
University of Richmond
UR Scholarship Repository

Chemistry Faculty Publications Chemistry

12-4-2014

Molecular Dynamics Study of the Opening
Mechanism for DNA Polymerase I
Carol A. Parish
University of Richmond, cparish@richmond.edu

Bill R. Miller III
University of Richmond, bmiller4@richmond.edu

Eugene Y. Wu
University of Richmond, ewu@richmond.edu

Follow this and additional works at: http://scholarship.richmond.edu/chemistry-faculty-
publications

Part of the Polymer Chemistry Commons

This Article is brought to you for free and open access by the Chemistry at UR Scholarship Repository. It has been accepted for inclusion in Chemistry
Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact
scholarshiprepository@richmond.edu.

Recommended Citation
Parish, Carol A., Bill R. Miller, III, and Eugene Y. Wu. "Molecular Dynamics Study of the Opening Mechanism for DNA Polymerase I."
PLOS Computational Biology 10, no. 12 (December 4, 2014): 1-15. doi:10.1371/journal.pcbi.1003961.

http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fchemistry-faculty-publications%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fchemistry-faculty-publications%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fchemistry-faculty-publications%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/chemistry-faculty-publications?utm_source=scholarship.richmond.edu%2Fchemistry-faculty-publications%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/chemistry?utm_source=scholarship.richmond.edu%2Fchemistry-faculty-publications%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/chemistry-faculty-publications?utm_source=scholarship.richmond.edu%2Fchemistry-faculty-publications%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/chemistry-faculty-publications?utm_source=scholarship.richmond.edu%2Fchemistry-faculty-publications%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/140?utm_source=scholarship.richmond.edu%2Fchemistry-faculty-publications%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


Molecular Dynamics Study of the Opening Mechanism
for DNA Polymerase I
Bill R. Miller III1,2, Carol A. Parish2*, Eugene Y. Wu1*
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United States of America

Abstract

During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct
and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-
ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic
pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we
report the first atomistic simulations showing the conformational changes between the closed, open, and ajar
conformations of DNA polymerase I in the binary (enzyme:DNA) state to better understand its dynamics. We have applied
long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of
substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically
relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations
successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA
conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening
process starting from the open and ajar crystal structures, including the observation of a previously unknown key
intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their
movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to
revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase
using current computational methods without biasing the dynamics.
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Introduction

DNA polymerase, which is responsible for copying DNA, is a

vital enzyme involved in the transfer of genetic information for

living organisms. It is also utilized by scientists to replicate DNA

sequences during polymerase chain reactions (PCR). DNA

polymerase has the ability to quickly and accurately select the

proper 29-deoxynucleoside triphosphate (dNTP) to form a

Watson-Crick base pair despite being outnumbered by other

dNTPs and similar ribonucleoside triphosphates (rNTP). In fact,

replicative DNA polymerases can generate double-stranded DNA

at rates of tens or hundreds of nucleotide additions per second

while only incorrectly matching a nucleotide once every tens to

hundreds of thousands of nucleotides added [1]. This level of

specificity suggests the dynamics and conformations of DNA

polymerase are important for proper substrate binding and

catalysis.

DNA polymerase I consists of 59R39 exonuclease, 39R59

exonuclease, and polymerase domains (Figure 1). The Klenow

fragment of DNA polymerase I is an N-terminal deletion of the

dispensible 59R39 exonuclease domain [2]. Within the Klenow

fragment, the polymerase domain resembles the shape of a human

hand with a thumb subdomain that grasps the DNA, a palm

subdomain that contains the active site, and a mobile fingers

subdomain involved in dNTP binding [3,4]. The thumb (residues

496–595), palm (residue 617–655 and 830–869), and fingers

(residues 656–818) subdomains of DNA polymerase were named

based on their positioning around the bound DNA as observed in

crystal structures. The fingers domain consists of multiple a-helices

highlighted by the O-helix that directly interacts with the dNTP

substrate upon binding. X-ray crystallography and solution

kinetics studies have observed the fingers subdomain in three

distinct conformations (Figure 1), which are dependent on the

presence or absence of a dNTP in the active site [5,6,7,8]. The

fingers subdomain primarily resides in an ‘‘open’’ conformation

with no dNTP bound (binary state) to the polymerase. Upon

binding of a dNTP (ternary state) that forms a proper Watson-

Crick base pair with the template strand, the fingers domain enters
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a ‘‘closed’’ conformation that helps position the substrate in the

active site during catalysis [5,9]. And recently a third ‘‘ajar’’

conformation was discovered that places the fingers domain in a

semi-open state when a dNTP binds that forms a mismatch with

the template strand [10].

The mechanism of binding reactants and subsequently releasing

products post-elongation has been studied extensively, but

mechanistic details for the opening and closing of the fingers

domain have never been elucidated. The O-helix undergoes a

,40u rotation when the fingers close around the bound dNTP,

while the side chains of several amino acids on the helix are

involved in key protein-ligand interactions. From close examina-

tion of the closed crystal structure, an arginine and lysine in the O-

helix form salt bridges to help neutralize the negative charge of the

triphosphate on the dNTP, while a tyrosine near the active site

plays a key role in substrate specificity and closing of the fingers

domain [11]. Single-molecule Förster resonance energy transfer

(FRET) experiments of the DNA polymerase-DNA (binary)

complex indicate that the enzyme fluctuates between the three

conformations (open, ajar, and closed), but incorporation of an

incorrect nucleoside causes the O-helix to undergo a ,15u
rotation relative to the open structure, causing the ajar confor-

mation to dominate [12]. More recent DNA polymerase FRET

studies suggest the open conformation is present 81% of the time

with DNA bound in the absence of dNTP [13]. Although the

structures of the ternary (closed and ajar) and binary (open)

conformations have been characterized using X-ray crystallogra-

phy, the dynamics and atomistic details of the conversions between

the various states occur too quickly to observe with standard

experimental techniques. In this, we report the first structural

images for the conversion between closed, ajar and open binary

conformations.

Computational methods can help describe the dynamics of

biomolecules on an atomistic level not easily reached by

experimental structural biology [14]. In particular, molecular

dynamics (MD) simulations are able to simulate the movements of

these molecules using Newton’s classical laws of motion. Simula-

tions of apo molecules have led to the discovery and confirmation

of important biological conformational states and conformational

interconversions not available to traditional experimental tech-

niques [15,16]. MD has been used in many studies to understand

the dynamics of protein-DNA complexes, even DNA polymerase

[17,18,19]. Specifically, Golosov et al. used targeted (i.e. biased)

MD to observe the translocation of DNA after dNTP insertion by

artificially steering the simulation towards the desired endpoint

[20]. Unbiased MD simulations have previously been performed,

but limited to understanding localized motions of the amino acids

and nucleotides in the DNA polymerase complex, and have been

unable to observe any large-scale biomolecular motions during

short time-scales [17,21,22,23,24] except for smaller DNA

polymerase complexes [25,26]. In its infancy, MD could only be

utilized for these short (picosecond to nanosecond) time-scales, but

recent advances in computational hardware and MD software

have made it possible to reach significantly longer time-scales into

the microsecond and even millisecond range [27]. Consequently, it

is now possible to computationally model domain movements that

require long time-scale dynamics to observe [14].

The opening of the fingers domain in DNA polymerase I has

never been studied using unbiased all-atom computational

methods on the ms time-scale because of the high computational

cost of modeling such a large conformational change in a large

biomolecule. Biased MD simulations apply additional external

forces that might unnaturally influence the dynamics, but are

useful for studying conformational inter-conversions when suffi-

ciently long unbiased trajectories cannot be simulated. When

adequate computational resources are available, unbiased methods

are preferred for observing conversions between structures and

thus for examining biomolecular mechanistic details without

biasing the dynamics. In this study, we have utilized recent

computational advances to simulate the opening of the fingers

domain starting from the closed (PDB 1LV5 [28]) and ajar (PDB

3HP6 [10]) conformations of Bacillus stearothermophilus DNA

polymerase Klenow fragment using dynamics on the microsecond

time scale, and also simulated the open state (PDB 1L3S [28]) for

comparison. A detailed understanding of the opening process of

DNA polymerase is vital as we attempt to understand the complete

dynamics involved in DNA replication, and how we can apply our

knowledge in biotechnology to design better polymerases for PCR.

Additionally, these simulations are relevant to the polymerase

community because they provide a foundation for future

experimental and computational work and analysis with the

ternary DNA polymerase complex. We have fully characterized

the opening process that occurs prior to catalysis, and determined

the key events and movements that are critical to O-helix opening.

The transition from ajar to open is quick (,20 ns), while the full

transition from closed to open was observed taking nearly 300 ns.

We observed a key intermediate step in the pathway from closed to

open involving a salt bridge between an arginine side chain on the

O-helix and an aspartate in the thumb domain. We have also

identified critical changes in a handful of polymerase backbone

dihedrals and determined the order of events involved in the

transition from closed-to-open of the fingers domain. Altogether,

these simulations aid in the elucidation of the O-helix opening

mechanism for DNA polymerase on an atomistic level not

currently available with experimental measures.

Methods

Protein Preparation
Structures of B. stearothermophilus DNA Polymerase I were

acquired from the Protein Databank with the O-helix in the open

(PDB 1L3S [28]), ajar (PDB 3HP6 [10]), and closed (PDB 1LV5

Author Summary

All organisms are dependent on the proper replication of
their DNA for survival. DNA polymerase is the enzyme
responsible for copying our DNA during cell division. We
have performed computational simulations on DNA
polymerase to understand the fundamental dynamics of
the enzyme. Our simulations provide new information
about the way polymerase moves in solution that is not
obtainable through traditional experimental techniques. In
particular, we investigated the dynamics of DNA polymer-
ase ‘‘opening’’ in the binary state (enzyme+DNA with no
nucleotide substrate) starting from three different confor-
mations. The results are consistent with available exper-
imental data on the relative conformations of DNA
polymerase in the binary state. Furthermore, we identified
a novel intermediate species that we hypothesize plays a
role in the dynamics of nucleotide substrate binding.
Additionally, we determined the previously unknown
ordering of events in the opening mechanism, and
suggest new details about how the polymerase may
interact with an incoming nucleotide substrate. Lastly, this
research serves as a proof of principle that we can use our
methodology to perform long-time scale computational
simulations on DNA polymerase to explain currently
unknown phenomena surrounding DNA replication.

Understanding the Fingers Opening Mechanism of DNA Polymerase I
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[28]) conformations. Prior to simulations, the substrate ligand was

removed from the active site for both the 1LV5 and 3HP6

structures to create the binary complex (enzyme+DNA) for all

simulations. The 1L3S structure was crystallized with the wild-type

sequence, but the 3HP6 and 1LV5 structures were crystallized

with mutations. Specifically, 3HP6 was a D598A/F710Y double-

mutant, while 1LV5 had a D329A mutant that required in silico
mutations to regenerate the wild-type sequence in those structures.

MD with Amber
The ff99SB force field [29] was applied to the protein along

with the parmbsc0 modifications [30] for nucleic acids. Explicit

hydrogen atoms were added to all initial X-ray crystal structures

using the tleap module of AmberTools [31]. tleap was also used to

neutralize each system with Na+ counter ions and solvate a

truncated octahedron unit cell with TIP3P water molecules [32]

using a 12.0 Å solvent buffer between the solute and the closest

edge of the unit cell for a total atom count of ,80,000. The GPU-

accelerated pmemd code [33] of Amber 12 [31] was used to

perform all steps of MD for each system. All initial structures

underwent a seven-step minimization procedure involving 1000

steps of steepest descent minimization followed by 4000 steps of

conjugate gradient minimization at each step. Positional restraints

on all solute heavy atoms were initially set to 10.0 kcal/mol/Å2

and systematically lowered during each stage down to zero for the

final stage. After minimization, each system was heated linearly

from 10 K to 335 K over 2.0 ns, while positional restraints were

held constant at 10.0 kcal/mol/Å2 on the protein and DNA

strands. The final stage of the preliminary equilibration process

involved running MD at constant temperature (335 K) for 3.5 ns,

beginning with 10.0 kcal/mol/Å2 positional restraints on all heavy

atoms of the protein and DNA for the first 0.5 ns, and

systematically lowering the restraints every 0.5 ns until reaching

a final restraint weight of zero (unrestrained) over the final 0.5 ns.

After this equilibration protocol, unrestrained MD was performed

on all solvated systems at constant pressure (1 atm) using a

Berendsen thermostat with isotropic position scaling and constant

temperature (335 K) maintained with a Langevin thermostat [34]

using periodic boundary conditions, saving the coordinates,

velocities, and energies every 100 ps. Long-range interactions

were treated with the Particle Mesh Ewald method for periodic

boundaries using a nonbonded cutoff of 9.0 Å and the nonbonded

list was updated every 25 steps (default). New random number

seeds were chosen every 25 ns for each simulation to prevent

simulation synchronization of the trajectories [35]. The SHAKE

algorithm [36] was used to fix all covalent bond distances

Figure 1. The structure of DNA polymerase I (PDB code 1TAU) bound to DNA (orange ribbons) is shown on the left depicting the
59R39 exonuclease (purple surface), 39R59 exonuclease (yellow surface), and polymerase (white surface) domains (left). The inset on
the right shows a close-up of the mobile fingers subdomain (light green) of Bacillus stearothermophilus DNA polymerase I, with the open (red), ajar
(blue), and closed (yellow) conformations of the O-helix shown in relation to the dNTP substrate (sticks) and Mg2+ ion (pink).
doi:10.1371/journal.pcbi.1003961.g001

Understanding the Fingers Opening Mechanism of DNA Polymerase I
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involving hydrogen, allowing a 2-fs time-step for dynamics. Given

the time-scale of the expected conformational change, a mass

repartitioning method [37] was used on the 1LV5 system to create

hydrogen atoms three times heavier than normal hydrogen atom

mass, which was compensated by lowering the mass of each heavy

atom attached to any hydrogen atom in the system to maintain the

same overall mass. The mass repartitioning method allowed us to

increase the MD step size from 2 fs to 4 fs for the 1LV5 system.

The 1L3S, 3HP6, and 1LV5 starting structures were simulated

without restraints for a total of 500 ns, 1.0 ms, and 3.0 ms,

respectively, which were used for all analyses.

MD with Desmond
The 1L3S, 3HP6, and 1LV5 PDBs were prepared similarly for

MD using the Desmond 3.1 MD package [38,39,40]. Each

complex was checked for structural correctness using the Protein

Preparation Wizard in Schrödinger’s Maestro v9.4. Sodium and

chloride ions were added to reach a final concentration of

150 mM Na+ (while still maintaining a neutrally charged unit cell)

and the system was solvated with TIP3P water molecules after

reorientation to minimize the volume in an orthorhombic box.

The Amber force fields were applied to these periodic systems.

Additionally, each PDB system was simulated using the

Charmm27 force field [11,41], although the Charmm36 force

field has been available since 2012. The default Desmond

minimization and equilibration procedure was followed, except

the maximum number of steps for steepest descent and total

minimization were increased to 1000 and 5000 steps, respectively.

Simulations were kept at constant pressure (1 atom) and

temperature (335 K) maintained with a Berendsen barostat and

thermostat, respectively [42]. SHAKE was applied to all systems

allowing a 2-fs time-step. Long-range interactions were treated

with the Particle Mesh Ewald method for periodic boundaries

using a nonbonded cutoff of 9.0 Å and the nonbonded list was

updated frequently using the default settings. Coordinates and

energies for the Amber ff99SB force field simulations were saved

every 100 ps for a total of 500 ns, 1.0 ms, and 1.0 ms for the 1L3S,

3HP6, and 1LV5 systems, respectively. Coordinates and energies

for the Charmm27 force field were saved at the same interval for a

total of 500 ns for the 1L3S simulation, while the 3HP6 and 1LV5

systems were each simulated for 1.0 ms.

MD Analysis
All MD analysis (e.g. distance/angle measurements, RMSDs,

etc.) was performed using the cpptraj module [43] of AmberTools

13. All Desmond trajectories were centered, imaged, and

converted to DCD binary trajectory file format using VMD

v.1.9.1 [44] to ensure their readability by cpptraj.

Results

Opening Mechanism
In this study we performed nine MD simulations of B.

stearothermophilus DNA polymerase I in the binary state

(enzyme+DNA) starting from the open (PDB 1L3S), ajar (PDB

3HP6), and closed (PDB 1LV5) conformations of the fingers

domain for a combined total of 9.5 ms. We observed DNA

polymerase transition fully from the closed to open conformations

starting from the 1LV5 PDB (closed) structure (see movie in the

Supporting Information). We constructed the binary conformation

by removing the dNTP in silico from the active site and performed

MD using two different software packages and two unique force

fields to describe the dynamics (Table 1). This transition from

closed to open has never previously been observed experimentally

or computationally without applying a biasing potential. As

expected, the simulations were not identical (in particular, with

regards to the timing of the opening process); however, they all

appear to have traversed similar pathways.

To describe the conformation of the fingers domain at any given

time, we measured the distance between the a-carbons of Pro699

at the end of the O-helix and Arg629 residue in the thumb domain

of DNA polymerase (See Figure 2A). This single distance is able to

successfully capture the movements of the fingers domain as well

as an angle used in a publication by Golosov et al. [20] and a plot

of the RMSD of the fingers domain as a function of time in

reference to the original crystal structure used to start each

simulation (Figure 3). The plot of the Pro699-Arg629 distance

(Figure 2B) illustrates the dynamics of the fingers domain for each

simulation using the Desmond MD package with the Charmm27

force field (See Figure 2C and 2D for corresponding plots with the

Amber ff99SB force field). The 1L3S (open) simulation remains in

the open conformation for the entire 500 ns trajectory. 3HP6

(ajar) begins in the ajar conformation, but very quickly (,5 ns)

opens to a distance corresponding to the open conformation.

Meanwhile, the fingers domain for the 1LV5 (closed) simulation is

initially closed for more than 100 ns, but partially opens into a

conformation similar to but distinct from the ajar shortly at

,125 ns. The polymerase remains in this intermediate state for

,50 ns before it returns the closed state for ,100 ns duration and

finally fully opens at ,290 ns where it persists for the remainder of

the simulation. The ability of the DNA polymerase fingers domain

to clearly sample all three conformations (Figure 4 and Table 2)

coincides with experimental evidence that suggests each state is

thermodynamically accessible in the binary state [13].

We have utilized two of the most recognized and accurate MD

force fields (Charmm27 and Amber ff99SB) available for studying

the motions of biological macromolecules [45]. By applying

multiple force fields and MD software packages (Desmond and

Amber) with unique sampling algorithms we tested the depen-

dence of observed structural changes on the methodology used.

We focus here mostly on the results of the dynamics simulated with

Desmond using the Charmm27 force field because the observed

conformational changes occurred over a shorter time-scale making

the analysis simple and well-defined. The dynamics utilizing

Amber ff99SB simulated with both Desmond and Amber MD

software showed similar overall patterns to the Charmm27 force

field, and are also represented in the Figure 2.

The results of the six simulations using the Amber ff99SB force

field (Figure 2C and 2D) are summarized here as they relate to the

Charmm27 force field simulations (Figure 2A). Using the

Desmond software and the Amber ff99SB force field, 1L3S

remained in the open conformation for the entire simulation

whereas the 3HP6 (ajar) simulation transitioned very quickly

(,5 ns) to the open conformation and remained there. The 1LV5

(closed) Amber ff99SB simulation also transitioned into the open

conformation, but this process took longer (,775 ns) than it did

with the Charmm27 force field (,290 ns). Using the same starting

structure and simulating with Desmond and the Amber ff99SB

force field, the polymerase was primarily in the closed conforma-

tion until ,600 ns, and underwent a relatively slow and steady

transition (,175 ns) into the open conformation and never re-

visited the closed conformation after leaving it (Figure 2C). With

the Amber MD software using the ff99SB force field, 1LV5 did not

move to the open conformation until nearly 2.0 ms of simulation

time (Figure 2D). The apparent time-dependence of these

simulations is likely created by the inherent differences between

the two force fields; the Amber ff99SB force field does not allow

the polymerase to be as dynamic as the Charmm27 force field.

Understanding the Fingers Opening Mechanism of DNA Polymerase I
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Table 1. Summary of simulations performed on B. stearothermophilus DNA polymerase I in the binary complex.

No. PDB code Starts Software/Force field Results (fingers domain) Simulation Time (ms)

1 1L3S Open Desmond/Charmm27 Remains open 0.5

2 3HP6 Ajar Desmond/Charmm27 Opens after ,5 ns 1.0

3 1LV5 Closed Desmond/Charm27 Opens after ,290 ns 1.0

4 1L3S Open Desmond/ff99SB Remains open 0.5

5 3HP6 Ajar Desmond/ff99SB Opens after ,5 ns 1.0

6 1LV5 Closed Desmond/ff99SB Opens after ,800 ns 1.0

7 1L3S Open Amber/ff99SB Remains open 0.5

8 3HP6 Ajar Amber/ff99SB Opens after ,50 ns 1.0

9 1LV5 Closed Amber/ff99Sb Opens after ,1.9 ms 3.0

doi:10.1371/journal.pcbi.1003961.t001

Figure 2. The dynamics of the fingers domain illustrated by A) the a-C distance between Pro699-Arg629 of DNA polymerase
simulated with B) Desmond using the Charmm27 force field, C) Desmond using the Amber ff99Sb force field, and D) Amber using
the Amber ff99SB force field. The simulations are named according to their PDB codes and initial starting conformations where 1L3S (red) began
in the open conformation, 3HP6 (green) began in the ajar conformation, and 1LV5 (blue) was started from the closed conformation. The black
horizontal lines represent the distances corresponding to the three major observed conformations: open (O), closed (C), and the newly observed
intermediate (I) state. The inset in B) displays a close-up of the distances from 0–5 ns (highlighted by the vertical orange dashed line) to more clearly
depict the relatively quick opening of the simulation started from the 3HP6 ajar conformation.
doi:10.1371/journal.pcbi.1003961.g002

Understanding the Fingers Opening Mechanism of DNA Polymerase I
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Additionally, there is likely some fluctuation in the timing of the

opening transition created by the nature of MD simulations that must

traverse complicated potential energy surfaces (PES) utilizing different

initial seeds/velocities, causing the simulated timing of conformation-

al changes to vary from one trajectory to another. Thus, the timing of

these transitions is likely not well defined and should not be considered

the true amount of time required for each conformational change.

The detailed motions of DNA polymerase during the transition

from closed to open observed with Charmm27 are shown in

Figure 5. The 1LV5 (closed) crystal structure showed the existence

of a hydrogen bond between the side chains of Tyr714 and

Glu658 in the ternary (enzyme-DNA-dNTP) state (Figure 5A), but

after removing the dNTP and simulating the closed structure this

hydrogen bond is quickly broken (Figure 5B). This allows Tyr714

to move toward the template DNA base and causes the O-helix to

open slightly (,1.5 Å). The O-helix is held in this intermediate

position by a salt bridge between Arg703 and Glu562 of the

thumb subdomain, while Tyr714 and the guanine in the DNA

template continue to compete for the insertion site (Figure 5B).

Shortly after the Arg703-Glu562 salt bridge interaction is broken

(Figure 5C) the O-helix opens further, pulling Tyr714 into the

insertion site, inducing a rotation of the N-b-glycosyl bond of the

template nucleotide, and moving the template base out of the

active site (Figure 5D). The precise ordering of the last two steps is

not fully established because different force fields yielded different

results. The Charmm27 force field predicted the salt bridge to

break prior to the N-b-glycosyl bond rotation, while the two

Amber ff99SB force field simulations suggested the opposite

ordering. However, in all three simulations the steps succeeding

the intermediate conformation (Figure 5B) appear closely corre-

lated implying that they may occur nearly simultaneously.

Key Intermediate Conformation
Examination of the fingers domain dynamics in the 1LV5

(closed) simulation revealed an intermediate state corresponding to

a Pro699-Arg629 distance of ,13–15 Å that is stable along the

pathway from closed to open from ,100–170 ns and again from

,280–290 ns (Figure 2B). This state is not identical to the ajar

state of the 3HP6 crystal structure although the observed Pro699-

Arg629 distances are similar (see below for more details).

The intermediate conformation (Figure 5B) provides key insight

into the opening process of DNA polymerase I. This pathway has

Figure 3. Comparison of two different methods for measuring
the opening/closing of the O-helix on DNA Polymerase I. A) The
a-C distance between Arg629 and Pro699 shown in this manuscript
compared to B) the angle between the a-C of Arg629, Gly711, and
Asn700 used by Golosov et al. to determine the conformation of the O-
helix and C) a plot of the RMSD of the fingers domain as a function of
time in reference to the original crystal structure used to start each
simulation. The distance, angle, and RMSD measurements are directly
comparable, validating our use of the Arg629-Pro699 distance.
doi:10.1371/journal.pcbi.1003961.g003

Figure 4. A histogram of the Pro699-Arg629 a-C distances for
the 1.0 ms simulation (10,000 frames total) of PDB 1LV5
performed with Desmond using the Charmm27 force field.
The histogram clearly shows three distinct conformations were
sampled: closed (C), open (O), and the newly observed intermediate
(I) state.
doi:10.1371/journal.pcbi.1003961.g004
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never been observed crystallographically, likely due to the

complexity of trapping such a short-lived intermediate in the

binary state. However, the existence of this conformation utilizing

two different MD packages (Desmond and Amber) and two

different force fields (Charmm27 and Amber ff99SB) known to

describe well the protein and DNA systems indicates that its

presence in the opening mechanism is not dependent on the

computational method and strongly supports the existence of this

Table 2. An analysis of the percent of time that each DNA Polymerase simulation spent in the closed, intermediate, and open
conformations.

No. Initial Conformation Percent Closed (%) Percent Intermediate (%) Percent Open (%) Simulation Time (ms)

1 Open 0% 0% 100% 0.5

2 Ajar 0% 0.2% 99.8% 1.0

3 Closed 22.5% 6.5% 71.0% 1.0

4 Open 0% 0% 100% 0.5

5 Ajar 0% 0.4% 99.6% 1.0

6 Closed 75.7% 3.4% 20.9% 1.0

7 Open 0% 0% 100% 0.5

8 Ajar 0% 4.4% 95.6% 1.0

9 Closed 34.8% 28.9% 36.3% 3.0

Refer to Table 1 for more information about each simulation.
doi:10.1371/journal.pcbi.1003961.t002

Figure 5. The proposed opening mechanism for the fingers domain for DNA polymerase I. The secondary structure of the relevant
polymerase residues including the O-helix are shown in yellow ribbons, while the DNA is shown in orange. The key event in each image is circled. A)
The X-ray crystal structure of PDB 1LV5. B). The intermediate state showing the breaking of the Tyr714-Glu658 hydrogen bond, and the formation of
the salt bridge between Arg703 and Glu562. C) Depiction of the breaking of the Arg703-Glu562 salt bridge, which is quickly followed by D) the
rotation of the N-b-glycosyl bond of the template nucleotide allowing Tyr714 to replace the base in the active site, and resulting in the fully open
conformation of DNA polymerase I. Simulation times and O-helix distances correspond to the 1LV5 simulation performed using Desmond and the
Charmm27 force field.
doi:10.1371/journal.pcbi.1003961.g005
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intermediate during opening of the fingers domain. For the 1LV5

(closed) Desmond simulation using the Charmm27 force field, the

intermediate persisted for a total of ,80 ns before the fingers

domain opened fully. The intermediate was longer-lived using the

Amber ff99SB force field (,400 ns and ,1.0 ms lifetimes using the

Desmond and Amber MD software, respectively), although this

could be expected since the dynamics appear to move quicker

using the Charmm27 force field in general for DNA polymerase I,

as previously mentioned in the Results section.

The intermediate state observed in the 1LV5 (closed) simulation

is stabilized by a key salt bridge between an arginine residue in the

O-helix and a glutamate residue in the thumb domain of DNA

polymerase. To test whether the salt bridge constitutes a

substantial obstacle for opening, we in silico mutated Arg703 to

an alanine residue in 1LV5 and re-started the simulation under the

same conditions and simulated for 500 ns. The fingers domain of

the R703A mutant opened in ,50 ns, while the wild-type

required ,290 ns to reach the same conformation (Figure 6).

Given that the only difference between these two starting

structures is the mutation from arginine to alanine at position

703, this result provides further evidence of the importance of the

Arg703-Glu562 salt bridge intermediate along the opening

pathway for the fingers domain of DNA polymerase. The arginine

residue is highly conserved in bacterial DNA polymerase I

enzymes. 28 out of 33 DNA polymerase I enzyme sequences

from bacteria in UniProt contained an arginine at this location in

the O-helix, including ones from Escherichia coli and Thermus
aquaticus (Taq), which have been structurally characterized.

Arg703 is also known to be important for polymerase activity in

bacteria [46]. Mutation studies of the corresponding arginine in

Taq DNA polymerase I showed a clear loss of polymerase function

when mutated, although the role of the arginine residue was not

described [46]. Our simulations support those mutagenesis studies,

indicating the importance of this arginine to the polymerase and

additionally illustrate its role in forming a key intermediate during

the opening of the fingers domain.

As a final note on the intermediate state, although the fingers

domain is clearly between the closed and open conformations, this

newly observed state is not identical to the ajar state observed in

the 3HP6 PDB structure. The simulated intermediate has a heavy

atom root-mean-square deviation (RMSD) of 4.3 Å from the

3HP6 crystal structure. The largest structural differences between

the intermediate and the 3HP6 crystal structure arise in the fingers

subdomain with Arg703 and the thumb region of the polymerase

where Glu562 resides (Figure 7). The Arg703-Glu562 salt bridge

is not present in the 3HP6 crystal structure nor does it ever exist in

any of the simulations starting from the 3HP6 ajar conformation.

The 3HP6 crystal structure was generated by trapping DNA

polymerase with a non-Watson Crick dNTP paired to the

template strand in the active site, while our simulations are

performed in the absence of a dNTP molecule to mimic the

dynamics of the protein after elongation of the DNA primer strand

has occurred. This means that, experimentally, the two ‘‘ajar’’

conformations reside on two different potential energy surfaces

where the 3HP6 ajar state is only observed in the presence of a

dNTP in the active site, while the proposed intermediate state is

present only in the absence of dNTP (Figure 8). This is contrary to

the literature reported prior to this study that assumed the

polymerase conformation observed in the 3HP6 crystal structure

was identical to the conformation of polymerase observed in the

absence of dNTP. The single-molecule FRET experiments [13]

that previously reported the presence of open, ajar, and closed

conformations in the binary state probably observed the interme-

diate proposed in this study instead of the ajar state documented

from X-ray crystallography that likely only occurs with a bound

mismatch dNTP. Thus, the hypothesis for this new intermediate

structure from MD is consistent with solution studies that show an

intermediate state between the open and closed conformations in

the absence of dNTP. The exact purpose of the intermediate is not

fully understood yet, but it is clear that the presence of the

intermediate slows the transition from the closed to the open

conformation in the binary complex. Based on the similarity

between binary and ternary pathways to the closed conformation

(Figure 8), we speculate that the intermediate may also play a role

in the closing of the fingers domain during dNTP binding, possibly

providing an energetic barrier to opening that aids the enzyme

during substrate recognition.

Important Dihedrals Involved in Opening
Each backbone dihedral in the fingers subdomain of the

simulation started from the closed conformation (1LV5) was

compared to the corresponding open (1L3S), ajar (3HP6), and

closed (1LV5) crystal structure values. This investigation revealed

four specific backbone torsions important for opening of the

fingers domain—Asp680Q, Gly711Q, Val713y, and Ile716Q
(Figure 9). These dihedrals were identified because each dihedral

rotation corresponds to a significant change in the structure of the

fingers domain involved in converting between the open, ajar, and

closed conformations. The original rotation of each dihedral in the

closed (1LV5) crystal structure is shown in Figure 10. In the open

crystal structure (1L3S) the Asp680Q, Gly711Q, Val713y, and

Ile716Q dihedrals have values of 274.5u, 261.3u, 233.8u, and

2141.7u, respectively. According to the ajar crystal structure, the

Gly711Q and Val713y dihedrals rotate by ,11u and ,7u,
respectively, during an ajar-to-open transition. Meanwhile, the

Asp680Q and Ile716Q values undergo significant (,25u and ,60u,
respectively) transitions themselves between the closed (1LV5) and

open (1L3S) crystal structures. These changes were all observed

during our simulation that began in the closed and transitioned to

the fully open conformation.

Close examination of the dihedral values as the simulation

progresses (Figure 11) shows the ordering and impact of each

Figure 6. The O-helix distance as measured by the a-C distance
between Arg629 and Pro699 depicting the opening of the
fingers domain for the wild-type 1LV5 (blue) and R703A
mutant (purple) simulated using Desmond and the Charmm27
force field. The plot shows the mutant reaching the open
conformation in ,50 ns, while the wild-type does not open fully until
,290 ns.
doi:10.1371/journal.pcbi.1003961.g006
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dihedral. The transition from the closed state (Figure 9A) to the

intermediate (Figure 9B) is initiated by the ,30u rotation of the

Asp680Q dihedral at ,100 ns (Figure 11A), which results in a

large-scale movement of the N-helix in the fingers domain.

Subsequently, the Gly711Q and Val713y dihedrals rotate by ,20u
and ,35u (Figure 11B–C), respectively, creating a bend in the O-

helix (Figure 9D). In the Desmond/Charmm27 simulation the

fingers domain transitions back into the closed conformation after

,170 ns. Between 280–290 ns, the fingers domain undergoes two

major dihedral rotations to complete the transition to the open

conformation (Figure 9C). Once again, the process is initiated by

the rotation about the Asp680Q dihedral (lowering the N-helix),

followed shortly by a ,60u rotation of the Ile716Q dihedral

(Figure 11D). In this case, the rotation of the Asp680Q dihedral is

enough to overcome the barrier necessary to rotate the Ile716Q
dihedral and reach the fully open state.

The dihedrals from the simulations appear to correlate well with

the values from the existing crystal structures for each state

(Figure 9). Of interest, though, is the observation that although the

fingers domain appears fully open after 290 ns, the Gly711Q,

Val713y, and Ile716Q all make substantial ($20u) transitions

between 600 and 725 ns producing structures in excellent

agreement with the experimental values. The ,60u rotation

about the Ile716Q dihedral actually coincides with the movement

of the template DNA base flipping out of the pre-insertion site and

back into the active site (where it resided in the 1LV5 closed crystal

structure). The rotations by Gly711Q and Val713y correspond to

a rotation of the Tyr710x1 dihedral so the tyrosine side chain is

positioned for better p-stacking with the nucleotide of the template

DNA base. The dynamical nature of this region of the O-helix is

consistent with structural heterogeneity in crystal structures of

open, binary complexes of Bacillus DNA polymerase before and

after catalyzing DNA synthesis [7]. While the overall structure of

the enzyme remains the same, the structure of the loop between

the O and O1 helices (residues 714–717) flips back and forth

between two states after each step of processive DNA synthesis in

Figure 7. An overlay of the DNA polymerase fingers subdomain for the 3HP6 crystal structure (blue ribbons) and the observed
1LV5 intermediate state (yellow ribbons) characterized by the Arg703-Glu562 salt bridge. Although the end of the O-helix for both
structures is near the same location, the a-helices in the fingers domain are clearly different resulting in the 4.3 Å RMSD between the 1LV5
intermediate and the 3HP6 crystal structure.
doi:10.1371/journal.pcbi.1003961.g007

Figure 8. The proposed pathway for opening and closing of
DNA polymerase I in the presence and absence of dNTP. In the
binary complex (blue), the polymerase transitions through the
intermediate observed in this study (EINDNA), while the ternary complex
(yellow) transition is a separate, partially-closed conformation (EPCND-
DNANdNTP) on its way to the closed conformation. This pathway
depicts the enzyme in two different ‘‘ajar’’ conformation (EI or EPC)
determined by the presence or absence of dNTP in the active site.
doi:10.1371/journal.pcbi.1003961.g008
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the crystal (Figure 12), suggesting this region near Val713 and

Ile716 is flexible. Although the final orientation of Tyr710 and the

template DNA base is not consistent with the original 1L3S open

crystal structure, this movement hints at the fundamental

dynamics of the DNA polymerase active site while in the open

state. Based on these simulations, we can conclude that the

template base entering the active site is energetically accessible

while polymerase is in the open state. Currently, it is unknown

where the template base recognizes an incoming dNTP, although

it has been hypothesized the preliminary interactions occur outside

the active site [47]. These simulations suggest that the template

DNA base could enter the active site prior to dNTP binding and

recognize the incoming base while already in the active site instead

of outside the active site.

Dynamics of the Tyr714/Glu658 Motif
The Tyr714/Glu658 motif of DNA polymerase plays a vital

role in dNTP binding and stability of the ternary complex due to

its position in the active site. The 1LV5 and 3HP6 crystal structure

suggests a stabilizing hydrogen bond between the side chains of

Tyr714 and Glu658 for the ternary complex in the closed and ajar

conformations respectively, while no hydrogen bond is expected

for the open, binary state based on the 1L3S crystal structure.

Upon removing the dNTP in the 1LV5 and 3HP6 structures, the

Tyr714-Glu658 hydrogen bond is broken quickly (,5 ns, see

Figure 13), suggesting this is the initial step toward opening of the

fingers domain. Furthermore, recent studies have suggested this

hydrogen bond plays only a minor role in stability of the ternary

Figure 9. A depiction of the residues with backbone dihedrals—Asp680Q (purple), Gly711Q (pink), Val713y (green), and Ile716Q
(blue)—identified as important in the finger domain opening process of DNA polymerase. The fingers domain is shown in an ice blue
cartoon representation, while the O-helix is shown in yellow cartoon. The times within the black arrows between panels indicate the transition times
between the conformations. A) Conformation of the fingers domain in the 1LV5 crystal structure (closed) prior to running MD. B) Representative
conformation of the intermediate state observed from ,100–170 ns (139 ns shown) of simulation time. The red arrow indicates the large-scale
motion of the N-helix due to a rotation about the Asp680Q dihedral. C) Representative conformation of the open state observed from ,290–1000 ns
(500 ns shown) of MD caused by a rotation of the Asp680Q and Ile716Q dihedrals. D) A side view of the intermediate state at 139 ns depicting the
bend in the O-helix caused by rotations of the Gly711Q and Val713y dihedrals.
doi:10.1371/journal.pcbi.1003961.g009
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complex [13], so it is not surprising the hydrogen bond is not

present for long.

According to crystal structures, the position of Tyr714 in the

active site changes substantially based on the state of DNA

polymerase. In the ternary complex with the fingers domain closed

(1LV5) or ajar (3HP6), Tyr714 is positioned next to the template

base and hydrogen bonded to Glu658. In the binary state (1L3S),

Tyr714 moves into the active site, taking the place of the template

nucleotide. In all of the 1LV5 and 3HP6 simulations, after early

disruption of the Tyr714-Glu568 hydrogen bond, Tyr714

becomes more mobile creating van der Waals contacts with the

template base. Eventually, these clashes result in a ,90u rotation

of the N-b-glycosyl bond (Figure 14) of the nucleotide moving the

nucleotide out of the active site entirely, while Tyr714 replaces the

nucleotide in the active site and begins p-stacking with the n-1
base on the template strand, as the 1L3S (open) PDB structure

suggested. For the 1LV5 Desmond simulation performed with the

Charmm27 force field, this transition occurred at ,300 ns and

coincides with the opening of the fingers domain. By contrast, the

same transition occurs after only 22 ns in the 3HP6 simulation.

Although the transitions occurred later using the Amber force

field, the relative timing between the N-b-glycosyl bond rotations

for the 1LV5 and 3HP6 simulations remained consistent with the

Charmm27 force field.

3HP6 Simulations
The full polymerase fingers domain opening mechanism was

characterized using the 1LV5 simulations, but the 3HP6

simulations were performed in the binary state to examine the

opening process from ajar to open. As previously mentioned, in

every trajectory beginning from the 3HP6 conformation the

fingers domain opened quickly (always ,50 ns). The general

mechanism was similar to the simulations starting from the closed

simulation, except faster and without the formation of the

previously proposed intermediate state. The Tyr714-Glu658

hydrogen bond breaks initially, which eventually allows Tyr714

to replace the template base in the active site upon rotation of the

N-b-glycosyl bond of the nucleotide that positions the polymerase

in the open conformation. Once in the open conformation, the

simulations persisted in that state for the remainder of each

trajectory (up to 1.0 ms).

Figure 10. A close view of the exact orientations of the important dihedrals from the closed (1LV5) crystal structure for A) Asp680Q
(purple) and Ile716Q (blue) and B) Gly711Q (pink) and Val713y (green). The fingers domain is shown in an ice blue cartoon representation,
while the O-helix is shown in yellow cartoon.
doi:10.1371/journal.pcbi.1003961.g010
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The relative rate of opening of the polymerase starting from the

3HP6 simulations suggests the potential energy barrier between

the open and 3HP6 ajar conformations is relatively low compared

to other barriers in the opening process. The 3HP6 ajar

conformation was trapped experimentally using a double mutant

and with a non-Watson-Crick base pair in the active site (dTTP-

dG). Natively, the presence of a mismatch dNTP in the active site

of DNA polymerase typically invokes re-opening of the fingers

Figure 11. The relative dihedral values as a function of simulation time for the backbone torsions determined to be key to the
fingers domain of DNA polymerase transitioning from the closed to open conformations—A) Asp680Q, B) Gly711Q, C) Val713y, and
D) Ile716Q. Solid black lines indicate the values of each dihedral in the pertinent crystal structures, where 1L3S is in the open state and 3HP6 is the
ajar conformation.
doi:10.1371/journal.pcbi.1003961.g011

Figure 12. Bacillus DNA polymerase-DNA complexes before
and after processive DNA synthesis in the crystal. The fingers
subdomain is shown before (1L3S.pdb, cyan), and after the incorpora-
tion of 1 (1L3T.pdb, green), 2 (1L3U.pdb, magenta), 3 (1L5U.pdb, gray),
and 6 (1L3V.pdb, yellow) nucleotides into the DNA (crystal structures
from [7]).
doi:10.1371/journal.pcbi.1003961.g012

Figure 13. The distance between the side chain OH on Tyr714
and d-C of Glu658 for the open (1L3S, red), ajar (3HP6, green),
and closed (1LV5, blue) structured simulated using Desmond
with the Charmm27 force field. Tyr714 and Glu658 are not
hydrogen bonded in the 1L3S PDB (corresponding to a distance of
6.3 Å) or during any of the 1L3S simulation. The two residues are
hydrogen bonded in the initial 3HP6 and 1LV5 PDB structures (distance
,4 Å), but the hydrogen bond is broken within first 5.0 ns of each
simulation and does not reform. Note that this figure has been scaled to
only the first 50 ns of simulation time to demonstrate the timing of the
Tyr714-Glu658 hydrogen bond breaking.
doi:10.1371/journal.pcbi.1003961.g013
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domain, permitting the incorrect dNTP to dissociate and allowing

another dNTP to enter the active site. Considering the necessary

efficiency of DNA polymerase at differentiating between correct

and incorrect base pairs, it is logical to conclude the barrier

between the mismatched ajar conformation (3HP6) and the

original open conformation must be low so the enzyme can quickly

release incorrect base pairs. This hypothesis would be consistent

with our observation of a quick opening process from the 3HP6

ajar state to a conformation with the fingers domain fully open.

Discussion

Characterization of the opening pathway for DNA polymerase

is vital to fully understanding the dynamics of DNA polymerase,

and providing the groundwork for future work both experimen-

tally and computationally on the ternary protein:DNA:dNTP

state. We performed long time-scale unbiased MD to simulate the

opening of the fingers domain in B. stearothermophilus DNA

polymerase I pre-catalysis starting from both the ajar and closed

conformations in the binary state. We additionally performed

simulations on the open conformation to represent the stability of

the binary complex as a control experiment. Simulations were

performed in triplicate using the Amber MD software with the

Amber ff99SB force field and the Desmond MD software utilizing

both the Amber ff99SB force field and the Charmm27 force field.

All simulations, regardless of force field used or the starting

conformation, progressed and reached the open conformation as

expected based on experimental studies on DNA polymerase in

the absence of dNTP.

We have characterized the complete opening pathway (Fig-

ure 5) based on the dynamics of each simulation beginning in the

fully closed conformation. The process is initiated by the cleavage

of the Tyr714-Glu658 hydrogen bond, which is followed by the

formation a newly observed intermediate described by a key salt-

bridge between the side chains of Arg703 in the O-helix of

the fingers domain and Glu562 in the thumb domain. While the

polymerase resides in this intermediate state, Tyr714 and the

template base clash in the active site until the Arg703-Glu562 salt

bridge breaks and the N-b-glycosyl bond of the template rotates by

,90u allowing Tyr714 to replace the template nucleotide in the

active site. These stages were observed in all three simulations

starting from the 1LV5 PDB.

Further details regarding the key dihedrals in the fingers domain

suggest an ordering of events in the backbone movement of the

opening pathway for DNA polymerase. The Asp680Q dihedral

initially rotates the N-helix downward, forcing a change in the

Gly711Q and Val713y dihedrals that bends the O-helix while in

the intermediate state. Later rotation of the same Asp680Q
dihedral causes Ile716Q to rotate the O-helix enough to observe

the fully open conformation by 300 ns. However, movement of

these dihedrals 300–400 ns later in the simulation suggests the

active site is mobile in the active site and the template DNA base

can enter the active site while polymerase is in the open

conformation, which was not observed crystallographically. This

observation suggests that the presence of the template base in the

active site may facilitate elongation via dNTP recognition.

Impact for Future Molecular Dynamics Simulations
Although DNA polymerase I has been simulated previously

using MD, no simulations have been performed using unbiased

potentials over long time-scales before this study. We herein report

the stability of DNA polymerase I using multiple MD packages

(Desmond and Amber) utilizing two force fields (Amber ff99SB

and Charmm27) on time-scales of up to 3.0 ms at the high

Figure 14. The relative degree of rotation of the N-b-glycosyl bond for the template nucleotide in the 1LV5 simulation performed
with Desmond using Charmm27 force field. The torsion corresponds to an angle of roughly 290u when the nucleotide is in the active site and
then changes to ,0u when the N-b-glycosyl bond rotates moving the template nucleotide out of the active site entirely. Representative
conformations of the nucleotide are shown at 130 ns and 400 ns to show the rotation. The torsion being measured is defined in the bottom right of
the figure.
doi:10.1371/journal.pcbi.1003961.g014
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operational temperature of a thermophilic enzyme. The simula-

tions independently and accurately reproduced large conforma-

tional changes of DNA polymerease I known from X-ray

crystallography in addition to predicting a new intermediate that

would be difficult to observe experimentally. Future simulations on

polymerase can be performed with confidence knowing that the

current force fields have the ability to reproduce experimentally

derived structures, which implies we can ask more detailed and

specific questions about the polymerase dynamics not already

addressed in this study.

From a broader perspective, this study also provides informa-

tion about the state of our protein and nucleic acid force fields.

Most MD studies perform simulations that do not reach the ms

range, and only with recent technological advancements have we

been able to reach these time-scales. As computational chemists

simulate proteins and nucleic acids for longer time periods, we

must ensure the force fields are able to maintain biologically stable

structures. Most validation studies are performed on simulations of

nucleic acids [30,48] or proteins [49] separately that are typically

relatively small in size, but this study allows us to evaluate the

performance of these parameters simultaneously on a system

(DNA polymerase I) that is over 10,000 atoms unsolvated (up to

80,000 atoms solvated). The results from the ms simulations in this

study suggest the current force fields are sufficient for representing

and describing the dynamics of large protein-DNA complexes on

the ms time-scale. While it is unknown if these conclusions hold for

even longer time-scales or larger systems, the force fields seem

adequate to observe large-scale conformational changes in the

current study. Future studies will focus on the mechanism of the

fingers domain closing in the presence of a dNTP substrate in the

active site.

Supporting Information

Movie S1 Movie depicting the opening process of DNA
polymerase. This movie represents the first 500 ns of the

simulation began from the closed (1LV5) conformation and

simulated using Desmond and the Charmm27 force field.
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