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One-Pot Enol Silane Formation-Mukaiyama–Mannich Addition of Ketones, Amides, 
and Thioesters to Nitrones in the Presence of Trialkylsilyl 

Trifluoromethanesulfonates 
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[a]
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 and 
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Ketones, amides, and thioesters form enol silanes and add to N-

phenylnitrones in one pot in the presence of trimethylsilyl 

trifluoromethanesulfonate and trialkylamine.  The reaction is 

general to a range of silyl trifluoromethanesulfonates and N-

phenylnitrones.  The β-(silyloxy)amino carbonyl products are stable 

to chromatography and can be isolated in 63-99% yield. 
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Introduction 

The Mukaiyama–Mannich reaction is a proven method for the 

production of β-amino carbonyl compounds under mild 

conditions.[1]  The addition of ester-derived silyl ketene acetals to 

nitrones[2] provides access to N-hydroxylated analogues of these 

Mannich adducts, and takes place readily in the presence of Lewis 

acids.[3]  Additions by ketone-derived enol silanes are much more 

rare,[4] however, and additions by silyl ketene acetals derived from 

thioesters and tertiary amides are unknown.  Furthermore, 

production of N-aryl-N-hydroxylated versions of these β-amino 

carbonyl compounds is very rare,[5] despite the ubiquity of aniline 

derivatives in the field of organic synthesis and the facile 

rearrangement of these compounds to provide isoxazolidines. 

 Our previous work with the trimethylsilyl 

trifluoromethanesulfonate (TMSOTf)-mediated one-pot enol silane 

formation-Mukaiyama aldol addition[6] has led to the development 

of several related reactions (eq 1-4).[7]  We speculated that the mild 

TMSOTf-amine base conditions would be compatible with the 

addition of our in situ-generated enol silanes to nitrones, especially 

if residual TMSOTf could serve as Lewis acidic activating agent 

for the nitrone itself.  Encouragingly, we found significant 

precedent for silyl triflate-catalyzed additions to nitrones in the 

literature.  Catalysis by TMSOTf has been reported for additions to 

nitrones by certain ester-derived silyl ketene acetals,[8] and tert-

butyldimethylsilyl trifluoromethanesulfonate (TBSOTf) was 

recently reported to mediate the addition of enol silanes[9] and 

ester-derived silyl ketene acetals[9a,10] to silyl nitronates generated 

in situ.  We now report our successful development of a one-pot 

enol silane formation-Mukaiyama–Mannich addition of ketones, 

amides, and thioesters to nitrones. 

 

Results and Discussion 

We began the study by subjecting acetophenone and N,α-

diphenylnitrone to TMSOTf and trialkylamine in various solvents 

(eq 5).  Of the amine bases examined, i-Pr2NEt most consistently 

provided the product in high conversion, although several others 

showed competence (Et3N, Cy2NMe, 2,6-lutidine).  Toluene, THF, 

Et2O, and CH2Cl2 were all compatible solvents for the reaction, 

with CH2Cl2 proving optimal for high conversion.  Once this 

standard set of reaction conditions was established, we endeavored 

to determine the role of each reagent in the one-pot process through 

a series of control experiments.  When commercial enol silane 1, 

the putative intermediate in our reaction, was mixed with the 

nitrone in CH2Cl2, no reaction was observed regardless of the 

presence or absence of TMSOTf (eq 6).  When 1.0 equiv i-Pr2NEt 

was added to the same reaction mixture, conversion to the silylated 

product occurred.  Finally, conversion increased from 59% to 95% 

when nitrone was added last to the reaction mixture instead of first.   



 

 

 

 

Based on these observations, we hypothesize that the nitrone 

outcompetes all other species for silylation, significantly slowing 

the formation of the necessary enol silane intermediate.  

Accordingly, enol silane formation must be allowed to take place 

prior to addition of nitrone to the reaction mixture in order to 

achieve high conversion.  Furthermore, it appears that TMSOTf 

alone is not sufficiently Lewis acidic to catalyze Mukaiyama 

addition of the enol silane to the nitrone (eq 5);[11] the amine base 

may be playing an added role by acting as a Lewis base to activate 

the enol silane, similar to what we have observed for the related 

Mukaiyama aldol reaction.[7a] 

After optimization of the reaction conditions was complete, we 

examined the scope of the ketones compatible with this reaction 

(Table 1).  Electron-rich and electron-poor aryl methyl ketones 

were highly effective (entries 1-4), as were the bulky 

acetonaphthones (entries 5-6).  Conversion dropped dramatically 

for propiophenone, never exceeding 50% even in the presence of 

additional TMSOTf and amine base.[12]  Most alkyl-alkyl ketones 

provided intractable under the reaction conditions, but pinacolone 

was a successful substrate, achieving 74% yield (entry 7). 

Table 1. Ketone scope. 

 
Entry R Product Yield (%)[b] 

1 Ph 2a 94 

2 4-methoxyphenyl 2b 89 

3 4-fluorophenyl 2c 85 

4 4-bromophenyl 2d 91 

5 1-napththyl 2e 81 

6 2-napththyl 2f 86 

7 tBu 2g 74 

[a] Reaction conditions: ketone (1.0 mmol), i-Pr2NEt (1.2 mmol), TMSOTf 
(1.3 mmol), nitrone (1.2 mmol), CH2Cl2 (5.0 mL). [b] Isolated yield after 
chromatography. 

We next sought to extend this reaction to include carboxylic acid 

derivatives as enolate precursors.  Because the addition of ester-

derived silyl ketene acetals to nitrones is well known,[8-10] we chose 

to focus upon amides and thioesters.  Both substrate classes were 

successful after slight modification of the reaction conditions 

(Table 2).  Thioesters required 1.4 equiv i-Pr2NEt and 1.5 equiv 

TMSOTf for the highest conversion, small increases from the 

optimal conditions for ketones.  Thioesters derived from S-aryl 

thiols were highly effective (entries 1-3), and the thioester derived 

from benzyl mercaptan also provided good results (entry 4).   

 

 

 

Table 2. Scope of carboxylic acid derivatives. 

 
Entry R Conditions[a] Product Yield (%)[b] 

1 PhS A 3a 87 

2 

 

A 3b 93 

3 

 
A 3c 88 

4 BnS A 3d 70[c,d] 

5 Ph2N B 3e 87 

6 Ph(Me)N B 3f 63 

[a] Reaction conditions A: thioester (1.0 mmol), i-Pr2NEt (1.4 mmol), 
TMSOTf (1.5 mmol), nitrone (1.2 mmol), CH2Cl2 (5.0 mL).  Reaction 
conditions B: amide (1.0 mmol), 2,6-lutidine (1.2 mmol), TMSOTf (1.3 
mmol), nitrone (1.2 mmol), CH2Cl2 (5.0 mL).  [b] Isolated yield after 
chromatography. [c] Reaction was stirred 16 h.  [d] Recovered as a mixture 
of product and S-benzyl thioacetate after chromatography; yield shown is 
corrected for presence of S-benzyl thioacetate.  

Amides appeared to react somewhat less vigorously than ketones 

and thioesters, such that reduction of the nitrone via hydride 

transfer from the amine base was observed as a competing 

reaction.[13] Replacement of i-Pr2NEt with 2,6-lutidine alleviated 

this problem, and both tertiary amides tested reacted with some 

efficiency (entries 5-6).  Secondary amides did not yield the 

desired products, however, and were converted instead to silyl 

imidates[7c] that did not produce an isolable product.   

 The ability of a standard ketone acetophenone to add to a 

range of nitrones was examined next (Table 3).  Acetophenone 

reacted well with nitrones derived from various aryl aldehydes, 

including both electron-rich and electron-poor electrophiles 

(entries 1-4).  Heteroaryl nitrones also performed consistently well 

(entries 5-6).  We were especially pleased to observe good 

reactivity for the cinnamaldehyde-derived nitrone, which provided 

the allylic silyloxyamine (entry 7).  The aliphatic nitrone derived 

from cyclohexane carboxaldehyde also reacted, proving that 

enolization-prone substrates perform under our conditions, albeit in 

reduced yield (48% yield, entry 8).  The N-aryl group appears to be 

essential to reactivity:  nitrones bearing an N-methyl group or N-

tert-butyl group were completely unreactive. 

Table 3. Addition of acetophenone to various nitrones. 

 
Entry R Product Yield (%)[b] 

1 4-methylphenyl 4a 93 

2 4-methoxyphenyl 4b 94 

3 4-fluorophenyl 4c 97 

4 4-bromophenyl 4d 91 

5 2-furyl 4e 89 

6 2-thiophenyl 4f 88[c] 

7 cinnamyl 4g 86 

8 cyclohexyl 4h 48[c,d] 

[a] Reaction conditions: acetophenone (1.0 mmol), i-Pr2NEt (1.2 mmol), 
TMSOTf (1.3 mmol), nitrone (1.2 mmol), CH2Cl2 (5.0 mL). [b] Isolated 
yield after chromatography.  [c] Reaction time = 16 h.  [d] Corrected yield.  
Product contaminated with 10% aldol byproduct (see supporting 
information). 



 

 

Once the nitrone scope for acetophenone was established, the 

same set of nitrones was reacted with representative thioester S-

phenyl thioacetate (Table 4).  In general, the thioester reacted 

somewhat less vigorously than acetophenone, such that a slight 

change in reaction conditions was necessary to achieve optimal 

conversion in some cases.  In those instances, i-Pr2NEt was 

replaced Et3N and the stoichiometry was increased slightly for the 

amine base (1.5 instead of 1.2 equiv).  Again, nitrones derived 

from benzaldehydes and heteroaromatic aldehydes performed well 

(entries 1-6).  The alkenyl substrate derived from cinnamaldehyde 

was also an excellent substrate (entry 7), as was the aliphatic 

cyclohexane-derived nitrone (entry 8).   

Table 4.  Addition of S-phenyl thioacetate to various nitrones 

 
Entry R Conditions[a] Product Yield (%)[b] 

1 4-methylphenyl A 5a 92[c] 

2 4-methoxyphenyl B 5b 90 

3 4-fluorophenyl B 5c 89 

4 4-bromophenyl B 5d 76[c] 

5 2-furyl A 5e 86[c] 

6 2-thiophenyl B 5f 63[c] 

7 cinnamyl B 5g 87 

8 cyclohexyl B 5h 80 

[a] Reaction conditions A: S-phenyl thioacetate (1.0 mmol), i-Pr2NEt (1.2 

mmol), TMSOTf (1.3 mmol), nitrone (1.2 mmol), CH2Cl2 (5.0 mL).  
Reaction conditions B: S-phenyl thioacetate (1.0 mmol), Et3N (1.5 mmol), 
TMSOTf (1.3 mmol), nitrone (1.2 mmol), CH2Cl2 (5.0 mL).  [b] Isolated 
yield after chromatography. [c] Reaction time = 16 h. 

The substrate scope thus established, we next tested the ability of 

more robust silyl groups to participate in the reaction (Table 5).  

The standard diphenylnitrone was reacted with acetophenone in the 

presence of triethylsilyl trifluoromethanesulfonate (TESOTf), and 

an excellent yield of the TES-protected product resulted (entry 1).  

When TESOTf was replaced with tert-butyldimethylsilyl 

trifluoromethanesulfonate (TBSOTf), the reaction again proceeded 

to completion overnight with very high yield (entry 2).  Similar 

reactions with S-phenyl thioacetate were also successful (entries 3-

4). 

Table 5. Additions mediated by TESOTf or TBSOTf. 

 
Entry R3SiOTf R’ Base Product Yield (%)[b] 

1 TESOTf Ph i-Pr2NEt 6a 95 

2 TESOTf Ph i-Pr2NEt 6b 99 

3 TBSOTf PhS Et3N 6c 77[c] 

4 TBSOTf PhS Et3N 6d 76[c] 

[a] Reaction conditions A: ketone or thioester (1.0 mmol), base (1.2 mmol), 
TMSOTf (1.3 mmol), nitrone (1.2 mmol), CH2Cl2 (5.0 mL).  [b] Isolated 
yield after chromatography. [c] 1.5 mmol base used. 

Conclusion 

We have developed a one-pot enol silane formation-

Mukaiyama–Mannich reaction for the addition of ketones, amides, 

and thioesters to N-phenyl nitrones.  Enol silane formation occurs 

rapidly in situ, and residual silyl triflate acts as a Lewis acid 

catalyst for addition to the nitrone in one pot.  Isolation of the 

silylated products by chromatography is trivial.  We anticipate that 

these compounds will find ready use within the synthetic 

community, because the utility of their derived isoxazolidines[8b,3c] 

is well established.  Further investigation of these N-aryl nitrones 

under silylative conditions will be reported in due course. 

Experimental Section 

General. Reactions were carried out under an atmosphere of nitrogen with 

a septum cap in oven-dried glassware with magnetic stirring.  Anhydrous 

CH2Cl2 was purified by passage through a bed of activated alumina.[14] 

Anhydrous i-Pr2NEt was distilled and stored in a Schlenk flask under inert 

atmosphere.  Commercial TMSOTf was transferred to a Schlenk flask and 

stored under inert atmosphere.  Nitrones were used as received (N,α-

Diphenylnitrone) or prepared according to literature precedent.  Thioesters 

were used as received (S-Phenyl thioacetate) or prepared according to 

literature precedent.  Amides were used as received (N,N-

Diphenylacetamide) or prepared according to literature precedent.   All 

other reagents were used as received.  Purification of reaction products was 

carried out by flash chromatography using silica gel (230-400 mesh).  

Analytical thin layer chromatography was performed on silica gel plates. 

Visualization was accomplished with UV light.  Infrared spectra were 

recorded on an FT-IR spectrometer.  1H NMR spectra were recorded on a 

500 MHz spectrometer or 300 MHz spectrometer, and are reported in ppm 

using solvent as an internal standard (CDCl3 at 7.28 ppm).  Data are 

reported as (ap = apparent, s = singlet, d = doublet, t = triplet, q = quartet, 

m = multiplet, b = broad; coupling constant(s) in Hz; integration).  Proton-

decoupled 13C NMR spectra were recorded on a 125 MHz spectrometer or 

75 MHz spectrometer, and are reported in ppm using solvent as an internal 

standard (CDCl3 at 77.0 ppm).  High-resolution mass spectra were obtained 

by electrospray ionization.  Melting points were determined using a 

capillary melting point apparatus.  

 

General Procedure A.  Addition of Ketones to Nitrones. To an oven-

dried 10-mL round-bottomed flask under N2 was added CH2Cl2 (5.0 mL), 

ketone (1.0 mmol), i-Pr2NEt (210 �L, 155 mg, 1.2 mmol), TMSOTf (235 

�L, 289 mg, 1.3 mmol).  After 10 min, nitrone (1.2 equiv) was added, and 

the mixture was stirred at room temperature for 2 h.  The reaction mixture 

was passed through a silica gel plug (1 cm x 5 cm) with Et2O and the 

solvent was removed by rotary evaporation.  The product was purified by 

silica gel chromatography (0 to 2% EtOAc/Hexanes).  

General Procedure B.  Addition of Thioesters to Nitrones, mediated by 

Hunig’s base.  To an oven-dried 10-mL round-bottomed flask under N2 

was added CH2Cl2 (5.0 mL), thioester (1.0 mmol), i-Pr2NEt (244 �L, 181 

mg, 1.4 mmol), TMSOTf (271 �L, 333 mg, 1.5 mmol).  After 10 min, 

nitrone (1.2 equiv) was added, and the mixture was stirred at room 

temperature for the indicated time.  The reaction mixture was passed 

through a silica gel plug (1 cm x 5 cm) with Et2O and the solvent was 

removed by rotary evaporation.  The product was purified by silica gel 

chromatography (0 to 2% EtOAc/Hexanes).  

General Procedure C.  Addition of Thioesters to Nitrones, mediated by 

triethylamine.  To an oven-dried 10-mL round-bottomed flask under N2 

was added CH2Cl2 (5.0 mL), thioester (1.0 mmol), Et3N (214 �L, 155 mg, 

1.5 mmol), TMSOTf (235 �L, 289 mg, 1.3 mmol).  After 10 min, nitrone 

(1.2 equiv) was added, and the mixture was stirred at room temperature for 

the indicated time.  The reaction mixture was passed through a silica gel 

plug (1 cm x 5 cm) with Et2O and the solvent was removed by rotary 



 

 

evaporation.  The product was purified by silica gel chromatography (0 to 

2% EtOAc/Hexanes).  

General Procedure D.  Addition of Amides to Nitrones. To an oven-

dried 10-mL round-bottomed flask under N2 was added CH2Cl2 (5.0 mL), 

amide (1.0 mmol), 2,6-lutidine (139 �L, 129 mg, 1.2 mmol), TMSOTf 

(235 �L, 289 mg, 1.3 mmol).  After 10 min, nitrone (1.2 equiv) was added, 

and the mixture was stirred at room temperature for 2 h.  The reaction 

mixture was passed through a silica gel plug (1 cm x 5 cm) with Et2O and 

the solvent was removed by rotary evaporation.  The product was purified 

by silica gel chromatography (0 to 2% EtOAc/Hexanes). 

Supporting Information (see footnote on the first page of this article): 

Details of experiments as well as spectral characterizations of the products 

prepared. 

Acknowledgments  

We thank the National Science Foundation RUI program (CHE-1057591), 

the Thomas F. Jeffress and Kate Miller Jeffress Memorial Trust (J-802, J-

1006), and Research Corporation (CC6975/7096) for funding.  We 

gratefully acknowledge Prof. John T. Gupton and Prof. Karl A. Scheidt for 

useful discussions.  We are indebted to Prof. William H. Myers, the 

National Science Foundation (CHE-0541848), and the University of 

California-Riverside for mass spectral data. 

____________ 

[1] For some very recent examples, see: a) B. Ranieri, C. Curti, L. 
Battistini, A. Sartori, A.; L. Pinna, G. Casiraghi, F. Zanardi, J. Org. 

Chem. 2011, 76, 10291-10298. b) B. M. Ruff, S. Zhong, M. Nieger, 
M. Sickert, C. Schneider, S. Braese, Eur. J. Org. Chem. 2011, 6558-
6566. c) G. Onodera, T. Toeda, N. Toda, D. Shibagishi, R. Takeuchi, 
Tetrahedron 2010, 66, 9021-9031. d) R. Nagase, J. Osada, H. 
Tamagaki, Y. Tanabe, Adv. Synth. & Catal. 2010, 352, 1128-1134. 

[2] For reviews on nucleophilic additions to nitrones, see: a) M. 
Lombardo, C. Trombini Synthesis 2000, 759-774. b) A. D. Dilman, S. 
L. Ioffe, Chem. Rev. 2003, 739-772. c) I. A. Grigor’ev. Nitrones: 
Novel Strategies in Synthesis. In Nitrile Oxides, Nitrones, and 

Nitronates in Organic Synthesis; H. Feuer, Ed.; Wiley: New York, 
2008; 235-294. 

[3] For recent examples, see: a) C. Qian, L. Wang, Tetrahedron 2000, 56, 
7193-7197. (b) S.-I. Murahashi, Y. Imada, T. Kawakami, K. Harada, 
T. Yonemushi, N. Tomita, J. Am. Chem. Soc. 2002, 124, 2888-2889. 
b) Merino, P.; Jimenez, P.; Tejero, T. J. Org. Chem. 2006, 71, 4685-
4688. c) Diez-Martines, A.; Tehero, T.; Merino, P. Tetrahedron: 

Asymmetry 2010, 21, 2934-2943. For computational studies of the 
mechanism of this reaction type, see:  d) A. Milet, Y. Gimbert, A. E. 
Greene, J. Comput. Chem. 2005, 27, 157-162. e) L. R. Domingo, M. 
Arnó, P. Merino, T. Tejero, Eur. J. Org. Chem. 2006, 3464-3472. 

[4] These reactions tend to proceed via [3+2] cycloaddition to yield 
isoxazolidines.  For examples, see: a) A. Hosomi, H. Shoji, H. 

Sakurai, Chem. Lett. 1985, 1049-1052.  For an example of [3+2] 
cycloaddition of N-alkyl nitrones catalyzed by TMSOTf, see:  b) D. 
D. Dhavale, C. Trombini, J. Chem. Soc., Chem. Commun. 1992, 
1268-1270. c) C. Camiletti, D. D. Dhavale, L. Gentilucci, C. 
Trombini J. Chem. Soc., Perkin Trans 1 1993, 3157-3165. 

 [5] These species have been observed as minor byproducts in nitrone 
[3+2] cycloaddition reactions:  A. Banerji, P. K. Biswas, D. 
Bandyopadhyay, M. Gupta, T. Prangé, A. Neuman, J. Het. Chem. 
2007, 44, 137-143. 

[6] a) C. W. Downey, M. W. Johnson, Tetrahedron Lett. 2007, 48, 3559-
3562.  For examples of similar in situ silylation approaches to the 
Mukaiyama aldol reaction, see: b) T. R. Hoye, V. Dvornikovs, E 
Sizova J. Org. Chem.  2006, 8, 5191-5194. c) G. Rassu, L. Auzzas, L. 
Pinna, V. Zombrano, L. Battistini, F. Zanardi, L. Marzocchi, D. 
Acquotti, G. Casiraghi J. Org. Chem. 2001, 66, 8070-8075. 

[7] a) C. W. Downey, M. W. Johnson, K. J. Tracy, J. Org. Chem. 2008, 
73, 3299-3302. b) C. W. Downey, M. W. Johnson, D. H. Lawrence, 
A. S. Fleisher, K. J. Tracy, J. Org. Chem. 2010, 75, 5351-5354. c) C. 
W. Downey, A. S. Fleisher, J. R. Rague, C. L. Safran, M. E. Venable, 
R. D. Pike, Tetrahedron Lett. 2011, 52, 4756-4759.   

[8] a) C. Camiletti, D. D. Dhavale, F. Donati, C. Trombini, Tetrahedron 

Lett. 1995, 36, 7293-7296. Some reactive ester-derived silyl ketene 
acetals have been reported to add to nitrones without catalysis:  b) S. 
Tomoda, Y. Takeuchi, Y. Nomura Chem. Lett. 1982, 1787-1790. 

[9] a) V. O. Smirnov, S. L. Ioffe, A. A. Tishkov, Y. A. Khomutova, I. D. 
Nesterov, M. Y. Antipin, W. A. Smit, V. A. Tartakovsky, J. Org. 

Chem. 2004, 69, 8485-8488. b) Y. A. Khomutova, V. O. Smirnov, H. 
Mayr, S. L. Ioffe, J. Org. Chem. 2007, 72, 9134-9140. 

[10] a) V. O. Smirnov, A. S. Sidorenkov, Y. A. Khomutova, S. L. Ioffe, V. 
A. Tartakovsky, Eur. J. Org. Chem. 2009, 3066-3074. b) V. O. 
Smirnov, Y. A. Khomutova, V. A. Tartakovsky, S. L. Ioffe, Eur. J. 

Org. Chem. 2012, 3377-3384. 

[11] Note that more reactive silyl ketene acetals have been shown to react 
in the presence of catalytic TMSOTf.  See reference 7a. 

[12] No significant diastereoselectivity was observed.   

[13] We have observed similar reductions of dimethyl acetals under these 
conditions.  See reference 6d. 

[14] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. 
Timmers, Organometallics 1996, 15, 1518-1520. 

Received: ((will be filled in by the editorial staff)) 
Published online: ((will be filled in by the editorial staff)) 

 

 

 



 

 

Entry for the Table of Contents ((Please choose one layout.)) 

 

Layout 1: 

 

 

 

 

 

 

Layout 2: 

 

 ((Key Topic)) 

 

 

 C. Wade Downey,* Carolyn M. 

Dombrowski, Erin N. Maxwell, 

Chelsea L. Safran, and Odamea A. 

Akomah …….... Page No. – Page No. 

One-Pot Silane Formation-Mukaiyama–

Mannich-Type Addition of Ketones, 

Amides, and Thioesters to Nitrones in the 

Presence of Trialkylsilyl 

Trifluoromethanesulfonates 

Additions to nitrones by unactivated 

ketones, esters, and amides.  Silyl 

trifluoromethanesulfonates act as 

silylating agents and Lewis acids in the 

one-pot reaction.  Silylated β-

hydroxyaminocarbonyl compounds were 

isolated.   

 

 

 

 

 ((Key Topic)) 

((Text for Table of Contents – max. 350 

characters; not the same text as the 

Abstract)) 

 

 

 

((Author(s), with * for Corresponding 

Author(s))) …….. Page No. – Page No. 

((Title)) 

Keywords: ((Keyword 1 / Keyword 2 / 

Keyword 3 / Keyword 4 / Keyword 5)) 



 

 

 


	University of Richmond
	UR Scholarship Repository
	9-2013

	One-Pot Enol Silane Formation-Mukaiyama–Mannich Addition of Ketones, Amides, and Thioesters to Nitrones in the Presence of Trialkylsilyl Trifluoromethanesulfonates
	C. Wade Downey
	Carolyn M. Dombrowski
	Erin N. Maxwell
	Chelsea L. Safran
	Odamea A. Akomah
	Recommended Citation


	Microsoft Word - 435906-convertdoc.input.423690.hRGLH.docx

