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Advanced Portfolio Theory: 
Why Understanding The Math Matters 

Tom Arnold 
Louisiana State University 

The goal of this paper is to motivate the use of efficient set mathematics for 
portfolio analysis [as seen in Roll, 1977] in the classroom. Many treatments 
stop at the two asset portfolio case (avoiding the use of matrix algebra) and an 
alarming number of treatments rely on illustration and templates to provide a 
heuristic sense of the material without really teaching how efficient portfolios 
are generated. This is problematic considering that the benefits of 
understanding efficient set mathematics go beyond portfolio analysis and into 
such topics as regression analysis (as demonstrated here}. 

INTRODUCTION 

Portions of efficient set mathematics exist in many textbooks, but are often reduced 
to a portfolio of two assets and are somewhat incomplete. This treatment is rather 
unsatisfying for an undergraduate investments/portfolio theory course, particularly 
when the students realize that most investment portfolios have much more than two 
assets. There are educational products that provide the student with the experience of 
being a fund manager. However, the curiosity of how does one optimize a many asset 
portfolio is still left unquenched. The purpose of this paper is to produce efficient set 
mathematics beyond the realm of two assets in a clear direct manner. More specifically, 
instead of just lecturing about a fund manager dealing with many securities, this treat­
ment teaches the student how to find a solution to the problem the fund manager faces. 

Although one could argue that a non-rigorous intuitive approach exists through 
illustrations and templates, the efficient set mathematics provides further benefits. This 
paper demonstrates that the same set of mathematics produces regression analysis quite 
easily. Even if one believes that regression analysis is not for them to teach or 
introduce, denying students the added value of efficient set mathematics seems in one 
sense "wrong" and in another sense, "incomplete". With the appropriate lesson plan and 
some Excel programming, efficient set mathematics can be introduced in the classroom 
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without any great burden to the student or the instructor. 
The paper introduces linear algebra as a means of simplifying portfolio statistics in 

the first section. This theme is expanded in section 2 where a matrix algorithm is 
developed for finding the minimum return variance portfolio weights of many asset 
portfolios. In section 3, the matrix algorithm is expanded even further to generate an 
efficient frontier and a capital allocation line for a given number of securities. In section 
4, the mathematics developed in the previous sections produce regression analysis. 
Section 5 concludes the paper. 

A COMPELLING REASON TO USE LINEAR ALGEBRA 

It is assumed that the student is already familiar with the statistical concepts of 
expectation (E(*),mean), variance (Var(*)), standard deviation (SD(*)), covariance 
(Cov(*)), and correlation [see Arnold and Nail, 2001 for a review in the context of 
portfolio theory] as it relates to a two asset portfolio. To find the expected return and 
return variance for a two asset portfolio there are two basic equations (Wi is the weight 
of asset "i", the weights of the assets in the portfolio sum to one, and capital letters 
represent security returns): 

(1) E(porifolio)= WA * E[A]+ WB * E[B] 

(2) 
Var(porifolio] = W] *Var(A] + Wjw( B]+2 * WA * W8 * Cov( A,B] 

These equations are not particularly difficult, but let's produce the same two equations 
for three assets. 

(3) 

(4) 

E[porifolio]= ~ * E(A]+ W8 * E(B]+ We* E(C] 

Var[porifolio]= Wl*Var[A]+ Wi*Var[B]+ W~*Var[C] 

+ 2*~ *~ *Cov(A,B)+ 2*WA *We *Cov(A,C] 

+ 2*W8 *J-Vc *Cov(B,C] 

Now let's produce the same two equations for four assets. 

(5) E(porifolio) = WA * E( A)+ W8 * E( B)+ We* E( C)+ Wv * E( D) 
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Var[porifolio)= W_i *Var[A)+ w; *Var[B)+ W~ *Var[C) 

+ 2*W~ *Var[D)+ 2*WA *~ *Cov[A,B] 

+ 2 * WA * We * Cov[ A, C] + 2 * WA * Wv * Cov[ A, D] 

(6) + 2 * W8 *We *Cov[B,C]+ 2 *~ *Wv *Cov[B,D] 

+ 2*Wc *Wv *Cov[C,D] 

Given the length of the latter equations, it does not take much convincing to 
demonstrate that a better, more systematic way of generating expected portfolio returns 
and portfolio return variances is necessary. Memorizing a new set of formulas for each 
n-asset portfolio just isn't productive. 

By using matrices for these calculations, a generic algorithm emerges that never 
changes. The matrix contents adjust to the number of securities under consideration, 
however, even these adjustments occur in a systematic fashion. By producing the 
matrix equivalent of these equations for the two asset case, extensions to the algorithm 
produce minimum variance portfolios, an efficient frontier, and a capital allocation line. 
Although not much matrix algebra is necessary, chapter 2 of Greene [2000] provides a 
nice review for the interested reader. 

To produce the matrix equivalents of the portfolio expected return and the portfolio 
return variance for a two asset portfolio, two column matrices and one square matrix are 
necessary. Any column matrix can be transposed to become a row matrix. The 
transposition of a matrix is symbolized with a superscript "T" (or a prime can be used). 
"M" will be the column matrix containing the expected returns for the individual 
securities. "VCOV'' will be the square matrix containing the return variance of the 
individual securities along its diagonal with the appropriate return covariances along the 
off-diagonal (i.e. VCOV is the variance-covariance matrix). Finally, "W'' will be the 
column matrix containing the individual security portfolio weights (remember, the 
weights must sum to one). 

(7) [
E[ Aj] [Var[ Aj 

M= E(Bj ;VCOV= Cov(A,Bj 
Cov[A,Bj] ;W=[WA] 
Var(Bj W8 

To find the portfolio expected return, we simply pre-multiply W by MT (i.e. MT*W): 

(8) 
E[porifolio]= Mr*W= [E[A] E[B]J*[~] 

= ~ * E[ A) + ~ * E[ B) 
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Technically, the result of the matrix multiplication is a lxl matrix, but the matrix 
notation is dropped when a lxl matrix is the result. When performing this operation 
in Excel, one uses the =TRANSPOSE() function to transpose a matrix and the MMUL T() 
function to multiply matrices. However, Excel is somewhat peculiar in its execution of 
matrix multiplication. First, one must highlight the area for the matrix that is the result 
of a matrix multiplication. Next, enter the ranges of the matrices to be multiplied 
within the MMULT() function (do not hit the "ENTER" key!!). Finally, simultaneously 
hit "CRTL-SHIFT-ENTER" keys to perform the matrix multiplication. When Excel 
equations produce a lxl matrix, the final step is required, however, it is good practice 
to get use to it. If you are wondering, you must start over completely should you forget 
to finish with CTRL-SHIFT-ENTER. Thus, the Excel equation for the portfolio mean 
is: 

=MMUL T(TRANSPOSE{range for matrix M), range for matrix W) 

The portfolio return variance is a multiplication of three matrices: WT*VCOV*W. We 
produce the multiplication in steps to produce a clear visualization: 

(9) 

Var[porifolio]= WT *VCOV* W 

= [wA W. ]*[Var[A] Cov[A,B]]*[w_.]· 
8 Cov[A,B] Var[B] We 

[
W,. *Var[A]+ Cov[A,B] l 

= [wA wB]* WA *Cov[A,B]+ We *Var[B] 

= w: *Var[A]+ ~*We *Cov[A,B]+ Wi *Var[B]+ ~*We *Cov[A,B] 

= w: *Var[A]+ Wi *Var[B] + 2 *WA *fVe *Cov[A,B] 

The corresponding Excel equations are: 

=MMUL T(TRANSPOSE{range of matrix W), range of matrix VCOV) 
=MMUL T{matrix from the previous calculation,range of matrix W) 

Note: the MMULT function is limited to the multiplication of two matrices only. 

Table 1 summarizes the execution of the Excel commands for a two asset portfolio 
with actual numbers. Replicating the steps illustrated in the table allows the user to 
become comfortable with the Excel commands and is highly recommended. 

The matrix multiplication equivalents to the portfolio expected return and the 
portfolio return variance are the same no matter how many assets are in the portfolio. 
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Table 1. Matrix Multiplication Techniques in Excel to 
Find Portfolio Mean and Variance 

- Matrix "M" is the column matrix of expected future return for two securities 
- Matrix "VCOV" is the variance-covariance matrix relevant to the two securities 
- Matrix "W" is the column matrix of portfolio weights for the two securities 
- (C-S-E} means hit the keys CRTL-SHIFT-ENfER simultaneously to enter the matrix 

multiplication command 

Thus, the matrix approach is very systematic in this respect. As the portfolio size 
increases to "n" assets, the contents of the three matrices change. W and M remain 
column matrices but with "n" elements in each. VCOV remains a square matrix, but 
with "n*n" elements. Students tend not to have difficulty with M and Was the number 
of assets in a portfolio rise, but they do have a difficulty in visualizing how VCOV 
changes. Before continuing, an intuitive means of producing VCOV as the number of 
securities in a portfolio increases is useful. 

The first step is to view VCOV as a table of covariances in which each column and 
row represents a given security and where a given column and row intersect, take the 
covariance between the two relevant securities. This is performed in Panel A of Table 
2 for a three security portfolio. In Panel B of Table 2, use the fact that the covariance 
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Table 2. The Construction ofVCOV in a Table ofCovariances Format 
for Three Securities 

Panel A: Covariance Between Securities Based on Row and Column Position 
Security A: Security B: Security C: 

Security A: Cov(A,A) Cov(A,B) Cov(A,C) 
Security B: Cov(A,B)' Cov.(B,B) Cov(B,C) 
SecurityC: Cov(A,C)' Cov(B,C)' Cov(C,C) 

Panel B: Reproduce Panel A with. Vanances 
Security A: Security B: 

Security A: lf;I;;Jif., 'Var(A) !-

Security B: '>f 'o:, Coy(A;ImtJi, 
Securi C: '-~,;i,I§CovA,G'i'!i" 

*Cov(i,j) = CovG,i); The shaded area in Panel B is the VCOV matrix 

of a given security with itself is equal to the variance of the given security. 
The shaded area in Table 2 Panel B is the VCOV matrix. Whenever, the portfolio 

increases by one security, the VCOV gains another row and column. 
Although a matrix algorithm for finding the portfolio expected return and the 

portfolio return variance for "n" securities now exists, the student still does not have the 
full story. Hiding in the background is the assumption that the individual security 
weights in the portfolio sum to one. This is an easy condition to fulfill in the two asset 
portfolio by setting the weight of the second security to one minus the weight of the 
first security. A set of portfolio weights that produce the minimum variance portfolio 
[see Arnold and Nail, 2001] can easily be generated. When there are more than two 
securities, the ability to minimize the portfolio variance while keeping the portfolio 
weights summed to one is a complicated task without the use of matrices. In the next 
section, a matrix algorithm is produced to perform this task. 

MINIMUM VARIANCE PORTFOLIOS 

The matrix algorithm developed in this section is applied to a two asset portfolio 
case to keep the notation simple. However, the applicability of the result is for "n" asset 
portfolios. First, the constraint that the portfolio weights sum to one must be 
considered. By introducing a Lagrange Multiplier [Chiang, 1984, pp.372- 375] the 
constraint will be incorporated. In very simple terms, a Lagrange Multiplier introduces 
a constraint by creating a zero condition. When the constraint is met, the zero 
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condition is equal to zero. Thus, a zero condition must be created by the constraint that 
W A plus W 8 must equal one. By realizing that one minus W A minus W8 is equal to zero, 
the zero condition is created. The multiplier itself is symbolized (usually) by a greek 
letter (A is used here ). A is multiplied by the zero condition and is added to the 
portfolio return variance equation. To simplify notation, this new equation is referred 
to as "V." 

(10) 

V = w; *Var[A]+ Wi *Var[B]+ 2*WA *W8 *Cov[A,B] 
+A. *(1- ~- fVn) 

To find the individual security weights that minimize the portfolio return variance, 
take the first derivative with respect to WA, W 8, and A. Each derivative is set to zero 
and then solved for the portfolio weights. Three equations emerge that need to be 
solved simultaneously. 

(11) 
ov 

- = 2 * W * Var[ A]+ 2 * W. * Cov[A B]- J = 0 ow A B , 
A 

J 
:. ~ *Var[A]+ W8 *Cov[A,B]- 2= 0 

(12) 
8V --= 2*W8 *Var[B]+2*WA *Cov[A,B)-A. = 0 

OWB 

A. 
:. WA *Cov[A,B]+ ~ *Var[B]- 2= 0 

ov 
(13) OA = 1- WA- WB = 0 

:. WA + Wn = 1 

To get to the matrix algorithm, expand equations 11 through 13 to view them in 

terms ofWA, W 8 , and (-""A/2). 

(14) 

(15) 

WA *Var[A]+ W8 *Cov[A,B]+ (- ~) *1 = 0 

~ *Cov[A,B]+ W8 *Var[B]+ (- ~) *1 = 0 
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(16) 

Now, express the simultaneous eguations in terms of matrices. 

(17) 
[

Var(A] Cov(A,Bj 1] [ WA l [0] 
Cov[ A,B] Var[B] 1 * W8 = 0 

1 1 0 -A, /2 1 

The first matrix contains VCOV surrounded by ones with a zero in the bottom right 
comer. For convenience, the matrix is referred to as "MINVCOV". The second matrix 
is W with a Lagrange Multiplier term on the bottom. Refer to this matrix as "MINW". 
The third matrix simply has zeroes with a one on the bottom. Refer to this matrix as 
"L". 

The minimum return variance portfolio weights are produced upon finding the 
solution for MINW. Given the solution for MINW, the top two elements in MINW are 
the respective minimum return variance portfolio weights. To find the solution, the 
matrix inverse ofMINVCOV (symbolized as MINVCOY1

) is necessary. 
The inverse of a square matrix is another square matrix that when multiplied by the 

initial square matrix produces the corresponding identity matrix. Unfortunately, it is 
a rather rare case in which the inverse of a matrix is just simply the inverse of the 
elements within the initial matrix. There are "pen and paper" techniques to finding an 
inverse matrix but Excel's MINVERSE() function is quite useful in this situation. First, 
the matrix algorithm (solution) for MINW is MINVCOY1*L: 

(18) 

The Excel solution for MINW is as follows: 

86 

1. Highlight the area for an "n+1" column matrix (assuming an n-asset portfolio; 
in our current example, n+l is three) for matrix MINW 

2. Type in =MMUL T(MINVERSE(range for matrix MINVCOV), range for matrix 
L) 

3. CRTL-SHIFT-ENTER 
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Table 3: Generic Technique for the Matrix Multiplication of the 
Inverse of a Square Matrix by a Column Matrix in Excel 

Inverted and 

- {C-S-E} means hit the keys CRTL-SHIIT-ENTER simultaneously to enter the matrix 
multiplication command 

A generic Excel technique for multiplying the inverse of a square matrix by a 
column matrix is provided in Table 3 with actual numbers. Again, the user is encouraged 
to replicate the technique in Table 3 to become comfortable with the Excel matrix 
commands. 

This solution for MINW (=MINVCOv-t.L) applies for all "n" asset portfolios. Again, 
the only changes are the elements in the respective matrices. The forms of the matrices 
are not difficult to remember. L has "n" zero elements with a one on the bottom. 
MINW has "n" minimum return variance portfolio weight elements with a Lagrange 
Multiplier term on the bottom. MINVCOV has "(n+ 1 )*(n+ 1 )" elements which are the 
VCOV matrix surrounded by ones and a zero in the lower right comer element. 

When shown this solution technique, students pick up on the algorithm rather 
quickly. To review the techniques from section one, have the students compute the 
portfolio expected return and the portfolio return variance using the minimum return 
variance portfolio weights. Admittedly, students will tend to ignore the Lagrange 
Multiplier optimization and just form the component matrices to perform the matrix 
algorit~ solution. However, the underlying math is still there for their benefit. 
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Now address the students with a logical problem: Suppose I want an expected return 
greater than the expected return for the minimum return variance portfolio. How do 
I get this expected return with the least amount of portfolio return variance? Essentially, 
a solution for a given point on the efficient frontier generated by "n" assets is being 
requested. The matrix algorithm solution is provided in the next section. Before leaving 
this section, it is also informative to note that the efficient frontier begins at the 
minimum variance portfolio. 

THE EFFICIENT FRONTIER AND THE CAPITAL ALLOCATION LINE 

First, address the initial problem of finding the minimum return variance portfolio 
weights given a desired expected return of"k". Again, the matrix algorithm is performed 
for the two asset case as a matter of convenience. To address the problem, a new 
constraint must be recognized (i.e. k = WA*E[A] + WB"E[B]). The constraint is altered 
into a zero condition (0 = k- W A *E[ A] - W B *E[B]) producing a new Lagrange Multiplier, 
"&",which is multiplied by the zero condition and added to the 'V'' equation from the 
previous section. Refer to this new equation as "Q'. 

(19) 

Q= W] *Var(A]+WJ *Var(B] 

+2*WA *W8 *Cov{A,B] 

+2*(1-WA -W8 ) 

+8*(k- WA * E[ A]- W8 * E(B]) 

As in the previous section, take the derivative of Q with respect to W A• W B• A, and &. 
Set the derivatives to zero and solve the four equations simultaneously. 

(20) 

(21) 

(22) 

88 

CQ = 2*WA *Var[ A)+2*W8 *Cov[A,B)-2-8* E[A] = 0 
bWA 

A. b 
:. WA *Var[A]+ W8 *Cov[A,B]- 2- E[A)2= 0 

iQ = 2*WB *Var[B)+2*WA *Cov(A,B)-It-o* E[B]= 0 
OWB 

A, 8 
:. W8 *Var[B]+WA *Cov[A,B]---E[B]*-= 0 

2 2 

oQ 
-=1-W-W.=O OA A B 

:. ~ + WB = 1 
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(23) ~; = k- ~ * E[ A]- W8 * E[ B] = 0 

:. WA * E[A]+ WB * E[B] = k 

The equations are re-express relative to WA> W 8 , (-N2), and (-o/2). 

(24) WA *Var(A) + W8 *Cov(A,B) +(- ~) *1+(- ~) * E[A) = 0 

(25) WA * Cov( A,B] + W8 * Var( A]+ (- ~) * 1 + (- ~) * E[ B] = 0 

(26) WA * 1 + ~ * 1 + (-, ~) * 0 + ( %) * 0 = 1 

(27) 

As in the last section, reproduce the set of simultaneous equations into matrices. 

(28) 

Var[A] Cov[A,B] 1 

Cov[A,B] Var[BJ 1 

1 1 0 

E[A) E[B) 0 

E[A] 

E[BJ 
0 

0 

WA 

* 
TVa 

-}./2 

-o/2 

= 

0 

0 

1 

k 

These three matrices are very similar to MINVCOV, MINW, and L. This comes as no 
surprise since equation "Q' is equation ''V'' with an additional constraint. The first 
matrix contains the MINVCOV matrix bordered with the expected returns of the 
individual portfolio securities and zeroes. Refer to this matrix as "EFFVCOV''. The 
second matrix is MINW with an additional Lagrange Multiplier term. Refer to this 
matrix as "EFFW''. The third matrix is L with the addition of the desired expected 
return, "k". Refer to this matrix as "K". 

Upon solving for EFFW (=EFFVCOV1*K), the first "n" elements are the portfolio 
weights (for an n-asset portfolio) that yield the desired expected return with the least 
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amount of portfolio return variance. 

Var[A} Cov[A,B] E[A} -1 
0 WA 

Cov[A,B] Var[B} E[B} 0 WB 
(29) * I I 0 0 -A./2 

E[A} E[B} 0 0 k -J/2 

The Excel procedure to find EFFW is similar to that for MINW in the previous 
section (and illustrated in a generic fashion in Table 3): 

1. Highlight the area for an "n+2" column matrix (assuming an n-asset portfolio; 
in our current example, n+2 is four) for matrix EFFW 

2. Type in =MMUL T(MINVERSE(range for matrix EFFVCOV), range for matrix 
K) 

3. CRTL-SHIFT-ENTER 

To map out the efficient frontier for "n" assets, simply graph the minimized 
portfolio return standard deviation (square root of the minimized portfolio return 
variance) on the x-axis versus "k" (the desired expected return) on the y-axis. One 
cannot use an Excel data table in this instance by varying the value of "k" because "k" 
is a part of matrix K. Unfortunately, no portion of a matrix can be altered in Excel to 
create a data table. Fortunately, one can enter different values for "k" and record the 
corresponding minimized portfolio return standard deviation to produce the data pairs 
for such a graph. 

Although the mapping of the efficient frontier is certainly appealing, the procedure 
to find EFFW is not much different than finding MINW in the previous section. This 
creates a nice continuity between the two sections and may even make EFFW seem 
somewhat of an "afterthought". To prevent an under-appreciation of EFFW, we 
introduce a risk free asset into the portfolio. Let's assume it has a return, "RF", and that 
it is the second security ("B") in our two asset portfolio example. By definition, the risk 
free security will have a zero variance and its covariance with any other security is also 
zero. Thus, the solution for EFFW changes in a distinct manner assuming "k" is greater 
than the risk free rate. 

Var[A] 0 E[A] -1 
0 WA 

(30) 
0 0 RF 0 ~F 

* = 
I 0 0 I -J../2 

E[A] RF 0 0 k -o/2 
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Graphing the expected return versus the portfolio return variance under these 
circumstances generates a straight line. In fact, for an "n" asset portfolio, the entire 
portfolio will be composed of really two sets of funds. One fund is the risk free security 
and the other fund is a "tangent portfolio" of the efficient frontier composed of all of the 
risky assets. To find the weights of the tangent portfolio: for a given value of"k", one 
simply divides each risky asset portfolio weight by (1 -portfolio weight in the risk free 
security). The tangent portfolio compositions will not change with "k". This is an 
example of two fund separation [corollary 5 in the appendix of Roll, 1977]. 

The straight-line graph itself is a Capital Allocation Line based on the "n" securities. 
One can very easily segue into the development of the Capital Asset Pricing Model 
[Sharpe, 1964] or even towards regression analysis as seen in the next section. Thus, the 
matrix algorithm for EFFW provides more than just an extension of section 2. 

A SEGUE TOWARDS REGRESSION 

The matrix mathematics demonstrated in the previous two sections are remarkably 
similar to what one tries to accomplish in regression analysis. In regression analysis, one 
is essentially trying to describe the behavior of one variable (the dependent variable, 
usually symbolized by "Y") using other variables (independent variables, usually 
symbolized as "X;"). The goal is to select coefficients, 'W', for the independent variables 
such that the dependent variable less the independent variables with associated 
coefficients has: a) a mean of zero and b) has as little variance (i.e. squared error) 
as possible. This process of solving for coefficients can be viewed in a portfolio 
context. 

Visualize a portfolio that is composed of the dependent variable less all of the 
independent variables. The weight assigned to the dependent variable is 100% and the 
weights of the independent variables are the associated coefficients (~;s). These latter 
weights must be calculated. Essentially, the goal is to find the minimum variance 
portfolio for this specific case. However, the minimization is to be calculated with the 
mean of this portfolio equal to zero. Thus, a Lagrange condition exists that is similar to 
the condition introduced in the last section by setting "k" to E[Y]. 

In other words, with the appropriate selection of coefficients (weights) on the 
independent variables, a model can be found that describes the behavior of the 
dependent variable. This model, when subtracted from the dependent variable, will 
have zero error on average (i.e. the mean of our "visualized" portfolio is zero) and 
minimal summed squared error (i.e. the variance of our "visualized" portfolio is 
minimized). 

For example, assume the dependent variable, "Y", is to be characterized by the 
independent variables "X1" and "X2". The equation (call it "R") for the variance of the 
(three asset) portfolio is: 
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(31) 

R = (100%)2 * Var[Y] + N * Var[X1]+ P2
2 * Var[ X2 ] 

-2 *(100%)* P. *Cov[r,x.] 

-2 *(100%)* P2 *Cov[Y,X2 ] 

+ 2 * P1 * P2 * Cov[X.,X2 ] 

In addition, the mean of the portfolio is zero, i.e. the model is to match the 
dependent variable on average. A zero condition of (E(Y) - ~1 * E(X1) - ~2 * E(X2)) can be 
used, but we may lose some flexibility in allowing the variances of the two independent 
variables to explain the variance of the dependent variable (however, there are cases in 
which this is desired). Instead, introduce a new variable "a" which behaves as a 
constant and simply equals the average difference between E(Y) and (~1* E(X1) + ~2* 
E(X2)). This constant term has no variance (similar to the risk-free security in the 
previous section) and is considered the "intercept" term in the regression. 
Consequently, the dependent variable, "Y", is explained by an intercept term "a" and 
two independent variables "Xt and "X2". The zero condition desired is: (E(Y) - a - ~1 * 
E(X1) - ~2* E(X2)). The Lagrange Multiplier is symbolized with "1r" and allows the 
creation of equation, "RG", which contains the previous equation "R". 

(32) 

RG = (100%)2 *Var[Y]+ P1
2 *Var[x.]+ P22 *Var[X2] 

-2 *(100%)* P1 *Cov[Y,X1]- 2 *(100%)* P2 *Cov[Y,X2] 

+2*P1 *P2 *Cov[X1,X2 ] 

+JZ' *(E[r]- a- P. * E[x.]- p2 * E[x2D 

To solve for a, ~I' and ~2, take the derivative ofRG relative to ~1 , ~2, a, and lr. Set 
each derivative to zero and solve the four equations simultaneously. 

(33) 

MG ) oft. = 2 * P. *Var[x.]+ 2 * Pz *Cov[x.,x2 

- 2 *Cov[Y,X2]- .1Z' * E[x.] = o 
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(34) 

(35) 

(36) 

iJRG 
iJfJ

2 

= 2*fJ2 *Var[X2 ]+2*fJ1 *Cov[XpX2 ] 

- 2 * Cov[ Y, X2 ]- 1t * E[ X 2 ] = 0 

iJRG 
--=-ff=O 
!Ja 

1( 
. --0 .. 2-

0::: = E[Y]- a+ /31 * E[x1]- fl2 * E[x2]= o 

:. fJ1 * E[X1]+ /J2 * E[X2 ]+ a= E[Y] 

Re-express each equation relative to ~1 , ~2, a, and ( -rr/2). 

(37) 

(38) 

(39) 

(40) 

P1 * 0 + P2 * 0 + a * 0 + (- ff I 2) * 1 = 0 

As before, the equations can be expressed in a matrix format. 

Var[xJ Cov[X1,X2 ] 0 E[x~] Pt Cov(Y,X1] 

Cov[X1,X2 ] Var[X2 ] 0 E[x2] • p2 = Cov[Y,X2] 
(41) 0 0 0 a 0 

E[x~] E[x2] 0 -tr/2 E[Y) 
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In the current framework, the portfolio solution created is termed an Ordinary 
Least Squares (OLS) regression. The "least squares" portion of the expression refers to 
the minimization of the portfolio variance. However, in regression analysis, there is no 
such thing as a portfolio variance. Rather, the term "squared standard errors" is used and 
is similar, but not the same as the VCOV portion of the above matrices. Further, any 
variance remaining in the portfolio (after minimization) is considered the "residual 
squared error" for the regression. As performed in the previous sections, a solution for 
~1 , ~2, a, and (-rr/2) can be found by taking the inverse of the first matrix and 
multiplying it by the third matrix. 

However, solving directly for the coefficients is rather instructive. The solutions 
for a, ~1 , and ~2 are shown below. 

(42) 

(43) 

(44) 

_ {cov[Y,X1]*Var[X2 ]- Cov[Y,X2 ]*Cov[X~>X2 ]} 
p1

- {var[X1]*Var[X2 ]- Cov[XI,xz]*cov[xi,Xz]} 

The denominator for the~ coefficients is the "determinant" of the VCOV matrix, which 
is a calculation that is instrumental for finding the inverse of the matrix. Since our 
matrix algorithms depend on the ability to find inverse matrices, this is certainly a point 
of concern. 

If the two independent variables are exactly correlated positively or negatively (i.e. 
a correlation coefficient of one or negative one), the denominators of the ~ coefficients 
become zero and the coefficients are consequently unsolvable. Regarding the matrix 
algorithm, the matrix containing the VCOV matrix does not have a corresponding 
inverse matrix causing the matrix algorithm to fail as well. 

This is a case of"multicollinearity" within the independent variables. An in-depth 
analysis of multicollinearity is not necessary (nor the point of this paper), however, it 
is worth mentioning that if two independent variables have a highly positive (close to 
one) or highly negative (close to negative one) correlation, calculation of the coefficients 
is still problematic. In essence, the denominators of the ~ coefficients approach zero 
causing the coefficients to become rather large. Fortunately, in the calculation of 
optimal portfolio weights, multicollinearity is not an issue. 

If the independent variables are uncorrelated (i.e. their covariance is zero), the 
solution for the p coefficients is greatly simplified. 
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(45) 

(46) 

One can continue along this vein to demonstrate the testing of individual 
hypotheses. However, the demonstration of how regression analysis is similar to 
portfolio analysis is complete. Through the brief discussion of multicollinearity, it is 
further demonstrated how regression analysis involves different issues relative to 
portfolio analysis. Perhaps the key difference between the two analyses is that portfolio 
weights need to sum to one and regression coefficients do not need to sum to one. 
Consequently, the Lagrange condition from section 2 was not needed to perform the 
regression analysis. For further connections between the two analyses, the interested 
reader is referred to the work of Britten-Jones [1999]. 

CONCLUSION 

Although much of the results in the first three sections are expansions from the 
appendix of Roll [ 1977] and are consequently attributed to Roll, Roll provides a number 
of citations to others for efficient set mathematics. The purpose ofthis paper is to take 
efficient set mathematics beyond two asset portfolios and bring it into the classroom. 
The linear algebra introduced is minimal and does not require extensive preparation. 
In fact, the matrix algorithms introduced provide the impetus to take advantage of the 
tools of linear algebra. 

Although many of the examples are produced with two asset portfolios, the "matrix 
algorithms" apply to many asset portfolios. Particularly with the aid of a spreadsheet 
program, multiple asset portfolios are not beyond the comprehension of undergraduate 
students. This provides a more satisfying course and allows the student to realize that 
the job of a portfolio manager is not beyond his/her capabilities. 

To make a complete treatment, it is recommended that the algorithms produced in 
this paper be applied to an actual time series of data. An extension of this concept is to 
produce portfolios based on data for the same set of securities over two different time 
periods. The two sets of portfolio weights can then be compared. Further, one can have 
the students set portfolio weights for a given expected return (with minimized return 
variance) and then measure the portfolio tracking error through time. 

The regression analysis segue is not integral to the portfolio management portion 
of this article. However, regression analysis fits in very nicely with the mathematics 
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developed in the earlier sections and demonstrates the additional benefits of teaching 
efficient set mathematics instead of only a heuristic non-rigorous discussion of the fund 
manager's problem in generating a portfolio. Allowing the students to work with the 
efficient set mathematics provides the potential for many other applications and the 
confidence of being able to use what is believed to be very complicated mathematics. 
Regression analysis is just one example. 

Essentially, this paper provides a set of matrix algorithms that enable the student 
to manage a multiple asset portfolio and provides the student with the necessary tools 
for much more. Depending on the lecturer's agenda, many topics and assignments can 
extend easily from the basic concepts provided by this paper. 
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