u—-d

Let pl =

be the fixed risk-neutral probability of an up move over each step of the CRR tree, where

o Re (D)

is the riskless compounding factor per time step. Then the endmg nodal risk-neutral
probabllmes (our priors) are simply P= {n!/[ji(n - ])']]p’l(l -p')"”, where “n!” denotes n-
factorial,* and n/[j!(n -j)!] is the standard binomial coefficient. Let our options have bid,
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ask, and strike prices Cb-l, C’., and K;, respectively for 7=/,....m, where nis much larger
than m, and let S be the spot price of the underlying. In fact, we demonstrate only m =
n = 6 for ease of exposition.

Step 2: Optimize to find Posterior Risk-Neutral Probabilities

Assuming we have already built the CRR tree, then we have the ingredients for
Rubinstein’s optimization method as shown below.”

min %, (P; - Pi')z subject to
P.
j

Z;Pj=1andP; 2 Oforj=0..n

Cf’ <Ci s ¢ whereC; =[}; P; max(0,; - K)/i"  for i=1,...m
See Section 2 Step 2, for an explicit implementation using actual option prices.
Step 3: The Recursion Algorithm to Build the IBT

Rubinstein (1994, p790) gives a recursive algorithm for walking backwards through
the tree using the CRR ending nodal underlying asset values and the option-implied
posterior risk-neutral probabilities to build the IBT. We will have completed our IBT
once we have found for each node on the tree: the path probability at that node (see
below), the cumulative return at that node, and the probability of an up movement at
that node (though the latter is not needed at the ending nodes). Rubinstein’s recursive
technique guarantees that starting from a set of positive posterior risk-neutral ending
probabilities we end up with a unique (for those probabilities) arbitrage-free IBT
(Rubinstein [1994, p790]).

Let us distinguish between nodal probabilities and path probabilities. Pick a node on
the IBT we wish to build. Ifthe node is in the interior of the tree, then there are multiple
price paths that lead to this node. Each of these price paths has a (path) probability
associated with it. The sum of these path probabilities is the total (nodal) probability that
the price will arrive at this node at that time step in the tree. That is, the nodal
probability is a sum of path probabilities, each of which is the probability that an
individual path through the tree leads to the node. If the node is on the uppermost or
lowermost branches of the tree, however, then there is exactly one price path leading to
the node, and the path and nodal probabilities are identical. Both CRR and Rubinstein
(1994) assume that each path leading to a node is of equal probability, and thus that the
nodal probability is the path probability multiplied by the number of paths leading to
that node.
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Figure 1. Rubinstein’s Recursion

(Q', R")
(O. R q)
A (O,R)

* Recursion step zero: if the one-step ahead path probabilities Q" and Q  correspond to the
ending nodes of the tree, then calculate them using the appropriate P/{n!/[j!(n - j)!]}. Recursion
step one: path probabilities are additive backwards: Q=Q" + Q.

* Recursion step two: path probabilities determine up probabilities ¢ = Q" / Q.

* Recursion step three: returns cumulate probabilistically: R =/gR" + (1 - )R J/r.

At the n'™ time step and at the j‘h node up from the bottom of the tree (where j=0
is the bottom), there are n!/[j!(n - j)!] paths through the tree leading to this node. The
path probability at this node is the nodal probability divided by the number of paths:
P/inY/[j!(n - )'}.

At a particular node in the IBT, let R denote one plus the cumulative risk-neutral
return through the tree to this node, so, a 20% growth in the underlying gives R = 1.20.
Let Q denote the path probability of arriving at this node, and let g denote the
probability of an up move from this node. The simple properties of path probabilities
generate Rubinstein’s recursion as shown in Figure 1.

Table 2 contains a summary of all the variables that appear in the paper together
with the numeric values that appear in the spreadsheet in Section 2. Table 2 thus serves
as a bridge between the algebra of Section 1, and the numeric implementation of Section

2.
SECTION 2: BUILDING THE IBT IN EXCEL®

Step 0: Collect the raw data

We choose to construct a Rubinstein IBT using European-style index options on the
S&P500 (ticker SPX). The options data and SPX data in Table 3 are from a broker’s web
site at the close of trade April 26, 2004. The T-bill yield is inferred from the WS] dated
April 27, 2004,

Step 1: Construct a basic CRR tree.
Using the 1135-strike (i.e., closest to being at-the-money) call option, the implied

volatility using the Black-Scholes Model (1973) is found to be o= 0.143440.® We are
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Table 2. Variables Key

User-Supplied Input Variables Needed to Build the CRR Tree:
S initial spot price of the underlying [1135.53].
o volatility (inferred from the at-the-money option) [14.3440%].
Ry continuously-compounded riskless rate (inferred from T-bills) [0.897877% per
annum].

Atlength of one time step in the tree (in years) [0.024657534 (=(54/365)/6)].
n number of steps in the tree [6].

Derived Variables from the CRR Tree:
"= QG'JE multiplicative up growth factor [1.022779558].
d = e"'m multiplicative down growth factor [0.977727793].

r = eRr(80) total riskless growth rate per time step [1.000221419].

p’ = (r—d)/{u - d) risk-neutral up probability in CRR tree [0.499284007 at each
CRR node].

Variables Derived from the CRR Tree but Needed as Inputs to the IBT:
S,for j = 0,1,...,n ending nodal values of the underlying [$991.99,... $1,299.84].

P’Y for j=0,1,...,n ending nodal prior (CRR) probabilities [0.015760, ..., 0.015491].

User-Supplied Input Variables Needed to Build the CRR Tree:

m number of options contracts [6].

K, for i = 1,...,m strike prices of the options contracts [$1125, ..., $1160].
C’, for i = I,...,m ask prices of the options contracts [$33.20, ..., $13.50].
C" for i=/,...m bid prices on the options contracts [$31.20, ..., $12.80].

Variables Derived from the IBT:

P; forj=0,1,...n ending nodal posterior (IBT) probabilities [0.039790, ...,
0.000001].

Qthe path probabilities [different for each node in the IBT; see Figure 7 Panel A).
g the implied risk-neutral up probabilities [different for each node; use Figure 1
recursion].

R the implied risk-neutral cumulative growth [different for each node; use Figure 1
recursion].

For each variable in the paper, we give the algebraic symbol and a few words of explanation. In

most cases, we also give the explicit value of the variable in square brackets (as it appears in our
spreadsheet example in Section 2).
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Table 3. SPX Option Prices for April 26, 2004

Panel A: SPX European-Style Call Option Data at the Close of Trading

Maturity Days to Maturity Strike Price Option Bid/Ask

Sat, June 19, 2004 54 days $1125 $31.20/33.20
Sat, June 19, 2004 54 days $1130 $28.00/30.00
Sat, June 19, 2004 54 days $1135 $25.00/27.00
Sat, June 19, 2004 54 days $1140 $22.10/24.10
Sat, June 19, 2004 54 days $1150 $17.20/18.70
Sat, June 19, 2004 54 days $1160 $12.80/13.50

Panel B: Additional Information

Continuous Risk-free Rate Inferred from Treasury Bills: 0.897877%

Closing Level of Standard and Poor’s 500 Index: 1135.53

building a six-step tree, so we assume time step of Ar = (54/365)/6 = 0.024675 years. We
then build the CRR tree using

S=113553 u=e’ W ond dmie?lE

The six-step CRR tree is shown in Figure 2; Pane] A shows the values and Panel B shows
the formulae.

Step 2: Optimize to find Posterior Risk-Neutral Probabilities

First, our optimization needs the “Excel Solver.” To activate the solver, go to the
“Tools” menu in Excel, select “Add-Ins,” and select “Solver Add-in.” We calculate the
ending nodal risk-neutral probabilities (our priors) using the binomial probabilities P;’
={nl/[j!(n - ])']]p”(l -p)" I entered in Cells 111:117 of Figure 3. We populate Cells J11: ]17
using simply “=I11" in Cell J11 and copying Cell J11 down Cell J]17. These formulae are
shown in Figure 3 Panel B, ready to be updated to become our option-implied posterior
risk-neutral probabilities. Figure 3 Panel A shows the updated Column J after the
optimization (Excel overwrites the formulae with numerical values) Note that Figure
3 is a right-continuation of Figure 2.

Next we need to build the remaining constraints from Section 1, Step 2, above. We
identify Cells J11:]19 as the variables to change when searching for the solution (see
Figure 4). Then we calculate in Cell K19 the sum of squared deviations of the posterior
probabilities from the priors; this is our objective function to be minimized and it is
identified as the Target Cell in Figure 4. We calculate in Cell J19 the sum of the posterior
probabilities to be constrained to 1.0 in Figure 4. Then we calculate in Cell S19 the
implied spot price of the underlying (note that the six-period discount factor in Cell J6
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Figure 4. Solver Parameters

Solver Parameters

{$3$11:43417 >= 0.000001
1$3$19=1
4$M$20:$R$20 >=0
$M$21:$R$21 >=0
{$ss20=0

N Ly
e

- TR i T S [—

—— -
A «vu JSM Mﬁa-a_,p.m..-y&cs.. «Jfﬂ%" .
Jvlata ”’“‘"‘W -.gll‘t"-l e

is used); Cell S20 calculates the deviation of implied spot from actual spot, and this is
constrained to zero in Figure 4, We use Cells M11:R17 to calculate future option payoffs
for each final node, and then we sum them and discount to give the IBT option prices in
Cells M19:R19. These model prices should be a non-negative distance below the ask and
above the bid; these distances are calculated in Cells M20:R21 and are constrained to be
non-negative in Figure 4. Figures 3 and 4 show all the Solver Parameters and Solver
Options, respectively that we use to generate the posterior probabilities shown in Cells
J11:J17. Note that we constrain the posterior probabilities to be positive by bounding
them below with an arbitrarily small number.

After all the constraints are entered as solver parameters (as per Figure 4), we may
alter the solver options (we have not done so for this run). Then click on the Solve
button. If the solver finds a solution, as in Figure 6, then we have the option to highlight
and save some reports (we have highlighted “Sensitivity” in Figure 6). Clicking OK in
Figure 6 updates our prior probabilities by overwriting Cells J11:J17 with the solution.

Our solution places all the IBT model option prices within the spread; two of them
are binding (the 1135-strike at the bid, and the 1160-strike at the ask).'

Itis interesting to notice how the option-implied ending node probabilities compare
with the associated risk-neutral probabilities (which we use as our priors). Figure 3 Panel
A reveals a relative skew toward the lower nodes in the posterior risk-neutral
probabilities in Cells J11:]17 as compared to the prior probabilities in Cells [11:117. We
leave it as an exercise for the reader to demonstrate that this skew in probabilities is
intimately linked to the volatility skew revealed if our IBT model option prices (in Cells
M19:R19) are used to infer implied volatilities using the Black-Scholes formula and if
these implied volatilities are plotted against the strikes in Cells M6:R6.
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Figure 5. Solver Options

Step 3: The Recursion Algorithm to Build the IBT

We now have to build the IBT. We have the initial and ending asset values (these are the
same as in the CRR tree), and the ending node probabilities. To price other options using
our IBT, we need to find for each node on the tree the path probability at that node, the
cumulative return at that node, and the probability of an upward price movement at that
node (though the latter is not needed at the ending nodes).

Fall 2006 49



2PON I
0 (OEH'ELEOPNIEOD/L Y= . Qg
1 (6TH'EL$OPNIAMIOD/2 T(= 0ED+61D= 6L
z (STR'ETPOPNITNODIS 1= sID+8ID= 6TI+STI= z
£ (LTHETIOSNIEINO D/ T 1= SID+LID= STI+LTA= STA+LTE= LT
¥ (9TH'ELPOPNITNOD/E T = LID+IID= LTI+ITI= LTE+OTE= | LIT@+eLQ= 9z
< (STH'ELIO SN0/ 1= 9IO+SID= 9ZI+GTI= 9LE+STE= | 9TQ+SIQ= | 9TI+SI0= (4
9 (FZH'ETSOHNIFIMOD/ T = SIOHEID= GTA+FII= CIEHFIE= | STa+FIa= | STO+FID= |STg+EIg=| FC

9 S ¥ £ z 0 £T
daxg T
H &) s : a ol v
aeMmurro] LAqeqorg yeg g [2ueg

PON 1€
0 06LEE0'0 o€
1 ST2ET0'D 809£50'0 62
z TFFZI0 092220'0 6935200 8t
£ ISLIT0D rETECO'D FSERSO'0 EISOET'Q Lz
¥ 89£620°0 0TTT#0'0 FI€520°0 89L511°0 1609%2'0 9z
S 6167000 L5571S0'0 200£L0°0 0TESET'D S20FST'0 6410050 z
9 100000'0 0262000 90FFEQ'0 grFLoTQ EELSFT'O 1286610 000000°T +

9 S ¥ £ z X 0 z
dig A
H o K¢ g ad 2 g v

O senmqeqoxg g L]

sanep LiMiqeqold yped [y [2ukyd

ML ‘L 2mIry

nancial Education

1

Journal of Fi

50



We use Rubinstein’s recursion as described in Section 1 Step 3, above (see our Figure 1)
to build Figure 7. Note that we have shown only the path probabilities ( but it easy to
generate the up probabilities g from these, and then to derive the cumulative returns R.
Once we have the R values, we can infer from them the values of the underlying
throughout the IBT. It should be noted that although the value of the underlying asset
in the CRR tree and the IBT coincide at both the initial node and ending nodes, the
underlying asset values at intermediate nodes typically differ. Similarly, although the
CRR tree assumes a constant probability of an up move p’, the IBT generalizes this to
allow for non-fixed up move probability q.

Pricing any other option (be it exotic, American-style, etc) is now as easy for the IBT
as it is for the CRR tree. The implied tree for the underlying asset values (found using the
initial underlying asset value and the cumulative returns R) determines the option’s
payoffs. You need only weight these payoffs using the risk-neutral nodal probabilities
(found by multiplying path probabilities Q by binomial coefficients), and then discount
at the riskless rate. If the option is American-style, then exercise decisions need to be
made as per the traditional CRR tree. If the option is exotic with path-dependent payoffs,
then you have the same problems as a standard CRR tree.

SECTION 3: CONCLUSION AND FUTURE RESEARCH

We show how to implement Rubinstein’s 1994 Implied Binomial tree using only the
standard features of an Excel spreadsheet. By not having to resort to VBA, the technique
is immediately more accessible (and comprehendible) to academics, students, and
practitioners. With very little preparation, this technique can be introduced into the
advanced undergraduate classrooms. The intuition gained from our simple Excel
spreadsheet aids tremendously in the implementation of larger Rubinstein trees and other
more complicated types of implied trees in more sophisticated software packages.

There are several directions for future work. First, the objective function that uses
the sum of squared differences between the CRR tree ending node risk-neutral
probabilities (our prior) and the IBT option-implied probabilities (our posterior) is
suggested by Rubinstein (1994, p782) and Chriss (1997), but other specifications can be
imposed. Jackwerth and Rubinstein (1996, p1620) discuss several alternatives. In
particular, Jackwerth and Rubinstein’s “smooth” objective function adds a regularity
condition (i.e., smoothness) that others have found to be very well behaved in other
applications (e.g. Arnold et al [2005a, 2005b]). This can easily be implemented and
illustrated in Excel. Second, Jackwerth (1997) looks at Generalized Implied Binomial
trees (GIBT) as a set of nth-step probabilities and a weighting scheme for assigning those
probabilities to the (n-1)st step. This gives identical results to Rubinstein (1994) if path
probabilities are assumed equal. Our paper could be restated using Jackwerth’s notation,
and then generalized directly to his GIBT. Jackwerth’s notation is in fact slightly easier
than Rubinstein’s. It allows generalization from a linear weight function (implicitly
assumed by CRR and Rubinstein [1994] to distribute probability backwards through the
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tree) to a piecewise linear weight function assumed by Jackwerth (1997). Third, thereare
even implied trinomial trees (Derman et al [1996], Haug [1997]), and these may be
amenable to Excel implementation.

Appendix: Excel Solver Advice

If Excel finds no feasible solution, try altering the precision either up ordown (under
“Options” on the solver menu). Allowing for option and spot bid-ask spreads rather than
simply mid-spread values may improve estimation by widening the target. Note that if
the precision (under “Options” on the solver menu) is coarser than the small positive
lower bound on the probabilities, and if Excel’s solver arrives at a negative probability,
then Excel may still report that all constraints are satisfied. More time steps improve
estimation. We notice, though we do not show, that moving from a six-step tree to a 20-
step tree to a 100-step tree produces increasingly well-behaved volatility smiles (using
IBT model prices and Black-Scholes to infer the implied volatilities). That is, when there
are few time steps, the volatility smile or skew sometimes has an unrealistic kink or dip,
often when the IBT model price for that particular strike is binding at the bid or ask. :
If there is no feasible solution, then the solution returned by Excel needs to be treated
with caution. It is probably best to try changing the precision of the solver first, and if
that does not work, increase the number of steps in the tree, or include bid-ask spreads.
We found that Excel macros prove very helpful when constructing a 100-step tree;
without them, we would be copying and pasting many times which is error-prone and
time consuming. As mentioned previously, we view Excel as a means to understanding
the model and we think large trees should be implemented using other more
sophisticated software. Finally, note that if an arbitrage opportunity exists among the
prices for the options and the underlying, then the IBT may fail to converge. This can
happen with closing price data where the option price and the underlying price might
not be sampled synchronously.

ENDNOTES

' We do not recommend that practitioners use our Excel method for estimating large
or complicated IBTs. Rather, we view our Excel method only as a means to
understanding the model. ,

2 Stephen Ross asserts that options should be spanned by state-contingent claims
(Ross [1976]). One implication is that with sufficient structure, we should be able to infer
state-contingent claim prices or a probability density from options prices (Rubinstein
[1994, p779]). :

3 Haug (1997) gives a nice discussion of Derman and Kani (1994).

* For example, 4!=4"3"2"1=24, and 5!=5"4"3"2"1=120. We set 0!=1.

> For simplicity, we have omitted the bid-ask spread and the dividend yield on the
underlying. See Rubinstein (1994, p782) for details.
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5 A copy of our spreadsheet is available at www. KelleySchool.com/papers.html! for
download.

" We linearly interpolate between the continuously-compounded yields on the T-
bills of maturities bracketing the maturity of the option (51 and 58 days respectively).
These continuous yields are calculated using the midpoints of the WS] quoted bid-ask
spreads as per Cox and Rubinstein (1985, p255).

® We use the option’s bid-ask spread midpoint of $26.00, assume that maturity is
54/365=0.147945 years, and ignore the dividend yield. Whether you use a Black-Scholes
implied standard deviation or a CRR tree implied standard deviation makes little
difference when there are many steps. If using Black-Scholes implied standard deviation
causes a problem, then there are not enough steps in the tree.

? Note that even though Figure 3 Panel A shows the post-optimization spreadsheet
values, Cells [11:117 retain their pre-optimization values as check values for the reader.

' We checked our numerical results using FORTRAN and the LCONF linear
constrained optimization routine. The FORTRAN option prices agree with those reported
here up to one thousandth of a penny (i.e., the fifth decimal place). The FORTRAN
posterior risk-neutral probabilities agree with those reported here up to the fifth decimal
place. For all practical purposes, the EXCEL and FORTRAN results are indistinguishable.
We assume that VBA would produce results comparable to our FORTRAN results, and
thus be indistinguishable from those reported here using EXCEL.

' More time steps improves pricing in general, but also, more time steps removes
any discreteness-induced differences between implied volatilities from Black-Scholes and
from an IBT.
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