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HOUSTON JOURNAL OF MATHEMATICS, Volume 15, No. 2, 1989. 

ON THE PRESENCE OF n-ODS AND INFINITE-ODS 

VAN C. NALL 

Abstract. An n-od (respectively, infinite-ad) is a continuum X which has a 
subcontinuum /{such that X\K has n components (respectively, infinitely 
many components). In 1944, Sorgenfrey proved that if a continuum X is 
the union of three subcontinua with a point in common and such that no 
one of the subcontinua is contained in the u·nion of the other two, then X 
contains a triad. In this note a single simple proof is given for the obvious 
generalization of Sorgenfrey's theorem to n-ods and infinite-ads. 

In this note a continuum is a compact, connected metric space. For a 
positive integer n, an n-od is a continuum X which contains a subcontinuum 
K, called the core, such that X\I( has n components. An infinite-ad is a 
continuum which contains a subcontinuum ]( such that X\I( has infinitely 
many components. 

Theorem 1.8 of [1] can be restated in the following way: if X is a con
tinuum which is the union of three subcontinua with nonempty intersection, 
and such that no one of the subcontinua is contained in the union of the 
other two, then X contains a triad. This theorem is only a little more diffi
cult to prove than it appears, but it is indispensable in the study of atriodic 
continua. Recently, the author has been concerned with continua which do 
not contain an n-od and continua which do not contain an infinite-ad. The 
following theorem is also very useful when working with these continua, and 
the proof is at least as simple as Sorgengrey's proof of the n = 3 case. 

THEOREM. Suppose X is a continuum which is the union of a collection <I> 
of either a finite or countable number of continua, such that n<I> -I ¢, and 
such that each continuum in <I> contains a point not in the closure of the 
union of the other members of <I>. Then, if a is the number of continua in 
<I>, X contains an a-od. 

PROOF: Let p be a point in n<I>. Let N be the union of all intersections 
Fin Fj, where Fi and Fj are different elements of <I>. 
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Consider two cases. In the first case, assume that there is a continuum 
Fi in q> such that Fin N has infinitely many components. Note that an 
infinite number of these components must intersect N. Let U1 , U2 , U2 , •.. 

be a collection of open sets with disjoint closures such that, for each j, Uj 
contains a component Cj of Fin N such that Cj intersects N, and such 
that Uj C N 1/j(Cj)· For each j, since Cj nN i= 0, there is an integer nj i= i 
such that Cj contains a component of Fin Fn;· For each j, let Lj be the 
closure of some component of Uj n Fn; which intersects Cj. For each j, 
since Fni is not contained in Fi, Lj is not contained in Fi. Also, for j i= k, 
Lj n Lk = </J. The set I= U(Lj U Fi) is an infinite-ad with core Fi. Since 
an infinite-ad must contain an a-od, where a is the number of continua in 
q>, the theorem is proved for this case. 

In the second case, assume that, for each positive integer i ~a, Fin N 
has a finite number of components. Let C be the component of N which 
contains p. For each positive integer i, let Ci be the component of C n Fi 
which contains p. Note that each component of N n Fi which intersects Ci 
is contained in Ci· For each positive integer i, since N n Fi has a finite 
number of components, there is an open set Ui which contains Ci such that 
each component of N n Fi which intersects Ui is contained in Ci, and such 
that Ui c N 1;i(Ci). For each i, let Li be the closure of the component of 
Ui n Fi which contains Ci. For each i, since Fi is not contained in N, Li is 
not contained in C. Also, since Ci contains each component of N n Fi which 
intersects Ui, we have Li\C c Fi\N. So, if ii= j, then (Li\C)n(Li\C) = ¢. 
The number of components of 

LJ (Li UC)\C 
i$a 

is at least a. Therefore, 

contains an a-od with core C. 
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