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Constraining f(R) gravity as a scalar-tensor theory
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We search for viable f(R) theories of gravity, making use of the equivalence between such theories and
scalar-tensor gravity. We find that models can be made consistent with solar system constraints either by
giving the scalar a high mass or by exploiting the so-called chameleon effect. However, in both cases, it
appears likely that any late-time cosmic acceleration will be observationally indistinguishable from
acceleration caused by a cosmological constant. We also explore further observational constraints from,

e.g., big bang nucleosynthesis and inflation.

DOI: 10.1103/PhysRevD.76.063505

L. INTRODUCTION

Although the emerging cosmological standard model fits
measurements spectacularly well (see [1,2] for recent re-
views), it raises three pressing questions: what is the phys-
ics of the postulated dark matter, dark energy, and inflation
energy? The need to postulate the existence of as many as
three new substances to fit the data has caused unease
among some cosmologists [3—6] and prompted concern
that these complicated dark matter flavors constitute a
modern form of epicycles. Our only knowledge about these
purported substances comes from their gravitational ef-
fects. There have therefore been numerous suggestions
that the apparent complications can be eliminated by mod-
ifying the laws of gravity to remove the need for dark
matter [7,8], dark energy [9-11], and inflation [12], and
perhaps even all three together [13]. Since attempts to
explain away dark matter with modified gravity have
been severely challenged by recent observations, notably
of the so-called bullet cluster [14], we will focus on dark
energy (hereinafter “DE’’) and inflation.

There is also a second motivation for exploring alter-
native gravity theories: observational constraints on pa-
rametrized departures from general relativity (GR) have
provided increasingly precise tests of GR and elevated
confidence in its validity [15,16].

A. f(R) gravity

An extensively studied generalization of general relativ-
ity involves modifying the Einstein-Hilbert Lagrangian in
the simplest possible way, replacing R — 2A by a more
general function f(R) [11,20—35]. The equations of mo-
tion derived from this Lagrangian differ from Einstein’s
field equations when f(R) is nonlinear, but the theory
retains the elegant property of general coordinate invari-
ance. In such a theory, the acceleration of our universe may
be explained if f(R) departs from linearity at small R,
corresponding to late times in cosmological evolution. In
this case it may be possible to avoid invoking a cosmo-
logical constant to explain cosmic acceleration, although
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one then replaces the problem of a small cosmological
constant with the problem of no cosmological constant.
In such models, the effective DE is dynamic, i.e., it is not
equivalent to a cosmological constant, leading to poten-
tially interesting observational signatures. We refer to these
models as f(R)-DE theories.

In addition to potentially explaining late-time accelera-
tion, f(R) theories may be relevant to early-universe phys-
ics, particularly if f(R) is nonlinear at large R [12,36].
More generally, it is of interest to study f(R) theories
because they are arguably the simplest setting in which
one can attack the general question of which modified
theories of gravity are allowed. By examining f(R) theo-
ries, a broad class of theories containing GR as a special
case, we continue the program of testing GR as best we
can.

Of course, f(R) theories are only a subset of theories
based on modifications of the Einstein-Hilbert Lagrangian.
For the general case where f depends on the full Riemann
tensor RY p rather than merely on its contraction into the
Ricci scalar R, this program is more complicated; a subset
of these theories which are ghost free can be written as
f(R,G), where G = RP ,,,R""* — 4RF'R,,, + R* is the
Gauss-Bonnet scalar in 4 dimensions [17]. These theories
lack a simple description in terms of canonical fields; there
is no so-called Einstein frame. Progress has nevertheless
been made along these lines, and such Lagrangians may
have more relevance to DE [17-19] than ones independent
of G. In this paper we will not consider these Gauss-Bonnet
theories further.

B. The equivalence with scalar-tensor gravity

The modified Einstein field equations (and so the new
Friedmann equation) resulting from a nonlinear f(R) in the
action can be seen simply as the addition of a new scalar
degree of freedom. In particular, it is well known that these
theories are exactly equivalent to a scalar-tensor theory
[37,38]. It is therefore no surprise that for f(R)-DE theo-
ries, it is this scalar which drives the DE. Before reviewing
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the mathematics of this equivalence in full detail in Sec. II,
we will discuss some important qualitative features below.

One can discuss the theory in terms of the original
metric g,,, in which case the degrees of freedom are not
manifest. Alternatively, by a conformal relabeling, one can
reveal the theory to be regular gravity g,,,, plus scalar field
¢. The former viewpoint is referred to as the Jordan frame
(JF) and the latter as the Einstein frame (EF). Here ¢ has
the peculiar feature that in the JF, it exactly determines the
Ricci scalar R and vice versa. So in the JF, the Ricci scalar
can in a sense be considered a noncanonical yet dynamical
scalar field. This feature is absent in normal general rela-
tivity, where R = —T/M}, + 4A is algebraically fixed by
the trace of the stress energy tensor 7. Working in either
frame is satisfactory as long as one is careful about what
quantities are actually measurable, but we will find that the
EF is much more useful for most of our calculations.

The coupling of the scalar field to matter is fixed in f(R)
gravity, and is essentially of the same strength as the
coupling of the graviton to matter, except for the important
case of massless conformally invariant fields, which do not
couple to ¢ at all. The dynamics of the theory are com-
pletely specified by the potential V() for the scalar field in
the EF, which is uniquely determined by the functional
form of f(R).

After this lightning introduction to f(R) theory we are
ready to summarize our main motivations for studying
f(R) theories:

(1) There is recent renewed interest in this class of

theories due to their possible relevance to DE.
(i) These theories may have an interesting explanation
in terms of a more complete theory of gravity.

(iii) Although there is an exact equivalence between f(R)
theories and a class of scalar-tensor theories, f(R)
theories may provide a new perspective on scalar-
tensor theories. For example, a simple f(R) may
generate a complicated nontrivial scalar potential
V(¢) that you would not have thought of using if
just studying scalar-tensor theories.

(iv) Exploring modified or alternative theories is a way to
test general relativity.

C. The R — u*/R example

Such a scalar field is not without observational conse-
quence for solar system tests of gravity, especially for
f(R)-DE models. For any scalar field driving DE, we can
come to the following conclusions: First, the field value ¢
must vary on a time scale of order the Hubble time H; L if
the DE is distinguishable from a cosmological constant
(for a longer time scale, the DE looks like a cosmological
constant; for shorter time scales, we no longer get accel-
eration). On general grounds, such a scalar field must have

a mass of order mj ~ Hj. Second, the Compton wave-

length of this scalar field is on the order of the Hubble
distance, so it will mediate an attractive fifth force which is
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distinguishable from gravity by the absence of any cou-
pling to light. Unless the coupling to matter is tiny com-
pared to that of gravity, many solar system based tests of
gravity would fail, such as measurements of the bending of
light around the Sun [15,16].

The archetypal example of f(R)-DE suffers from prob-
lems such as these. This model invokes the function [39]

_r- &
f® =R -5 M

for u = H,. This gives a V(¢) in the EF with a runaway
exponential  potential at late  times: V(¢) ~
H3M, exp(—(3/v6)$/M,,) (here large ¢ means small R
which means late times.) With no matter, such a potential
in the JF gives rise to an accelerating universe with the
equation of state parameter wy = —2/3 [39]. This model,
however, is riddled with problems. First, the theory does
not pass solar system tests [20—22,29], and second, the
cosmology is inconsistent with observation when nonrela-
tivistic (NR) matter is present [23]. Both problems can be
understood in the dual scalar-tensor theory.

For cosmology, during the matter-dominated phase but
at high redshifts, the influence on the dynamics of ¢ from
the potential V is small compared to the influence from the
coupling to matter, which manifests itself in terms of an
effective potential for ¢ of the form

Veir(¢) = V() + pnr exp(— ¢ >, 2

\/_6‘M pl

where pygr is the energy density of NR matter. (More
details of the exact form of this potential will be presented
in the next section.) The second term dominates because
H3M}, << png, and ¢ then rolls down the potential gen-

erated by pnr and not V. The result is that the universe is
driven away from the expected matter-dominated era
(MDE) into a radiation dominated expansion in the JF
with H? « a4, after which it crosses directly into the
accelerating phase, with expansion driven by DE with an
effective equation of state parameter w = —2/3. This
special radiation-dominated-like phase (which is not
driven by radiation) was dubbed the ¢ MDE by [23], where
it was made clear that this phase is inconsistent with
observation. We say that this potential V is unstable to
large cosmological nonrelativistic densities.

For the solar system tests, the potential V(¢) is also
negligible, so the theory behaves exactly like a scalar-
tensor theory with no potential. Because the coupling to
matter has the same strength as that to gravity, the scalar
field mediates a long-range fifth force, and the theory is
ruled out by solar system tests. In particular, [22] found
that y = 1/2 in the parametrized post-Newtonian (PPN)
framework, which is in gross violation of the experimental
bound.
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The above solar system tests also seem to rule out more
general classes of f(R)-DE models [19,29-31,34].
However on the cosmology front, it seems that one can
cook up examples of f(R) consistent with some dynamical
dark energy [24,25,27]: by demanding that the cosmologi-
cal expansion a(z) takes a certain form, one can integrate a
differential equation for the function f that by design gives
a universe with any desired expansion history a(f). In this
way, one gets around the cosmological instability of the
archetypal model mentioned above. However, these func-
tions are arguably very contrived, and further investigation
of solar system predictions is required to determine
whether these models are viable.

D. What f(R) theories are allowed?

We now try to find viable f(R) theories by examining
what is acceptable on the scalar-tensor side. We focus on
theories that pass solar system tests. Because the coupling
of the scalar field to matter is fixed in f(R) theories, and the
only freedom we have is with the potential V, we must
choose V in such a way as to hide the scalar field from the
solar system tests that caused problems for the models
described above. We are aware of only two ways to do
this. The first is the Chameleon scalar field, which uses
nonlinear effects from a very specific singular form of
potential to hide the scalar field from current tests of
gravity [40,41]. The second is simply to give the scalar
field a quadratic potential with mass mgy = 1073 eV, so
that the fifth force has an extent less than 0.2 mm and so
cannot be currently measured by laboratory searches for a
fifth force [42].

We will find simple f(R) models which reproduce these
two types of potentials and so by design pass solar system
tests. Finding functions f which give exactly these poten-
tials will simply generate models which are indistinguish-
able from their scalar-tensor equivalent. However, if we
search for simple choices of f that reproduce these poten-
tials in a certain limit, then these theories will not be
exactly equivalent and might have distinguishable features.

The Chameleon type f(R) model seems to be the most
plausible model for attacking DE, as at first glance it seems
to get around the general problems mentioned above.
Indeed, one Chameleon model will arise quite naturally
from a simple choice of f. However, we will show that the
solar system constraints on this model preclude any pos-
sible interesting late-time cosmological behavior: the ac-
celeration is observationally indistinguishable from a
cosmological constant. In particular, for all the relevant
physical situations this Chameleon model is the same as
has been considered before with no distinguishing features.
However, this model might provide clues in a search for
viable f(R) theories that pass solar system tests and that
may give interesting late-time behavior.

In an independent recent analysis, [30,43] also discussed
the Chameleon effect in f(R) theories. They focus on a
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slightly different set of Chameleon potentials and come to
similar conclusions. Their results and ours together suggest
that the Chameleon effect may be generic to f(R) theories.

We now turn from attempts to explain DE in f(R)
models to an arguably more plausible scenario, which is
simply to give the scalar field a large mass. These models
have no relevance for dynamic DE, but they do have
interesting consequences for early-universe cosmology.
The most theoretically best motivated functions, namely,
polynomials in R, fit this class of f(R) theories. The aim of
this investigation is to explore what we can possibly know
about the function f. Because this question is very general,
we will restrict our attention to a subclass of plausible f(R)
models.

For these polynomial models, we will investigate pos-
sible inflationary scenarios where the scalar partner ¢ is
the inflaton. We find the relevant model parameters which
seed the fluctuations of the cosmic microwave background
(CMB) in accordance with the experiment. We then inves-
tigate general constraints on the model parameters where
¢ is not an inflaton. We use solar system tests, nucleosyn-
thesis constraints, and finally an instability which is present
in these theories when another slow-roll inflaton ¢ is
invoked to explain CMB fluctuations. This instability is
analogous to that of the $MDE described above.

The rest of this paper is organized as follows. In Sec. II
we review the equivalence of f(R) theories with scalar-
tensor theories, elucidating all the essential points we will
need to proceed. Then in Secs. III and IV we explore the
Chameleon model and massive theories, respectively, fo-
cusing on observational constraints. We summarize our
conclusions in Sec. V.

II. f(R) DUALITY WITH SCALAR-TENSOR
THEORIES

We study the “modified”” gravity theory defined by the
action

MZ
Sur = ] Ex T FR) + Sl VoA ] )

where, for example, WV, A,, ... label the matter fields of the
standard model. Here we present a rundown of the map to
the scalar-tensor theory, displaying the most important
points needed to proceed. See, for example, [11,38,44]
for more details of the equivalence with scalar-tensor
theories.

We choose to fix the connection in R as the Christoffel
symbols and not an independent field, as opposed to the
Palatini formalism, which results in a very different theory
[45-49].

If one simply varies the action equation (3) with respect
to the metric g,,, then a fourth order equation for the
metric results. One can argue (using general coordinate
invariance) that the degrees of freedom in the field g,,, can
be split into a massless spin-2 field g,, and a massive
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scalar field ¢ with second order equations of motion. This
split is easily revealed at the level of the action. Following,
for example, [44] we introduce a new auxiliary scalar field
0 (a Lagrange multiplier). The gravity part of Eq. (3) may
be written as

M?
Suw = [ d'5/TT S (FIOR = 0) + Q). )

As long as f"(Q) # 0, the equation of motion (6/8Q)
gives Q = R and Eq. (4) becomes the original gravity
action. This may be written in the more suggestive form

— 4y = Mgl L2
Sgrav - fd x\/_g<7,\/R X V(X)) (5)

by relabeling f/(Q) = y. This is a scalar-tensor theory of
gravity with Brans Dicke parameter wgp = 0 [50] and
potential [44]

M2
V(00 = 351000x ~ F(QU0)} (©)
Here Q(y) solves y = f(Q). Finally a rescaling of the
metric (which should be thought of as a field relabeling)

Gy = X&uy = XV Mg )

reveals the kinetic terms for the scalar field
4 5 Mgl 51
= [dnE (SR a0, - Vo)

_ 24
T Sylgae VWA, ] ®)

where the new canonical scalar field ¢ is related to y, O, R
through

F/(R) = fi(Q) = x = exp(\/2/3¢/My).  (9)

As the kinetic terms for g, and ¢ are now both canonical,
we see that these are the true degrees of freedom of f(R)
gravity. This demonstrates that the theories defined by S
(the Jordan frame) and Sgg (the Einstein frame) are com-
pletely equivalent when f”(Q) # 0. We choose to analyze
the theory in the Einstein frame as things are much simpler
here. It is, however, important to be careful to interpret
results correctly, making reference to what is observed. In
particular, matter is defined in the Jordan frame, and hence
it will be most sensible to talk about JF observables. We
will give a simple example of this when we have intro-
duced some matter.

The equations of motion for ¢ resulting from Eq. (8) are

- av._ ™
—Op=-2 -~ (10)
dd) \/—6_Mp1
and for the metric g,,,
Row— R = M0, + Ty (1)

PHYSICAL REVIEW D 76, 063505 (2007)

with the energy-momentum tensors

Y, = x "I (x '8, ...), (12)

Tﬁ’/ = 8M¢8V¢ + g,u,v(

Note that only the combination T%,, + Tﬁy is conserved in
the EF.

There are two important observations to be made about
Eq. (8) relating to the extra coupling to matter. First, the
™ /MPI\/E term in Eq. (10) represents an additional
density-dependent ‘““force” on the scalar field, and for
special cases where we can solve for the functional form
of the ¢ dependence of T /M;+/6 explicitly, as in [41],
we can think of the scalar field living in an effective
potential. We will see two examples where this force is
important, the most dramatic being the Chameleon effect.

Second, ¢ couples to matter as strongly as conventional
gravity (g,,) does. Hence, as was already mentioned, ¢
will mediate a detectable fifth force for solar system tests
unless we do something dramatic to hide it. Finding theo-
ries which hide ¢ from solar system tests is the focus of
this paper.

1599, pagd + V(). (13)

A. Matter and cosmology in f(R) theories

Let us first consider the coupling to standard model
fields, assuming that they are defined in the JF. This is
important for understanding how ¢ may decay. Massless
scalar fields conformally coupled to gravity and massless
gauge bosons behave the same in the two frames and so do
not couple to ¢. However, a minimally coupled (real)
scalar field @ and a Dirac field ¥ have extra interactions
with ¢ in the EF:

S =fd4x\/_{ ,(aq,)z

D249, b, ¢

—l(i)2

12M2

1 - -
_ ) q>ay¢}, (14)
\/_6‘Mp1 #

Sy = fd4x1/—g\if(i7MDM —myx V¥, (15)

where the JF fields have been rescaled as & = y~!/2® and
¥ = y73/4¥. Note that the cosmologically evolving field
¢ = ¢(r) will change the masses of the standard model
particles in the EF as

i =my "2 = mexp(—(/1/6)(1)/Mp)  (16)

and small excitations 8¢ around the average value ¢ (1)
will roughly speaking interact via the vertices defined by
the interaction Lagrangian,
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1 U N _
NTR (2%, 8p D> — Dghrd, D, 8¢ + iy 6 W V)
p

a7

to lowest order in 1/ M. The mass shift in Eq. (16) has an
interesting consequence in the EF; it shifts the frequency of
the absorption and emission lines by a factor of y~!/2. This
effect will be indistinguishable from the normal cosmo-
logical redshift due to expansion, and our effective redshift
will be the combination of both cosmological expansion
and mass shift: (1 +z)~! = ay~'/2, where a is the scale
factor in the EF normalized equal to unity today. This
combination turns out to be the Jordan frame scale factor
a (see below), so our redshift measurements coincide in
both frames as expected. These ideas were recently dis-
cussed in the context of conformal cosmology [51,52],
where the observed redshifts are explained completely in
terms of an evolving scalar field.

Perfect fluids are best examined in the JF, because it is
here that their energy-momentum tensor is conserved. For
a general JF metric one can solve for the flow of the fluid
using conservation of Tﬁ”,, and number flux nU* (or other
relevant physical principles) and then map into the EF via
Eq. (12).

1. The homogeneous and isotropic case
For example, consider a homogeneous isotropic cosmol-
0gy,

(JF) ds* = dr* — a(1)*dx?, U* = (0)*, (18)

(EF)  d§? = df* — a(9)?dx?, Uk = (ap*, (19)

where U* and U* are the local fluid velocities in the two
frames. The quantities above are related by

124, di = x'2dt, U+ = y 12y~

(20)

a=yx

These relations imply that the Hubble parameters in the
two frames are related by

- 9,0
H= 1/2<H - ’—) 21
X \@Mpl (21)

For example, applying the principles of entropy ‘‘conser-
vation” and number conservation in the JF (one may also
need to demand thermal and chemical equilibrium as
relevant to the early universe) results in known functions
p(a) and p(a) such that the EF energy-momentum tensor
may be written as

T%V = ﬁUM[]V + [j(U,LLUV + g,u,l/)r (22)
where
p=x2plax""?) p=x"2pax'"?. (23)

PHYSICAL REVIEW D 76, 063505 (2007)

The cosmological equations of motion are

3HME = 5+ 45,67 + V(e), (24)

_Vew(d, @) dVp ™
I d¢ oM,
(25)

02¢ +3HO,¢p =

The effective potential for the scalar field coupled to
homogeneous and isotropic matter is

Verr(p, @) = V() + p = V() + x 2plax~'?). (26)

For the special case where the only density components
present are nonrelativistic (p = pxg * @) and ultrarela-
tivistic (p = pg « a~*) fluids, the effective potential is

Ver(@) = V(¢) + pag(@e@MaV®) + 5e(a),  (27)

where for convenience we define pNr(d) =
x Ppar(ax %) « a3 and pr(a@) = x *prlax=""?) =
@ *. These expressions are now independent of ¢: all the
¢ dependence is explicitly seen in Eq. (27). Note that
relativistic particles provide no force on ¢ because T
vanishes, or equivalently because pg(d) appears simply
as an additive constant to the potential in Eq. (27).

2. The spherically symmetric case

We now turn to the case of a spherically symmetric
distribution of nonrelativistic matter pyg(r) in the JF, for
which we aim to solve for the metric g,,. We wish to
consider this problem in the EF, where ¢ will take a
spherically symmetric form and gravity behaves like GR
coupled to 5 = x 2pngr. In the weak field limit, we write
the metrics in the two frames as

(JF) ds?=—(1—-2A))de* + (1 +2B(r))dr* + r2dQ?,
(28a)
(EF)  d5?= —(1 —2A(F)dr® + (1 + 2B(7)d/* + PdQ?,
(28b)

where 7= y!/2r and for small ¢/M,

ol» the gravitational
potentials are related by

iy s 0
A(r) = A(F) + \/8Mp1’ (29a)
A= 1 do(7)
B(r) = B(F) + \/EMN IR (29b)

Following [41] we define a nonrelativistic energy density
pnr(P) = x32p(r) in the EF which is conserved there
and is analogous to pyg(d) defined above for cosmology.
Ignoring the backreaction of the metric on ¢, we take
&uv = My, in Eq. (10) and find as in [41] that
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I i(;z@ —ay2 PxR(F) _ 0Verr(, 7)

7 dF dr \/EMPI ap
(30)

)=vmw—x

where again the effective potential is

Verr = V() + x ™2 br (7). 3D

Solving Eq. (30) for ¢ then allows us to find the metric in
the JF via Eq. (29).

As an instructive example, consider the quadratic poten-

tial V() = m} ¢*/2 and a uniform sphere of mass M, and

radius R,.. The solution external to the sphere is given by a
Yukawa potential

$(r) 1 M

= e T 32
My, V6 47TM§17' (32)

assuming that myR. < 1 and ¢/M, < 1sothat 7 =~ r.If
we ignore the energy density of the profile ¢(r), then
outside the object there is vacuum. The metric in the EF
is then simply the Schwarzschild solution for mass M. In
other words, the potentials in Eq. (28a) are given by A(7) =
B(F) = M, /87 M} F in the weak field limit |A], |B] << 1.1n
the JF using Eq. (29), one finds the corresponding poten-
tials

A() = A(D[1+ lemer],
B(r) = A(r)[1 — %e_’"“(l + myr)].

(33a)
(33b)

For r <« m;l we find that the PPN parameter v = 1/2, a

well-known result for a Brans Dicke theory [50] with
wpp = 0[15].

The key feature here is the effective potential from
Egs. (27) and (31). We have now seen that it makes a
crucial difference in two situations, and it will play an
important role in the next two sections as well.

I AN f(R) CHAMELEON

In this section, we consider f(R) theories that are able to
pass solar system tests of gravity because of the so-called
“Chameleon” effect. We first present a theory that is by
design very similar to the original Chameleon model pre-
sented in [40]. We will give a brief description of how this
model evades solar system constraints, and then move on to
the cosmology of these f(R) theories, concentrating, in
particular, on their relation to DE. Throughout this dis-
cussion we refer the reader to the original work
[40,41,53,54], highlighting the differences between the
original and f(R) Chameleons.

The Chameleon model belongs to the following general
class of models,

FR) =R~ (1—m) ,ﬂ(%)m A (34)

The sign of the second factor is important to reproduce the
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Chameleon, and the (1 — m) factor ensures that the theory
is equivalent to GR as m — 1. These models have been
considered before in the literature [11,23]; in particular,
this class contains the original DE f(R) of Eq. (1) when
m=—1,A=0,and 2u* — u*.

The potential for ¢ in the EF is

2 12 — m/(m—
V(o) = 2k om = (A=)

2x° m> —m

M2A
X

(35)

where y = exp(y/2/3¢/M,,;) as usual. For 0 < m < 1 and
for |¢/M;| < 1, this reduces to

V(¢) = M¥* (=) " + MYA, (36)

defined for ¢ <0, where the old parameters w, m are
related to the new parameters M, n through

B (2(1 + n)2)1+n M4+n
(v/6n)" M&”'

The preferred values used in [40] are M ~ 1073 eV and
n ~ 1. In the f(R) theory, these values give m ~ 1/2 and
u~ 1079 eV, i.e. much smaller than the Hubble scale
today.

For small |¢|/My, this singular potential is equivalent
to the potential considered in [40] for the Chameleon scalar
field, albeit with ¢ — — ¢. The coupling to matter, which
is a very important feature of this model, is also very
similar. In [40], a species of particles i is assumed to
have its own Jordan frame metric gﬁ),,, with respect to
which it is defined, and a conformal coupling to the metric

in the EF

n
1+n’

2

(37)

m =

gl = 2Bt Mug, (38)
Comparing this to Eq. (7), the f(R) Chameleon has B8; =
-1/ \/6 for all matter species, so that all the Jordan frame
metrics coincide.

In the original Chameleon model, the B; were specifi-
cally chosen to be different so that ¢ would show up in
tests of the weak equivalence principle (WEP). The f(R)
Chameleon does not show up in tests of the WEP, so the
solar system constraints will be less stringent here.

This coupling to matter, along with the singular potential
equation (36), are the defining features of this f(R) that
make it a Chameleon theory. The effective potential Vg,
discussed in the previous section (see, for example,
Eq. (27)), is then a balance between two forces; V pushing
¢ toward more negative values and the density-dependent
term pushing ¢ toward more positive values. So although
the singular potential equation (36) has no minimum and
hence no stable ‘“vacuum,” the effective potential equa-
tion (27) including the coupling to matter does have a
minimum. In fact, the density-dependent term pushes the
scalar field ¢ up against the potential wall created by the
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FIG. 1. Effective potential for the Chameleon model equa-
tion (35) with decreasing ﬁNR/,u,zMg1 = 100, 50, 20 and m =
1. Note that ¢,;, and the mass m(zl5 (the curvature of the
minimum) are very sensitive to the background energy density
PNR-

singularity in V at ¢ = 0. Indeed, the field value ¢, at
the minimum of the effective potential V. and the mass
my, of ¢’s excitation around that given minimum are both
highly sensitive increasing functions of the background
density pngr, as illustrated in Fig. 1. Using Eq. (31) for
small |¢|/M,,, the field value at the minimum and the

pl»
curvature of the minimum are, respectively,
_ ¢min _ m(] - m) <M12)11u’2>1m (39)
JEMPI 2 PNR ,
= sy (<YM g
¢ 3(1 - m) Mgl d)min

It is plausible that a scalar field ¢ which is very light for
cosmological densities is heavy for solar system densities
and hence currently undetectable. However, as we will now
see, the actual mechanism that “hides” ¢ from solar
system tests is a bit more complicated than this.

A. Solar system tests

In this section, we will derive solar system and labora-
tory constraints on the parameters (w, m), summarized in
Fig. 2. The profile of ¢(7) in the solar system (around the
Earth, around the Sun, etc.) is of interest for solar system
tests of gravity: it determines the size of the fifth force and
the post-Newtonian parameter y. Because the effective
potential for ¢ changes in different density environments,
the differential equation governing the profile ¢(7) in
Eq. (30) is highly nonlinear, and the standard Yukawa
profile of Eq. (32) does not always arise. These nonlinear
features have been studied in [41], where it was found that
for a spherically symmetric object of mass M, and radius
R, surrounded by a gas of asymptotic density p., the
profile is governed by the so-called *“thin-shell” parameter,
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FIG. 2 (color online). Solar system constraints on the f(R)
Chameleon are seen to exclude all models where the ‘“dark
energy’’ is observationally distinguishable from a cosmological
constant (labeled ‘“dynamic DE”). The two different solar
system constraint curves come from Egs. (46) and (47).
Although it is not clear from the plot, the limits m — 0, m —
1, and p — 0 are all acceptable and yet give no dynamical DE.
Indeed these are exactly the limits in which we recover standard
GR.
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where ¢ and ¢¢. are the minima of the effective
potential in the presence of the asymptotic energy density
PNR = P and central energy densities pyg = p.., respec-
t1vely, see Eq. (39). If A is large, then the external profile of
@ is the usual Yukawa profile equation (32) with mass

m% = m2 b the curvature of the effective potential in the

presence of the asymptotic density pnr = Poo; SE€
Eq. (40). If A is small, then the Yukawa profile is sup-
pressed by a factor of A. The term “thin shell”” comes from
the fact that only a portion of such a thin-shell object
contributes to the external Yukawa profile, the thickness
of the shell being roughly (AR,). We simply treat A as a
parameter that suppresses this profile if A < 1.

For example, let us consider the profile ¢ around the
Sun, with M, = Mg,, and R. = Rg,,. Assuming that we
are in the thin-shell regime (A < 1), the Yukawa profile of
Eq. (32) suppressed by a factor A becomes

(41)

A Mg, e =" o
d(r) = — 5777 + P& (42)

As in [40], we take the asymptotic density used to find ¢,
and m,, as that of the local homogeneous density of dark
and baryonic matter in our Galaxy: p,, = 1072* g/cm?.
Following the discussion in Sec. II, the metric in the EF
external to the Sun is just the Schwarzschild metric (in the
weak field limit) with Newtonian potential A(r) ~
Mg,/ (877M§lr). Using Eq. (29) to map this metric into

the JF metric g, = x'§,,, we find
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~ A
ds* = —|:1 - 2A(r)<1 + gefm“’)>}dt2 + r2dQ?
. A
+[1+2AUK1—51’%%1+n%ﬂ>}h? (43)

Assuming that the Compton wavelength my! is much
larger than solar system scales (we will confirm this later),
we obtain within the PPN formalism [15] that

3-A
3+ A

y ~1—(2/3)A. 44)
There are several observational constraints on |y — 1],
including ones from the deflection of light and from
Shapiro time delay. The tightest solar system constraint
comes from Cassini tracking, giving |y — 1] = 2.3 X 107

[16]. Thus the thin-shell parameter satisfies A <
3.5 X 1075, We note that |¢¢, | < [ | because of the

sensitive dependence of ¢,,;, on the local density, so the
definition of A in Eq. (41) becomes

A = 3|2, |/VOMpA(Rsun), (45)
where AR, = Rgu,) = 1076 is the Newtonian potential at

the surface of the Sun. Using Eq. (39) with pyr = P =
107%* g/cm? gives the constraint

'U“_2 =< 3(#)1/(1"1)10((65"1)/(1m)) (46)
Hj m(1 — m)

on the theory parameters p and m. For theories which fail
this bound, we find that the Compton wavelength of ¢ for
the asymptotic background density of our Galaxy satisfies
myx' = 109 AU. This confirms the assumption that m! is
large compared to solar system scales, which was used to
derive this bound.

As was already noted, the solar system constraints de-
rived in [41] are more restrictive. This is because they
demanded that the couplings (3;) to different species of
particles in Eq. (38) be different. This gives violations of
the weak equivalence principle on Earth-based experi-
ments unless the Earth and atmosphere have a thin shell.
However, in the f(R) Chameleon model, all the B3; are the
same, so there will be no weak equivalence principle
violations.

The f(R) Chameleon may still show up in searches for a
fifth force, in particular, in tests of the inverse square law.
The strongest comes from Earth-based laboratory tests of
gravity such as in the Eot-Wash experiments [42]. By
demanding that the test masses acquire thin shells, [41]
found constraints on the parameters (M, n) which map into
the following bound on the f(R)-parameters (u, m):

>('"/ A=) a24m)/(1-m))

(47)
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B. Cosmology

We now turn to the cosmology of the Chameleon scalar
field, which was studied in [53]. It was found there and
already commented on in [41] that the mass of ¢ on
cosmological scales is not small enough to give any inter-
esting DE behavior for M = 1073 eV and n ~ 1. We will
revisit this question in the f(R) context: do any allowed
parameters (w, m) in Egs. (46) and (47) give nonvanilla
DE? Will there be any cosmologically observable differ-
ences between this f(R) Chameleon and the original model
(which is in principle possible because higher order terms
in the expansion of V in Eq. (35) may become important)?
We will see that the answer to both of these questions is no
for the same reason: solar system tests preclude the mini-
mum of the effective potential from lying beyond ¢ =
—M,, on cosmological scales today.

Let us try to understand this by looking at the details of
Chameleon cosmology. We first note that, as opposed to
[53], we do not fix AM;1 = M?*, so we are less restricted as
to what M or u can be. The essence of the argument,
however, is the same as in [53]. Working in the EF, for a
large set of initial conditions in the early universe, ¢ is
attracted to the minimum of the effective potential given by
Eq. (27). The scalar field tracks the minimum, which shifts
&(d) = @iy as the universe expands. The energy density
in coherent oscillations around this minimum are negli-
gible and so there is no “moduli problem.” (In contrast,
this may be a problem for the case considered below in
Sec. IV)

We will see that the condition for such a tracking solu-
tion to be valid is that the minimum satisfies

- ¢@)/M, <1, (48)

so we consistently make this assumption to derive proper-
ties of the tracking minimum. After matter-radiation equal-
ity we have the tracking solution

_ ¢@ _m@ - m)( My p? )1—m )
VoM, 2 pxr(@) + 4V(p(a) '
Along this tracking solution, the curvature (mass) around
the minimum and the speed of the minimum are, respec-

tively,
m3 @) _ 2 (ﬁMmXﬁNR(a) +4V($(a))
H? 1= m\=¢(@)\ pxr(@) + V((a))

), (50)

(‘d’(d)) (1 — m)pr(@)
M, ) par(@) + 4V(p(a))
Since ¢ will track the minimum while mg(a) > H,
Eq. (50) shows that the assumption of Eq. (48) is indeed
consistent.

Also, ~during radiation domination one can show that
m3(@)/H* ~ (—My/ ¢(@))a/dyg, where dyg is the scale

1 d¢@ _
MyH di

. (81
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factor at matter-radiation equality, so it is possible that at
early times the scalar field is unbound. We know the
expansion history and the effective value of Newton’s
constant Gy quite well [39,55] around big bang nucleo-
synthesis (BBN); if ¢ is unbound, we have no reason to
believe that Gy, which varies as ¢ varies, is near today’s
value. Requiring that it is bound before the beginning of
BBN gives a constraint that we have included in Fig. 2.
Returning to the matter-dominated era, Eq. (48) implies
that the expansion history in the JF may be written as

3MAH? = pygla) + V(d(ap)) + @(Mi). (52)

p!

For |¢(ag)l/M, <1 today, this is just the usual
Friedmann equation with a cosmological constant, where
in accordance with the experiment we are forced to identify
V(¢ (ag)) with pyx(0), the current dark energy density. Note
that the parameter A in V, which we have not fixed, allows
us to make this choice independent of any values of x and
m. For m not small, V(¢ (ag)) = AM} so Ais fixed at A =
px(0)/ M;2>1§ however, for small m we will see later that the

situation will be slightly different.

This implies that the only way to get interesting late-
time cosmological behavior is to not have |¢(ag)/My| <
1 but rather |¢(ag)/ M| ~ 1 today. In this case the track-
ing solution above is not valid; the scalar field is no longer
stuck at the minimum, and we might not have to invoke a
constant A in V to explain today’s accelerated expansion.
Rather, the acceleration would be driven by a quintessence
type phase.

However, one can show that given the solar system
constraints, |¢(ag)/Mpy| ~ 1 is not possible. In fact, as
we will now show, a stronger statement can be made:
even if we continue to assume Eq. (48), so that the tracker
solution is still valid, the solutions that are consistent with
solar system tests always give DE behavior that is “va-
nilla,” i.e., indistinguishable from a cosmological constant.

In these models, the effective dark energy density is

pxla) = V((a)) + (“’““))

\/EM pl

X (par(@) + px(0)) X (2 +

6pnr(a)(l — m))
prr(a) +4px(0))
(53)

where V(é(a)) — px(0) = O(¢p/M,,). If we expected
Eq. (53) to give interesting behavior in the allowed region
of parameter space, we would fit the Friedmann equation
with px(a) to the combined knowledge of the expansion
history and find the allowed values of (u, m). We will
instead adopt a simpler approach, defining ‘‘nonvanilla
DE” through the effective equation of state parameter,
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Ldmnpx@

4
3 dlna (54)

Wx =
This is the relevant equation of state that one would mea-
sure from the expansion history (that is not py / pg)- We
say that the DE is nonvanilla if |wy + 1| > 0.01, which is
quite optimistic as to future observational capabilities [56].
However, because our result is null the exact criterion is
not important.

The resulting constraint on u and m is shown in Fig. 2
along with the solar system constraints. As the figure
shows, all models consistent with solar system tests are
“vanilla” —that is, indistinguishable from a cosmological
constant.

The most interesting part of this parameter space is the
limit m — 0, which is one of the limits in which we should
recover general relativity. The theory then becomes

f(R) =R — (u? +2A) + uw*mIn(R/u?)  (55)
with the Chameleon-like (singular at ¢ = 0) potential

M2
V(g) =~ TPl67(4/J€)(<¢f>/Mpl)(,“2 +2A

— mu2In(l — e(\/ﬁ)(rﬁ/Mpl)))_ (56)

In this limit we are forced to fix A = pX(O)/Mf)l — u?/2.

The DE energy equation of state parameter is wy = —1 —
0.05 mu?/H3. The tightest solar system constraint on >
in this limit is from |y — 1] in Eq. (46) which gives mu? <
6 X 107°H3. The equation of state parameter for DE is
then constrained to be |wy + 1| =< 0.3 X 107® which is
definitely unobservable.

Finally we note that the ultimate fate of the f(R) cha-
meleon is different from that of the original model. This is
because V(¢) actually does have a minimum relevant for
cosmological energy densities. This is due to the ¢ depen-
dence of the AM}, ™2 term in Eq. (35), which is absent in
the original models. Eventually ¢ will settle into this
minimum and the universe will enter an inflating de
Sitter phase, much like the fate of a universe with a simple
cosmological constant. The original model on the other
hand eventually enters a quintessence-like expansion.
However, this distinction is unobservable today.

In conclusion to this section, we have found a previously
unstudied class of f(R) theories that gives acceptable local
gravity by exploiting the Chameleon effect. For the al-
lowed parameters of this model, there is no interesting
late-time cosmological behavior (observably dynamic
DE). That is not to say that these models have no interest-
ing physics—there may indeed be some interesting effects
of such models for future solar system tests [41] or on large
scale structure [57], and this might warrant further study in
the context of f(R) models. We also noted that the f(R)
model is subtly different from the original Chameleon
model. It does not violate the weak equivalence principle,
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so solar system constraints are less stringent and the ulti-
mate fate of the universe is now simply an inflating de
Sitter spacetime.

This mechanism might also be a starting point for con-
structing working modified gravity models which do give
nonvanilla DE, somehow exploiting this mechanism more
effectively and bridging the gap in Fig. 2 between solar
system constraints and nonvanilla DE. We suspect they
will not be as simple as the one presented. This mechanism
may also be relevant for attempting to understand the
Newtonian limit of the artificially constructed f(R) models
mentioned earlier that reproduce an exact expansion his-
tory. We make this claim because an important property of
the model presented in [27] is that the parameter B o« f"(R)
is a rapidly growing function of the scale factor a. For
small f”(R), one can show that the mass curvature of V is
mf/) ~ 1/f"(R). Hence, in this theory the mass of the scalar

field during cosmological evolution is large at early times
and small at late times, as in the Chameleon models. A
more detailed analysis, beyond the scope of this paper, is
required to see whether nonlinear effects play a part in the
Newtonian limit of these theories.

IV. MASSIVE f(R) THEORIES

We now consider arguably more realistic f(R) theories,
namely, polynomials f(R) = —2A + R + aR> + bR ...
These theories have been extensively studied, especially
for quadratic f(R); see [36] and references therein. They
are more natural from the point of view of renormalization
and effective field theories: a high energy completion of
gravity would allow us to find these higher order terms.
However, common wisdom would have the higher order
terms suppressed by inverse powers of M and would force
us to include other terms of the same mass dimension such
as R*"R . Despite this, we wish to explore the phenome-
nology of such polynomial f(R) theories and hence con-
strain them with cosmological observations. In doing so,
we will explore the full range of values for the coefficients
(a, b, ...) of the higher order terms to be conservative
rather than assume that they are of order unity in Planck
units.

This class of theories can only match the currently
observed cosmic acceleration via an explicit cosmological
constant term f(0) = —2A, giving the identification A =

px(0)/M3 = 3H5Q,, so there is no hope of dynamical

DE. Rather, these theories are more relevant to very early-
universe cosmology where R is large, and hence some of
our results will be quite speculative.

Consider for simplicity the two-parameter model

F(R) =R + R(%) + AR(%)Z. (57)

We restrict to the parameter range x> >0 and 0 < A <
1/3, so that the resulting potential V has a stable quadratic
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FIG. 3. Potential for the f(R) model in Eq. (57) with various

values of A. Notice that the A = 0 case has an asymptotically flat
potential as ¢ — oo.

minimum and is defined for all ¢. The Einstein frame
potential for ¢ or y is given by

M2 MZ
Vi(x) = %qz(l +2Aq), (58)
X
where
1
= _—[./1 —3A(1 — -1 5
=51 (1= -1] (59)

is the larger of the two roots of 1 — y + 2¢g + 3Ag? (this
ensures that the resulting potential has a stable minimum).
We plot this potential for various A in Fig. 3.

We will first explore the possibility that ¢ is the inflaton,
then discuss other constraints from our knowledge about
the early universe. Figure 4 summarizes our constraints.

7x10”

f (R) Non-Inflationfor r = 0.05 5
5x10

f (R) Inflation

3x10”

W/ Mpl

2x107°

r=0.0036

T=0.0016 1x107°

0.00001 0.0001 0.001 0.01 0.1
A

FIG. 4 (color online). Constraints on the cubic f(R) model.
The thin gray (blue) sliver corresponds to observationally al-
lowed f(R) inflationary scenarios. Shaded are regions we may
rule out given a measurement of the tensor to scalar ratio r and
the assumption that they were generated by a period of slow-roll
inflation in the early universe. The r = 0.05 and r = 0.01 are the
most realistic curve, in the sense that future experiments are
sensitive to such values as low as »r = 0.01 [56].
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A. f(R) inflation

The possibility that higher order corrections to the gravi-
tational Lagrangian might be responsible for a de Sitter
inflationary period was examined thoroughly early on in
the inflationary game [12,58]. For A = 0, the potential
V(¢) is very flat for large ¢, which is perfect for inflation.
This model and other related ideas were extensively
studied in [59-64], which also confirmed the existence
of a viable inflationary model. We now search for possible
inflationary scenarios with A # O that are consistent with
current observations. This question was already considered
in [65], which found A < 1; however, we wish to be more
quantitative in light of the latest CMB measurements.

As usual in these models, it is important to keep careful
track of whether we are working in the EF or the JF: recall
that the potential V is defined in the EF, while matter is
most naturally considered in the JF. Nonetheless, we will
argue that the inflationary predictions are exactly the same
as those of general relativity plus a normal slow rolling
scalar field with potential V(¢). The argument goes as
follows. Slow-roll inflation works normally in the EF
where the graviton and scalar field have canonical actions.
In particular, the EF is where one should calculate the
spectrum of tensor and scalar mode fluctuations.
Reheating and the transformation of fluctuations in ¢ to
adiabatic density fluctuations also works as usual in the EF,
because at this time the cosmic fluid is relativistic and
hence governed by the same equations of motion in both
frames. After reheating, ¢ is frozen out at the minimum of
V, with ¢ =0 and y =1, so there is no longer any
distinction between the JF and the EF (g,, = g,,)-
Calculations for A = 0 were performed both as above
and in the JF in [61], and the results were found to be
consistent as expected.

Using this idea, calculating the inflationary
predictions is straightforward. Using Eq. (17), we can
estimate the reheating temperature as Try = 1.3 X
1072g,, 1/4(Ns,u,3/Mp1)1/2, where N, is the number of mini-
mally coupled scalar fields into which ¢ decays (it decays
most strongly into these fields). Then the scale factor
(normalized to a = 1 today) is

-1/6 _
eps = 1.5 % 10—32<L> e IENYS (60
M,
at the end of inflation. Integrating the slow-roll equations
of motion, ¢’ = —V'(¢)/3H, and assuming A < 1, the
number of e-foldings of inflation for a mode k is

3arctanh(v/A. 3

Here N, is a small number defined such that Ni(geng) = O
at the end of inflation, where ¢ = ¢u,q = 1/+/3, and g; is
related to the conformal factor y;, =1+ 2¢; + 3/\6]%
when the mode k crosses the horizon:
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Hy =~ u/V24 = ke [aey. (62)

This particular mode will have a scalar fluctuation ampli-
tude (also referred to as 6%{ in the literature)

1 w?

2= (), 63
O 120072 €, <M§l> (63)
where the slow-roll parameters (using the definitions in
[66]) are

(1 — Ag})? 201+ Aq?)

kS k=
34k

(64)
3¢

We then use these to find the scalar spectral index n, =
1 — 6€ + 27, the ratio of tensor to scalar modes » = 16€,
etc. Using the combined WMAP + SDSS measurements
[21 O =(1.945+0.05 X107 for modes k=
0.002/Mpc we can use Egs. (61)—(63) together to fix w.
For A — 0 the result is

p=(32%0.1)X107° M, (65)
n, =~ 0.964, (66)
r = 0.0036, (67)

which is consistent with both the theoretical results of
[60,61] and recent observational constraints [1,2].

In addition, n, is sensitive to the value of A. The obser-
vational constraint 0.937 < n, < 0.969 (68% C.L.) from
[2], translates into a strong upper bound on A:

A <47 X 1074 (68)

This is an example of the usual fine-tuning that is needed
for observationally allowed inflationary potentials and is
consistent with the findings of [65]. More precisely the
values of u, A appropriate for inflation are shown in Fig. 4.

B. Other constraints

Above we explored the possibility that ¢ was the in-
flaton. Let us now turn to the alternative possibility that ¢
is not the inflaton, and compute miscellaneous constraints
on the parameters w and A when they are varied freely. We
will first consider the fifth force mediated by ¢, then
investigate how the scalar field behaves dynamically in
the early universe, where the most interesting effect comes
from considering a period of slow-roll inflation driven by
some other scalar field. As noted in Sec. I, the dynamics of
¢ is still governed by an effective potential equation (27)
which is important when there is a component of matter
whose energy-momentum tensor has nonzero trace.

To begin with, we ignore any effect that such a term may
have on the minimum of Vg for these polynomial models,
which is a good approximation if |77 | < u?M?. We will
see that for the first few constraints that we derive, this will
indeed be the case. Then we will return to the question of

063505-11



FAULKNER, TEGMARK, BUNN, AND MAO

where this is a bad approximation, which will naturally
lead to our discussion of slow-roll inflation by some other
scalar field.

1. Fifth force constraints

The minimum of the effective potential lies at y = 1,
¢ = 0. The curvature of this minimum is mj = u>/6.
Hence we can get around solar system constraints simply
by making w large enough so that the range of the fifth
force will be small. Clearly it must have a range smaller
than the solar system, otherwise, as was discussed above, it
will violate the bound on the PPN parameter y. (Recall that
there is no Chameleon effect here, so A = 1in Eq. (43) and
v = 1/2.) For smaller scales, we consider searches for a
fifth force via deviations from the inverse square law. The
profile for a quadratic potential, i.e., Eq. (32), gives a
Yukawa potential between two test masses m; and m,:

mymy e "M¢”

SaMy 1

V(r) = —«a , (69)

where @ = 1/3. For this « value, a fifth force is ruled out
for any Compton wavelength mgl ranging from solar
system scales down to 0.2 mm, where the lower bound
comes from the E6t-Wash experiments [42]. This bound
translates to

uw=10X1073eV. (70)

This implies V(¢) ~ p>M7; 3> pyar, a typical solar sys-
tem density, so for this constraint we were justified in
ignoring any effects of the density-dependent term on the
minimum of V.

2. Nucleosynthesis constraints

Given this preliminary constraint from local gravity
tests, let us now consider the cosmology of ¢ in the EF.
We may approximate the potential around the minimum by
a quadratic potential V() = (u?/12)¢?, which is valid
for || = M,,. The interesting behavior will come during
the radiation dominated epoch, so in Eq. (24) we take
p(a) = pgr(a) « @ *, and we ignore the T4 term in
Eq. (25) to find the cosmological equations of motion

72 042 e oo
3H M, = pr(a) +—]2¢ +§(¢), (71)
~ Iu,z
¢+ 3G+ =0, (72)

where the primes denote d/df. There are two interesting
limiting behaviors, corresponding to A >> u and H < pu,
which we will now explore in turn.

For A > ., the friction term in Eq. (72) dominates, and
¢ is frozen out at some value ¢, with d¢p/di = 0. The
energy density of ¢ is subdominant in Eq. (71). Therefore,
in the EF we have the usual radiation dominated expansion,
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and in the JF using Egs. (21) and (23) we have the same
Friedmann-Robertson-Walker (FRW) expansion with a
different effective Newton’s constant Gy: 3H? =
87Gypla) « a™*, where

1 2 ¢.
Gy = s—— exp| —4/3 ¢ ) (73)
87TMP1 3Mp1

For H < u, on the other hand, assuming ¢, < M, the
field ¢ starts to oscillate with frequency u/+/6 and an
amplitude that redshifts as @ 3/2. Hence in the EF, the
energy density of ¢ in Eq. (71) from these zero momentum
field oscillations s  p, = (u?/12)$p? + ¢?/2 =
py(a/a.) >, where pj = (u*/12)¢3. Mapping back into
the JF, and averaging over a cycle of this oscillation, we
obtain the Friedmann equation

3H*M}, = prla) +3pj(a/a.) ™, (74)

where the unusual factor of 3/2 comes from the averaging
of the oscillations of G, in Eq. (73), as is discussed in more
depth in [67].

The crossover between these two behaviors occurs when
H is comparable to u, and given the laboratory tests of
gravity above we can say that this must occur when the
universe has at least the temperature 7. = 1 TeV. We were
therefore justified in assuming radiation domination in our
calculation.

Let us examine further the zero momentum oscillations
of ¢ that give this extra nonrelativistic energy density. In
the absence of some mechanism (such as an extra period of
low scale inflation [68]), we expect the initial amplitude of
oscillations to be of the order Mp,. This is because the
potential in Fig. 5 varies on the scale of My, independently
of the height of V. Hence in the absence of any other scale,
the initial amplitude must be around this size. Recall that at
the onset of oscillations, H ~ u, so the initial energy

Verr / I2M,f

A2\ b

0.

0.0

. . . /M
2 4 6 O/
FIG. 5. Effective potential for the polynomial model equa-

tion (57) with A = 0.1 for various JF inflationary energy den-
sities U(i)).
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density of these oscillations is
Py~ Myp? ~ H>MG, ~ pr(a.). (75)

This energy density subsequently grows relative to the
radiation density component, quickly forcing the universe
into a matter-dominated period of expansion. This is un-
acceptable if this component does not decay before the
onset of BBN, because then at the time of BBN the
expansion would be much faster than the normal radiation
dominated expansion, which would be inconsistent with
observed primordial abundances [55].

The fact that ¢ interacts weakly with other particles (the
vertices in Eq. (17) are suppressed by 1/My) so that ¢
decays too slowly is exactly what is known as the cosmo-
logical moduli problem. To be more precise, we can use
Eq. (17) to estimate the decay rate of zero momentum

modes into other massive particles:
4 2 m3
~ 1 Mg 1ty ¢

T, ~ - +
¢ §<m¢M§1967T 96mM?, M§13847T>

2
7 M§1127T

(76)

where the sums are over minimally coupled scalar particles
and fermions with masses 2mg, 2my < mgy. The require-
ment ['y, > Hppy translates into the constraint u =
100 TeV for the standard model. One would expect the
bound on w to be slightly smaller if one includes other
particles that have not been detected yet with mass smaller
than 100 TeV. This constraint should not be taken too
seriously, however, because the moduli problem may hy-
pothetically be resolved by electroweak scale inflation [69]
or even by a brief second period of inflation at the electro-
weak scale [68].

3. Density-dependent forces

We now consider how the extra density-dependent term
in V¢ may affect cosmology. In other words, when can we
not neglect the forcing term 7% of Eq. (25)? After ¢ enters
the oscillating phase when u > H, the extra term has little
effect on the minimum since then it is small compared to
the size of the potential itself (V ~ u?>M7). As a result, ¢

simply oscillates as expected. Before the crossover, when
¢ is frozen, we showed that the universe must be radiation
dominated so that, in particular, as T < p = 3I-~12M§1
during this phase, the Hubble friction will dominate com-
pared to the force term of Tﬁ in Eq. (25), and we were
justified in claiming that ¢ is frozen out. The cosmology
here does not suffer from the instability that plagues
Eq. (1).

There are, however, some exceptions that might lead to
interesting constraints. First, consider a relativistic compo-
nent i of the cosmological plasma that becomes nonrela-
tivistic and dumps its energy into the other relativistic
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components. In this case, —7% ~ (g;/g.)p for a period
of about one e-folding, so ¢ receives a kick and is dis-
placed by an amount A¢ =~ (gi/g*)Mpl/\/_é [53]. This
might lead to an interesting effect such as ¢ being kicked
out of the basin of attraction of V. The extreme case would
be that ¢ does not end up oscillating around the minimum
as expected when H ~ w, but instead ends up rolling down
the tail of V, an effect which is clearly only possible for
A # 0. In principle, such kicks could even invalidate the
predictions of BBN: near the onset of BBN, e~ annihila-
tion occurs, displacing ¢ and consequently changing Gy
significantly as per Eq. (73). However, we have already
shown that ¢ must be in the oscillatory phase long before
the onset of BBN, and we have argued that these kicks have
no effect while ¢ is in the oscillator phase, so in fact this
effect is unlikely to have relevance for BBN. Such kicks
may affect other important cosmological dynamics at tem-
peratures higher than 7 > 1 TeV, such as baryogenesis.
However, the effects are extremely model dependent, and it
is hard to say anything definitive at this point.

4. Noninflation

Another situation when we cannot ignore the density-
dependent force on ¢ is during inflation. Here T% is large
for many e-foldings. Remember that in this section, we are
not considering ¢ as our inflaton; instead we consider a
slow-roll inflationary period driven by some other scalar
field ¢ defined in the JE. We wish to examine the effect a
modified gravity Lagrangian such as Eq. (57) has on the
inflationary scenario. In particular, we will be interested in
situations where inflation by the field ¢ does not work,
being effectively sabotaged by ¢. We will discuss the
generality of these assumptions at the end.

Such models have been considered before in the context
of both the A = 0 models [70-72] and other generalized
gravity models [73]. There the goal was generally to make
the inflationary predictions more successful, focusing on
working models.

In the JF, consider a scalar field ¢ with a potential
U(). We assume that ¢ is slow rolling; dif/dt =
—U'(y)/3H(¢). This is the assumption that

LV yy)

dt2 (&) <vw. an

dt

which must be checked for self-consistency once we have
solved for H(r). We can now easily calculate H(z) by first
working in the EF and mapping back to the JF. The
equations of motion in the EF, Egs. (24) and (25), become

9{’// + 3I:I¢/ = _Véff(d))y
(78)

BH*M? = 3" + Ve (),

Ver() = V() + U()x 2. (79)

It is interesting that a constant vacuum term in the JF does
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not translate into a constant term in the EF. See Fig. 5 for
some examples of the effective potential V z; we see that
for large enough U(y) > u>M;;, the minimum vanishes.
One finds that there is no minimum of the effective poten-
tial for

:U«ZMIz)l

18V3A°

In particular, there is always a minimum for A = 0.
The resulting behavior of the inflaton s depends on the
size of U(y) compared to w>Mp. For small U(y) <

M2 M2

pl’
which ¢ will oscillate. In this situation, the effective
potential has a minimum at ¢ =~ 0 with value approxi-
mately V(o = 0) = U(y), so after the energy density of
¢ oscillations redshift away, we are left with an exponen-

tially expanding universe with y =~ 1, 3H>M} =~ U(y),

Ul) >

(80)

it is clear that there is a stable minimum around

and H ~ H.Hence in the JF, gravity behaves as it normally
would in general relativity: for a flat potential, the slow-roll
conditions are satisfied, and inflation driven by ¢ works as
it normally would. This is the expected situation, and it will
happen for u =~ M.

On the other hand, we now show that when U(y) >
u*M7; and when there is no minimum of the effective
potential (A # 0), we get a contradiction to the assumption
that s was slow rolling. Hence we show that it is not
possible for ¢ to drive slow-roll inflation. For large
U(y) > u*M3, the potential may be approximated as
Ve = U()x 2. We treat U(i)) as a constant and find
that there is an exact attractor solution to Eq. (78) of the
form y ~ fand @ ~ 7*/4. Mapping this into the EF, we find
the behavior a ~ /2, i.e., a period of radiation dominated
expansion analogous to the ¢ MDE of [23]. More specifi-
cally, we find

3MAH? =~ U(p)a™. (81)

This is clearly not an inflating universe. So the slow-roll
assumptions of Eq. (77) are not consistent in this case. We
therefore conclude that it is not possible for ¢ to drive
slow-roll inflation.

Instead, ¢ dumps most of its energy U(y)g) into radia-
tion, and as before, ¢ is left frozen at some point ¢, until
U(gho)a™* ~ p>M3,. After this, ¢ can either drive an infla-

tionary period itself as in the original discussion of f(R)
inflation, or if ¢, is not in the basin of attraction of Vg, it
will roll down the tail of V.. In neither situation has ¢
inflated our universe. From this combination of inflaton ¢
plus f(R) gravity with U(y) > p>M7, we only get sat-
isfactory inflation if (u, A) lies in the region of parameter
space appropriate for f(R) inflation (the gray (blue) sliver
in Fig. 4) and if ¢, sits at a point which allows for the
required number of e-foldings.
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5. Gravitational wave constraints

It is well known that inflation produces horizon-scale
gravitational waves of amplitude Q, ~ H/M, so that the
energy scale of inflation can be bounded from above by the
current observational upper limit Q, < 0.6 X 1075 [1,2]
and perhaps measured by a detection of the gravitational
wave signal with future CMB experiments [56]. Using
such a detection one might try to constrain u? by the
arguments of the previous section. Specifically, by de-
manding that during inflation there is a minimum of the
effective potential one can find a constraint by invoking
Eq. (80) with U(y) (incorrectly) replaced by the measured
energy density of inflation.

However, because of the EF-JF duality, one needs to
carefully define what one means by “the energy scale of
inflation.” The bound from the above argument simply
precludes inflatons with a given energy density U(y) in
the JF, but U(y) is merely a parameter which does not
necessarily set the energy scale of inflation. In addition to
this problem, we cannot use Eq. (80) to derive a constraint
for A = 0, because in this case there is always a minimum
in the effective potential and it is always possible for ¢ to
slow roll (this situation is described in greater depth in
[70,71]).

To make these ideas more concrete and resolve both of
these ambiguities, we will operationally define the energy
scale of inflation to be the one that makes the standard GR
formula for the gravitational wave amplitude valid. It is
clear that the amplitude of gravitational waves should be
calculated in the EF where the metric has a canonical
action. The result is then passed trivially into the JF after
inflation and when ¢ = 0. The Hubble scale A then sets
the size of the fluctuations, but it is a complicated model
dependent calculation to find exactly when the relevant
fluctuations are generated. However, there is a limit to the
size of H for which the EF is approximately inflating, and
so gravitational waves are being generated. Following the
discussion above of nonworking inflatons, we demand that
¢ must be slow rolling down the effective potential Vg
defined in Eq. (79) for both frames to be inflating. In this
situation, both scalar and gravity modes are being
generated.

The procedure is thus to find the maximum value of H
(that is, from Eq. (78), the maximum value of V.g) such
that ¢ is slow rolling. We then maximize this A with
respect to the parameter U()) to find the largest amplitude
of gravitational waves that can possibly be produced. At
each step in this procedure, we wish to be as conservative
as possible; for example, we define slow roll through the
slow-roll parameter constraints € < 1 and |n| < 2 to allow
for the possibility of power law inflation. Where again we
use the standard defintion of 7 and € from [66].

As an example, consider the A = 0 case. Here it is
possible to show that for ¢ to be slow rolling, it must
satisfy
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_ B 2 7, 8U()
¢ > ¢sr = \/;Mpl 11’1(5 + § + W>’ (82)

where ¢, always lies to the left of the minimum of V.
The maximum Hubble scale in the EF for a given U(¢) is
then HA* <max{Ve(¢s)/3M}, u?/24}. This is maxi-

mized for large U()/u*Mp, with the result that H* <

w?/6 where we have used Eq. (82). This translates into a
constraint on the maximum gravitational wave amplitude
that can be produced,

2
max M max 6 M

O = 0.04 —= rm* = 5 X 10° —;-. (83)
' My M2

Given a measurement of the tensor to scalar ratio r, this
places a limit on u:

=3 X104 2My,. (84)

Numerically, we find similar results for nonzero A. We plot
examples of this constraint in Fig. 4, combined with the
already discussed working f(R) inflationary models. Note
that for a given r, it is important that this constraint lies
below the corresponding working f(R) inflationary model
(the gray (blue) thin sliver of Fig. 4) with the same r;
fortunately, as is indicated by the arrows in this figure, it
does.

If gravitational waves are not detected, then this argu-
ment gives no lower bound on w. In particular, it is possible
that inflation occurred at the electroweak scale, in which
case the constraint u = 2 X 1073 eV is the best we can do.

Note that we completely ignore the production of scalar
fluctuation modes for this argument. This is because the
scalar modes are much more difficult to calculate, since
there are two scalar fields in the mix, ¢ and ¢, which are
canonically defined in different frames. But the scalar
modes are also model dependent and one should generally
be able to fine-tune U(y)) to give the correct amplitude and
spectral index without affecting the above argument. This
more complicated problem was considered for chaotic
inflation with R? gravity in [72].

This constraint applies only to slow-roll inflation mod-
els. There are classes of fast-roll inflation, but these models
have problems of their own and generally fail to reproduce
the required scale invariance (see [74] for a review).

Finally, let us discuss some inflaton models that might
circumvent this constraint. It is possible to add an inflaton
in the EF. However, this theory is then not conformally
equivalent to an f(R) theory: the two scalar fields ¢ and ¢
get mixed up. Hence it is not in the class of models we set
out to constrain. Another possibility is to add an inflaton
which is conformally coupled to gravity and has a V o *
potential. This does not change from frame to frame and so
inflation might be expected to work. However, it was
shown by [75] that nonminimally coupled scalar fields
cannot drive inflation.
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In any case, if gravitational waves are found, then this
constraint must be thought about seriously when using
such f(R) models in other astrophysical or local gravity
situations.

V. CONCLUSIONS

We have searched for viable f(R) theories using the
wealth of knowledge on scalar-tensor theories to which
f(R) theories are equivalent. We studied two classes of
models: the f(R) Chameleon and massive f(R) theories,
which may well be the only classes of models that can be
made consistent with local gravity observations.

The f(R) Chameleon that was studied is a special kind of
scalar field which hides itself from solar system tests of
gravity using nonlinear effects associated with the all-
important density-dependent effective potential. It was
shown that, despite this Chameleon behavior, solar system
tests still preclude the possibility of observably dynamical
DE; the best we could do was |[wy — 1] =< 0.3 X 107° for
the effective DE equation of state parameter wy relevant
for the dynamics of the expansion. There are of course
interesting effects of the Chameleon both for local gravity
[40] and on cosmological density perturbations [57], and
these may be worth future studies in the context of f(R)
theories.

The massive theories were found to be more relevant for
very high energy cosmology, so the conclusions were more
speculative. First, the scalar field may be the inflaton, in
which case we found the required polynomial f(R) to be
quite fine-tuned as is usual for inflationary potentials. If the
scalar field was not the inflaton, then we saw that possible
instabilities could spoil both inflation and big bang nucleo-
synthesis, giving interesting constraints on the shape of
f(R). If primordial gravitational waves are detected using
the CMB, then the most naive models of inflation have
serious problems unless the mass of the f(R) scalar is very
large; a measured scalar to tensor ratio of r = (.05 requires
w=7x1073 M. If gravitational waves are not found,
then the best we can say comes from the E6t-Wash labo-
ratory experiments constraining the extent of a 5th force:
u=2X10"3eV.

General relativity adorned with nothing but a cosmo-
logical constant, i.e., f(R) = R — 2A, is a remarkable
successful theory. As we have discussed, a host of obser-
vational data probing scales from 107> m to 10?® m not
only agree beautifully with GR, but also place sharp con-
straints on the parametrized departures from GR that we
have explored. In particular, both viable classes of f(R)
theories that we studied were found to have no relevance
for dynamic dark energy that is observationally distin-
guishable from vanilla dark energy, i.e., a cosmological
constant. Since we have no good reason to believe that
there are additional viable classes of f(R) theories, it
appears likely that no viable f(R) theories can produce
the sort of interesting nonvanilla dark energy that many

063505-15



FAULKNER, TEGMARK, BUNN, AND MAO

observers are hoping to find. However, without a much
larger study of the parameter space (which is of course
incredibly large) we shy away from making a stronger
statement here.
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