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Integer Maxima in Power Envelopes of Golay

Codewords

Michael W. Cammarano and Meredith L. Walker

April 6, 1999

Abstract

This paper examines the distribution of integer peaks amoung Golay cosets in Z2 and
Z4. It will prove that the envelope power of at least one element of every Golay coset of
Z4 of length 2m (for m-even) will have a maximum at exactly 2m+1. Similarly, it will be
proven that one element of every Golay coset of Z2 of length 2m (for m-odd) will have a
maximum at exactly 2m+1. Observations and partial arguments will be made about why
Golay cosets of Z2 of length 2m (for m-even) contain no elements with such a peak.

⇤The authors thank Hewlett-Packard for their generous support during the summer of 1997, and to Dr.
James Davis, University of Richmond, for his extensive support and assistance.
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Introduction1
1.1 Background on Phase Signal Keying

This paper will examine several problems relating to power envelopes of various code-
words in binary and quaternary phase shift keying (BPSK and QPSK, respectively).
The value of a given position (which can be {1,�1} in binary and {1, i,�1,�i} in
quaternary) in a codeword is encoded as a phase shift in the oscillating wave with
the frequency uniquely associated with that position, using the formula below:

d

n

e

i2⇡ft

where dn is the value of the nth position in the codeword D, t is the time

(ranging from 0 to 1), and f is the frequency associated with position n.

Therefore, the complex signal for the codeword, S(t), will be composed of the sum of
the individual waves for each position:

S(t) =
NX

n=1

d

n

e

i2⇡(fc+fn)t

where fc is the basic carrier frequency for the transmitted signal,

and fn is the frequency o↵set used to encode position n.

And so the envelope power, P (t), will be defined as:

P (t) = S(t)S⇤(t)

=
NX

n=1

d

n

e

i2⇡(fc+fn)t +
NX

m=1

d

⇤
m

e

�i2⇡(fc+fm)t

=
X

n,m

d

n

d

⇤
m

e

i2⇡(fn�fm)t

Observe that the carrier frequency f

c

cancelled out. Therefore, the envelope power
will be an upper bound on the power of any signal, regardless of its frequency (see
Fig. 1.1). This allows us to use the envelope power to find the global maximum for
the signal.

Fig. 1.1 Graph showing the envelope power(dark line) and a sample signal(light line) for the
codeword + + +�+ +�+. The carrier frequency fc is 10 for the signal graphed

in this example. Note that the codeword acheives a max power of exactly 16.
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At this point we will substitute f

n

= nf

s

and f

m

= mf

s

as our mapping of frequencies
to positions. It is important to note that other mappings are possible as well, except
they may not maintain orthogonality.

=
X

n,m

d

n

d

⇤
m

e

i2⇡(n�m)fst

= N +
X

n6=m

d

n

d

⇤
m

e

i2⇡(n�m)fst

= N +
X

u>0

0

@
X

{n|1nN�u}
d

n

d

⇤
n+u

1

A
e

i2⇡ufst +
X

u<0

0

@
X

{n|�u+1nN}
d

n

d

⇤
n+u

1

A
e

i2⇡ufst

The innermost sum in the expression is referred to as the aperiodic auto correlation,
C

D

(u) (where D is d1d2d3 . . . d

N

):

C

D

(u) =
X

{n|1nN�u}
d

n

d

⇤
n+u

Thus, our final result in this section is:

P (t) = N + 2Re

 
X

u>0

C

D

(u)ei2⇡ufst

!

For engineering purposes, it is preferable to limit the maximum value of P (t). Situ-
ations where peaks from many di↵erent component frequencies align at a particular
value of t, causing a high signal power at that point, are undesirable. We would like
to be able to choose codewords that result in power functions that always stay within
some predetermined bounds. Note that in the worst case, where all peaks align, the
power would have a value of N

2. For an example of this, consider P

D

(0) for D where
d1 = d2 = d3 = · · · = d

N

= 1. Consult [Davis/Jedwab] for additional information.

1.2 Significance of Golay Pairs to the Max Power

If D and E are codewords such that C

D

(u) + C

E

(u) = 0 for all u > 0, then D and E

comprise a Golay pair [Golay]. Observe that:

P

D

(t) = N + 2Re

 
X

u>0

C

D

(u)ei2⇡ufst

!

P

E

(t) = N + 2Re

 
X

u>0

C

E

(u)ei2⇡ufst

!

P

D

(t) + P

E

(t) = 2N + 2Re

 
X

u>0

(C
D

(u) + C

E

(u))ei2⇡ufst

!

= 2N (since CD(u) + CE(u) = 0)

Thus, any codeword D that is a member of a Golay pair will have P

D

(t)  2N , a
dramatically lower power bound than the worst case N

2. Our investigation will focus
upon properties of Golay pairs, and the details of their power properties.

1.3 Background on Reed-Muller Codes

Soon it will be shown how Golay pairs can be constructed using Reed-Muller codes.
Some basic background on Reed-Muller codes as we will use them follows. We will
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be discussing Reed-Muller codes of length 2m. Our basis vectors will be numbered as
follows:

x1 consists of the sequence 2m�1 0’s followed by 2m�1 1’s
x2 consists of the sequence 2m�2 0’s followed by 2m�2 1’s repeated twice.
...

xm�n consists of the sequence 2m�n 0’s followed by 2m�n 1’s repeated n times.
...

xm consists of alternating 0’s and 1’s.

Linear combinations of these basis vectors will form first order Reed-Muller(RM)
codes. The second order RM basis vectors include the first order vectors x

i

, as well
as all intersections of first order vectors x

i

x

j

. Linear combinations of these will form
the second order RM codes. We will use r to represent the order of the RM codes.

The notation RM(1, m) represents the code comprised of all linear combinations of
the first-oder basis vectors. Similarly, RM(2, m) represents the code comprised of
all linear combinations of second order basis vectors. Note that the weight of any
codeword in RM(1, m) will be 2m�1 and that of any codewrod in RM(2, m) will be
2m�2.

For more information of Reed-Muller codes, consult [Macwilliams/Sloane].

1.4 Construction From Reed-Muller Templates

Previous work with Golay pairs had demonstrated that they could be constructed in
binary using a simple template involving Reed-Muller codes.

Form a codeword g of length 2m as follows:

g = AB + BC + · · · + XY + Y Z + x

Where every 1st order Reed-Muller basis vector is represented

by exactly one of the vectors {A, B, C, . . . , Z} and x 2 RM(1, m)

Note that AB + · · · + Y Z is equivalent to x⇡(1)x⇡(2) + · · · + x⇡(m�1)x⇡(m).

Any g of this form can be made into a member D of a Golay pair by assigning
d

n

= (�1)gn to map the values {0, 1} from the Reed-Muller codeword onto the
values {1,�1} used in the BPSK. It has been proven that this construction method
for g will always produce a member of a Golay pair, and it is conjectured that this
construction method produces all Golay codewords.

Essentially, these Golay pairs will all be elements in the coset of RM(1,m) with
coset representative AB + BC + · · · + Y Z. A similar construction can be applied to
find a member of a quaternary Golay pair, which will be any element g of the coset
ofquaternary RM(1,m)1 with coset representative 2(AB +BC + · · ·+Y Z), using the
mapping d

n

= i

gn .

1.5 Weight Equivalence

In a template that involves ALL of the basis vectors x1 . . . x

m

(such as AB + BC +
· · · + Y Z seen above), any resulting codeword will have the same weight, regardless

1Throughout this paper, quaternary Reed-Muller refers to a code constructed from the same basis
vectors as binary RM, but taking linear combinations in Z4.
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of the mapping chosen. This can be argued by noting that Reed-Muller codes can be
constructed using a binary counter [Macwilliams/Sloane]. For every possible c 2 F

m

2 ,
there will be exactly one position n such that c1 is the binary value of the n

th basis
vector A, c2 is the value of the n

th basis vector B, c3 is the value of the n

th basis vector
C, and so forth through all basis vectors of RM(1, m). Any position represented by
c 2 F

m

2 in one mapping will have a corresponding position with the same c (and
hence the same value) in any other mapping, although clearly it need not be in the
same position. Thus, di↵erent mappings between the basis vectors and the vectors
A . . . Z in the template will all result in equal weight codewords.

Example: For m = 3:

A = x1, B = x2, C = x3 A = x2, B = x1, C = x3

A 00001111 00110011
B 00110011 00001111
C 01010101 01010101

AB + BC 00010001 00000110

1.6 Distribution of Max Power Values Within Golay Cosets

Previous investigations into the maximum power within any 1st order Reed-Muller
coset, whether Golay or not, revealed intriguing patterns. The computer results in
Appendix A are sorted listings of the length 16 coset leaders and the maximum power
contained in any element of that coset for all RM(1,m) cosets within RM(2,m). In
the binary case, notice that the twelve cosets with the lowest maximum power values
are the only cosets that satisfy the Golay construction formula given above, and all of
their powers are < 32 as expected, but never take on the integer value 32. However,
there are a large number of cosets with elements containing exact peaks of 64, and of
course the single coset containing the all-1 case (and simple variants thereof) which
has a peak of exactly 256. Compare these results with those in the quaternary output,
in which all twelve Golay cosets contain peaks of exactly 32, 40 cosets contain peaks
of exactly 64, 11 cosets contain peaks of exactly 128, and still there is one coset
containing peaks of exactly 256.

Our primary objective has been to learn more about the emergence of integer peaks
– understanding what codewords can produce them in both binary and quaternary
codes of various lengths, and what causes the distribution of these integer peaks
among cosets and within the elements of a coset. To approach this task, it was
necessary to gain an understanding of what conditions enable integer peaks to appear.

1.7 A Valuable Observation

For our purposes we will find it convenient to observe from the power expansion that:

e

ix = 1 + ix + (ix)2

2!
+ (ix)3

3!
+ · · ·

= (1� x

2

2!
+ x

4

4!
� · · ·) + i(x� x

3

3!
+ x

5

5!
� · · ·)

= cos x� i sin x

This description in terms of familiar trigonometric functions will simplify much of
the work to follow. Henceforth, we will use:

S(t) =
NX

n=1

d(n) cos(2⇡nt) + i

NX

n=1

d(n) sin(2⇡nt)
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Our Initial Speculations2
2.1 Limitations on the Formation of Integer Peaks

We begin by making a speculation about where integer peaks can occur. We hypoth-
esize that integer peaks in the sum of all the frequencies will only occur at values of t

where exact peaks in the component frequencies align with each other. We have been
unsuccessful at proving this claim, but it has intuitive appeal and is supported by the
evidence we have been able to gather with available computing resources. Overall,
we are confident that this claim, or some generalization of it, will hold, but can only
o↵er the empirical results to support it.

Consider the ways in which sin and cos waves overlap, given the possible frequency
values (Table 2.1). The values from the table can be substituted for the sin and cos
functions used to calculate P (t), yielding greatly simplified formulas for computing
power at certain values of t. For example, noting that at t = 0, all cosine functions
(regardless of frequency) assume the values 1, and all sine functions assume the value
0. So, at t = 0:

S(t) =

NX

n=1

dn = d1 + d2 + · · · + dN�1 + dN

Similarly, at t = 1
2
:

S(t) = �d1 + d2 � d3 + d4 � · · ·� dN�1 + dN (since N = 2m, N is obviously even)

And at t = 1
4
:

S(t) = (d1 � d3 + d5 � d7 + · · · + dN�3 � dN�1)i + (�d2 + d4 � d6 + d8 � · · ·� dN�2 + dN )

Recall from section 1.1 that P (t) = SS

⇤.

It is clear from the tables that in both binary and quaternary, P (t) must have an
integer value where t is a multiple of 1

4
. Also, it is evident that it is possible to obtain

integer maxima on P (t) when t is a multiple of 1
8

(for example, if 8
p

2
2

terms are

added, while the ±1 terms cancel, then (8
p

2
2

)2 will give exactly 32).

It appears, however, that at values of t equal to n

2m where 2m

> 8 causing sin and

cos values other than ±1, ±
p

2
2

, and 0 to appear, integer peaks can only occur when
those other values cancel with each other; therefore the integers result only from
combinations of ±1, ±

p
2

2
. At positions not of the form n

2m , integer peaks cannot
form at all, since there will be no way for the complicated irrational values of the sin
and cos functions to cancel with each other leaving an integer result (examine the
column of Table 1 showing the values at t = 0.111 for an example of this).

All of this is purely conjecture, but when the power functions of actual codewords
are examined, we find that ALL integer peaks occur at positions where t is a multiple
of 1

8
for codes of all lengths examined (m=2,3,4, and portions of the codes m=5 and

m=6). We expect that this result will hold true for all values of m.
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SIN

t =

f 0 1
8

2
8

3
8

4
8

5
8

6
8

7
8 0.111

1 0
p

2
2 1

p
2

2 0 �
p

2
2 �1 �

p
2

2 0.642

2 0 1 0 �1 0 1 0 �1 0.984

3 0
p

2
2 �1

p
2

2 0 �
p

2
2 1 �

p
2

2 0.867

4 0 0 0 0 0 0 0 0 0.344

5 0 �
p

2
2 1 �

p
2

2 0
p

2
2 �1

p
2

2 �0.338

6 0 �1 0 1 0 �1 0 1 �0.864

7 0 �
p

2
2 �1 �

p
2

2 0
p

2
2 1

p
2

2 �0.986

8 0 0 0 0 0 0 0 0 �0.647

9 0
p

2
2 1

p
2

2 0 �
p

2
2 �1 �

p
2

2 �0.006

10 0 1 0 �1 0 1 0 �1 0.637

11 0
p

2
2 �1

p
2

2 0 �
p

2
2 1 �

p
2

2 0.984

12 0 0 0 0 0 0 0 0 0.870

13 0 �
p

2
2 1 �

p
2

2 0
p

2
2 �1

p
2

2 0.351

14 0 �1 0 1 0 �1 0 1 �0.333

15 0 �
p

2
2 �1 �

p
2

2 0
p

2
2 1

p
2

2 �0.861

16 0 0 0 0 0 0 0 0 �0.987

COS

t =

f 0 1
8

2
8

3
8

4
8

5
8

6
8

7
8 0.111

1 1
p

2
2 0 �

p
2

2 �1 �
p

2
2 �

p
2

2 0.766

2 1 0 �1 0 1 0 �1 0 0.175

3 1 �
p

2
2 0

p
2

2 �1
p

2
2 0 �

p
2

2 �0.498

4 1 �1 1 �1 1 �1 1 �1 �0.938

5 1 �
p

2
2 0

p
2

2 �1
p

2
2 0 �

p
2

2 �0.941

6 1 0 �1 0 1 0 �1 0 �0.503

7 1
p

2
2 0 �

p
2

2 �1 �
p

2
2 0

p
2

2 0.169

8 1 1 1 1 1 1 1 1 0.762

9 1
p

2
2 0 �

p
2

2 �1 �
p

2
2 0

p
2

2 0.999

10 1 0 �1 0 1 0 �1 0 0.771

11 1 �
p

2
2 0

p
2

2 �1
p

2
2 0 �

p
2

2 0.181

12 1 �1 1 �1 1 �1 1 �1 �0.493

13 1 �
p

2
2 0

p
2

2 �1
p

2
2 0 �

p
2

2 �0.937

14 1 0 �1 0 1 0 �1 0 �0.943

15 1
p

2
2 0 �

p
2

2 �1 �
p

2
2 0

p
2

2 �0.509

16 1 1 1 1 1 1 1 1 0.163

Table 2.1
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The Quaternary m-even Case3

This argument will show that there is at least one element of every quaternary Golay
coset that has a peak of exactly 2N (= 2m+1). The specific codeword we will use to
demonstrate is 2(AB+BC + · · ·+XY +Y Z)+A+Z. Our approach takes advantage
of several simplifications: the simplicity of computing the power at t = 0 and the
ability to break down the quaternary problem into several binary problems. Recall
that at t = 0, P = SS

⇤, where

S =
NX

n=1

(i)(2L+A+Z)n

Note: As before, L represents the Golay coset leader AB + BC + · · · + XY + Y Z (binary).

To simplify the quaternary into several binary problems, we observe that 2L+A+Z

will contain 3’s in the positions where 1’s from L and a 1 from either A or Z (not
both) align. This reduces to the binary problem of finding L\ (A + Z). In a similar,
but more complicated, example:

The codeword 2L + A + Z will contain 2’s either where
0’s from L and 1’s from A and Z align

yielding w(AZ)� w((AZ) \ L) 2’s
OR

where 1’s from L align with 0’s from A and Z

yielding w(L)� w((AZ) \ L)� w((A + Z) \ L) 2’s.

Thus, there are a total of w(AZ) + w(L)�w((A + Z)\L)� 2w((AZ)\L) 2’s in the
final codeword. Notice that these weight calculations are performed in binary.

We claim that the following conditions will hold for all even values of m:

w(L) = 2m�1 � 2m
2 �1

w(AZ) = 2m�2

w(A + Z) = 2m�1

w((AZ) \ (L)) = 2m�3 + 2m
2 �2

w((A + Z) \ (L)) = 2m�2 � 2m
2 �1

The weights of AZ and A + Z are evident given the properties of Reed-Muller codes.

We will use induction to prove the other conditions for A = x1, B = x2, . . .. Reed
Muller codewords of length 2m can be constructed by concatenating RM codewords
of length 2m�1 by using the lemmas below. In our notation, the subscript n outside
of the square brackets indicates that every x

i

(where i 2 {0, . . . , n}) in the brackets
is a basis vector of RM(1, n). Example: [x1]2 = 0011. Concatenation is represented
by a | symbol. Example: [x1 | x1]2 = 00110011.

7



Definition: Let Lm represent the Golay coset leader x1x2+x2x3+ · · ·+xm�1xm of length N = 2m.
Let 0 and 1 represent the all-0 codeword and the all-1 codeword, respectively. Let ↵ be a binary
value (0 or 1) and ↵

0 its complement.

The following lemmas outline how Reed Muller vectors of length 2m are formed by concatenating
two length 2m�1 Reed Muller vectors.

A second order Reed-Muller vector x1xa+1 of length 2m is formed by concatenating the all-0 vector
and the RM basis vector xa of length 2m�1.

The RM basis vector xa+1 of length 2m is formed by concatenating the RM basis vactor xa of length
2m�1 with itself.

All of these lemmas for concatenation are both additive and multiplicative. For example, [xa +
xb | xa +xb]m�1 = [xa+1 +xb+1]m (using the lemma that [xa | xa]m�1 = [xa+1]m and the additive
properties of the binary vectors). It can be easily shown that lemmas 5 and 6 below are true because
of the bitwise nature of the operations involved.

Concatenation Lemmas:

1. [1 | 1]m�1 = [1]m
2. [0 | 1]m�1 = [x1]m
3. [0 | xa]m�1 = [x1xa+1]m
4. [xa | xa]m�1 = [xa+1]m
5. [xa | xb]m�1 = [y]m and [xc | xd]m�1 = [z]m

) [xa + xc | xb + xd]m�1 = [y + z]m
6. [xa | xb]m�1 = [y]m and [xc | xd]m�1 = [z]m

) [xaxc | xbxd]m�1 = [yz]m

Theorem 3.1: The codeword of form [Lm + ↵x1]m has weight 2m�1 � 2m
2 �1.

Proof: By induction. The result for m=2 is trivial (w([x1x2]2) = w(0001) = w([x1x2 + x1]2) =
w(0010) = 1 = 22�1 � 2 2

2�1).

Using the lemmas above, the codeword decomposes as follows:

[x1x2 + x2x3 + · · · + xm�1xm + ↵x1]m
= [x1x2 + · · · + xm�2xm�1 | x1x2 + · · · + xm�2xm�1 + x1 + ↵1]m�1

= [x1x2 + · · · + xm�3xm�2 | x1x2 + · · · + xm�3xm�2 + x1 |
x1x2 + · · · + xm�3xm�2 + ↵1 | x1x2 + · · · + xm�3xm�2 + x1 + ↵

0
1]m�2

= [Lm�2 | Lm�2 + x1 | Lm�2 + ↵1 | Lm�2 + x1 + ↵

0
1]m�2

Regardless of the value of ↵, three of the component vectors will be of the form [Lm�2+↵x1]m�2 and
thus will have weight 2m�3 � 2m

2 �2 by the induction. The remaining component is the complement
of a vector of the form [Lm�2 + ↵x1]m�2 (since it has the 1vector added to it) and thus will have
weight 2m�2 � (2m�3 � 2m

2 �2).

w([Lm + ↵x1]m) = 3(w([Lm�2 + ↵x1]m�2)) + 2m�2 � w([Lm�2 + ↵x1]m�2)

= 3(2m�3 � 2m
2 �2) + 2m�2 � (2m�3 � 2m

2 �2)

Thus w([L

�

+ ↵x1]m) = 2

m�1 � 2

m

2 �1
Q.E.D.

The codeword [Lm +xm]m is formed by a permutation of the mapping of the codeword [Lm +↵x1]m
and therefore must have equivalent weight (consult section 1.5).
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Theorem 3.2: The codeword of form [Lm + x1 + xm]m has weight 2m�1 + 2m
2 �1.

Proof: By induction. Evident for m=2. The first codeword decomposes as follows:

[x1x2 + x2x3 + · · · + xm�1xm + x1 + xm]m
= [x1x2 + · · · + xm�3xm�2 + xm�1 | x1x2 + · · · + xm�3xm�2 + x1 + xm�1 + 1]m�1

= [x1x2 + · · · + xm�3xm�2 + xm�2 | x1x2 + · · · + xm�3xm�2 + xm�2 + x1 |
x1x2 + · · · + xm�3xm�2 + xm�2 + 1 | x1x2 + · · · + xm�3xm�2 + x1 + xm�2]m�2

= [Lm�2 + xm�2 | Lm�2 + xm�2 + x1 | Lm�2 + xm�2 + 1 | Lm�2 + x1 + xm�2]m�2

The two components of form [Lm�2 +x1 +xm�2]m�2 both have weight 2m�3 +2m
2 �2 (by induction).

The component of form [Lm�2 +xm�2]m�2 has weight 2m�3�2m
2 �2. And the remaining component

is the complement of [Lm�2 + xm�2]m�2, and thus will have weight 2m�2 � (2m�3 + 2m
2 �2).

w([Lm + x1 + xm]m) = 2(w([Lm�2 + x1 + xm�2]m�2)) + w([Lm�2 + xm�2]m�2)
+2m�2 � w([Lm�2 + xm�2]m�2)

= 2(2m�3 + 2m
2 �2) + 2m�3 � 2m

2 �2 + 2m�2 � (2m�3 + 2m
2 �2)

Thus w([L

�

+ x1 + x

�

]

m

) = 2

m�1
+ 2

m

2 �1
Q.E.D.

Theorem 3.3: The codeword of form [Lm + x1xm]m has weight 2m�1 � 2m
2

Proof: This codeword decomposes as follows:

[x1x2 + x2x3 + · · · + xm�1xm + x1xm]m
= [x1x2 + · · · + xm�2xm�1 | x1x2 + · · · + xm�2xm�1 + x1 + xm�1]m�1

= [x1x2 + · · · + xm�3xm�2 | x1x2 + · · · + xm�3xm�2 + x1 |
x1x2 + · · · + xm�3xm�2 + xm�2 | x1x2 + · · · + xm�3xm�2 + x1 + xm�2 + 1]m�2

= [Lm�2 | Lm�2 + xm�2 | Lm�2 + xm�2 | Lm�2 + x1 + xm�2 + 1]m�2

Here, no induction is involved – the component vectors are in forms for which the weights have
previously been proven. Summing the appropriate weight values for the components results in:

w([Lm + x1xm]m) = w([Lm�2]m�2) + w([Lm�2 + x1]m�2) + w([Lm�2 + xm�2]m�2)
+2m�2 � w([Lm�2 + x1 + xm�2]m�2)

= 3(2m�3 � 2m
2 �2) + 2m�2 � (2m�3 + 2m

2 �2)

Thus w([L

�

+ x1x

�

]

m

) = 2

m�1 � 2

m

2 Q.E.D.

This proves that the given weight formulas are true for A = x1, B = x2, . . .. Based on the weight
equivalence property previously discussed, any mapping of the basis vectors v1, . . . , vm onto the
vectors A, . . . , Z will result in an equivalent weight codeword of the form AB + BC + · · · + Y Z.

From these conditions it neccessarily follows that the quaternary codeword 2L+A+Z will contain:

symbol number of times symbol appears in 2L + A + Z (quaternary)

1 (i) w(A + Z)� w((A + Z) \ (L))

= 2m�1 � (2m�2 � 2
m
2 �1)

= 2� 2 + 2
�
2 1

2 (�1) w(AZ) + w(L)� w((A + Z) \ (L))� 2w((AZ) \ (L))

= 2m�2 + (2m�1 � 2
m
2 �1)� (2m�2 � 2

m
2 �1)� 2(2m�3 � 2

m
2 �2 + 2

m
2 �1)

= 2� 2 2
�
2 1

3 (�i) w((A + Z) \ (L))

= 2� 2 2
�
2 1

0 (1) 2m�(# of ’1’s + # of ’2’s + # of ’3’s)

= 2� 2 + 2
�
2 1

Table 2
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Example (m = 4):

A = V1, B = V2, C = V3, D = V4

{0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2} (A + D)
+ {0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 2, 0, 2} 2(AB + BC + CD)
= {0, 1, 0, 3, 0, 1, 2, 1, 1, 2, 1, 0, 3, 0, 1, 0}
⌘ {1, i, 1, i,�i, 1, i,�1, i, i,�1, i, 1,�i, 1, i, 1}

Observe that (in binary):
w(A + D) = 24�1 = 8
w(AD) = 24�2 = 4

w(L) = 24�1 � 2
4
2�1 = 6

w((AD) \ L) = 24�3 + 2
4
2�2 = 3

w((A + D) \ L) = 24�2 � 2
4
2�1 = 2

So, our claims hold in this example.

The important result of this section is:

Theorem 3.4: The codeword 2L + A + Z over Z4 has peak power exactly equal to 2m+1. Thus,
every coset of the form 2L + RM (1, m) over Z4 has a codeword which achieves maximum power.

Proof: Using the number of symbol occurrences from Table 2 in the formula S(t) = d1 + · · · + dN :

S(t) = (2m�2 + 2m
2 �1)i + (2m�2 � 2m

2 �1)(�i) + (2m�2 + 2m
2 �1)(�1) + (2m�2 + 2m

2 �1)1

= 2m
2 + (2m

2 )i

P (t) = SS

⇤ = 2m
Q.E.D.
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The m-odd Cases4
The coset leader L

m

(AB + BC + · · · + XY + Y Z) has a peak of exactly 2m�1 at
position t = 0 when m is odd. Note that the simplified power formula for t = 0 is
easily computed from the weight of the codeword being considered.

Theorem 4.1: The codeword Lm has weight 2m�1 � 2(m�1)/2.

Proof: Using the concatenation lemmas from the previous section, Lm decomposes as follows:

[x1x2 + x2x3 + · · · + xm�1xm]m
= [x1x2 + · · · + xm�2xm�1 | x1x2 + · · · + xm�2xm�1 + x1]m�1

= [Lm�1 | Lm�1 + x1]m�1

Now, substituting the weight formulas derived in the previous section, both of those components
have weight 2m�2 � 2

m�1
2 �1 (since m is odd, m � 1 is even and the formulas from last section are

appropriate).

Thus w([L

�

]

m

) = 2

m�1 � 2

m� 1
2

Q.E.D.

This leads to the following conclusion:

Theorem 4.2: The coset leader L

m

has peak power exactly equal to 2m+1 for m
odd. Therefore, every coset L + RM(1,m) over Z4 for m-odd has a codeword which
achieves the maximum power.

Proof: Using the simplified power formula for t = 0, this essentially means that the
number of surplus 1’s (those which are not cancelled out by 0’s) squared gives the
max power desired, because:

P (0) = (w(L)� (2m � w(L)))2

=
�
2m � 2

�
2m�1 � 2(m�1)/2

��2

=
�
2m � 2m + 2(m+1)/2

�2

Thus P (0) = 2

m+1

Q.E.D.
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Argument that binary Golay cosets do not contain an integer max of 325
The following is an incomplete argument that there cannot be integer peak powers of
32 in any binary Golay coset, based upon our previous argument that integer powers
can only occur at a limited number of positions. The power computation is greatly
simplified at these positions and we will examine each of them individually.
At t = 0 S = (d1 + d2 + d3 + · · · + d16) P = SS

⇤

Since all the d

n

s assume values of ±1 in binary, S will be an integer.
Similarly, at t = 1

2 S = (�d1 + d2 � d3 + · · ·� d15 + d16) P = SS

⇤

Again, all of the d

n

s will be ±1, and S will be an integer. Since there is no integer-
valued solution to SS

⇤ = 32, there cannot be a peak of 32 at position t = 0 or at
t = 1

2
.

At t = 1
4 P = (d1 � d3 + d5 + · · · + d13 � d15)2 + (�d2 + d4 � d6 + · · ·� d14 + d16)2

At t = 3
4 P = (�d1 + d3 � d5 + · · ·� d13 + d15)2 + (�d2 + d4 � d6 + · · ·� d14 + d16)2

For the power to equal 32 at these postions, both the sum of the odd terms and the
sum of the even terms must go to ±4. In each of the sums half of the terms are added
and half are subtracted. Thus, to assume a value of ±4, the d

n

values for n-odd must
be a 6� 2 pattern of pluses and minuses. The d

n

for n-even must also have a 6� 2
pattern. If the same value occurs 6 times among the odd terms and 6 times among
the even terms, then there will be a 12-4 pattern overall which will produce a power
of (12�4)2 at t = 0(see above), so the power of 32 will not be a peak. Similarly, if the
value occuring 6 times among odd terms is di↵erent than the one occuring 6 times
among the even terms, at t = 1

2
all the odd terms will be subtracted again yielding

P = (12 � 4)2 = 64. Therefore, anytime a codeword has a power of 32 at t = 1
4

or
t = 3

4
it must necessarily have a higher power of 64 at either t = 0 or t = 1

2
, so 32 is

not a peak.

At t = 1
8 P = (

p
2

2 d1 �
p

2
2 d3 � d4 �

p
2

2 d5 +
p

2
2 d7 + d8 + · · · +

p
2

2 d16)2

+(
p

2
2 d1d2 +

p
2

2 d3 �
p

2
2 d5 � d6 +

p
2

2 d7 +
p

2
2 d9 + · · ·�

p
2

2 d15)2

To make P = 32 the codeword must either be such that both the sums assume values
of ±4 (meaning that all of the terms multiplied by

p
2

2
cancel out) or that one sum

assumes the value 8
p

2
2

and the other sum assumes the value 0 (requiring that all of
the real terms cancel). Demonstrating that this can not occur requires examining a
large number of special cases and we were unable to develop a reasonable approach
to solving this problem.

Develpment of a generalized method for this problem that does not require case-by-
case analysis would be beneficial.
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Areas for Further Investigation6
The preceeding proofs for the m-even quaternary and the m-odd cases prove that
there is at least one peak of 2m+1 within each of the Golay cosets. It appears that a
large portion of the members of the m-even quaternary Golay cosets (160 out of the
256 elements for m = 4) and all of the members of the m-odd Golay cosets have peak
power of 2m+1(Appendix B). The case for m-odd is especially interesting, because
in the cases examined (m = 3 and m = 5) exactly half of the elements had peaks
at t = 0. It seems probable that additional rules (and accompnying proofs) can be
found to characterize the peak-forming behavior of many or all of the elements in the
Golay cosets. Further research into the distribution of peak powers within the Golay
cosets for both m-even and m-odd should be conducted. It is worth observing that
there are also many interesting peak-formation behaviors among non-Golay cosets as
well, and research into this are would also be extremely valuable.

Our conjecture about integer peaks occuring at only positions where t is a multiple
of 1

8
was only tentatively argued. The properties of integer peak formation should be

further researched. If possible, properties should be proven.

In the m-even Golay cosets, the binary codewords never achieve a peak power of 2m+1.
We began arguing this result in the m = 4 case, but general proofs are necessary.
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Appendix A

Listings by Coset

This table lists all the cosets of RM(1, 4) in RM(2, 4) over Z2, and the highest power
found in any element for each of the cosets. It is presented in sorted order based on
the max power. Observe that the first 12 cosets (the ones containing only elements
with peaks below 32) are the 12 Golay cosets.

14



This table is similar to that on the previous page, but computed over Z4. Notice that
changing from Z2 to Z4 causes the max values to all assume integer values that are
powers of 2.
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Appendix B

Detailed Listings Within a Coset

This table lists all of the elements of a single Golay coset, as an illustration of the
m-odd case in Z2. All of the elements have peaks of exactly 64. In this coset, exactly
half of them occur at position t = 0 and half at t = 1

2
(note: the t = 1

2
positions

are listed as position 16 in this table. That was the notation used by our software
originally).
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This table is a detailed listing of all the elements of a single Golay coset illustrating
the power behavior of the m-even case in Z4. There are 160 elements with power
maxima of exactly 32. All occur at positions where t is a multiple of 1

8
.

17



(continuation of previous page)
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