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CHAPJ.'ER I 

INTRODUCTORY 

Page 'I 

There are a great many dovioes for solving differential·equAtiona 

of certain special forms. But there is a large number of classes of 

differential equations that are not included in these special fonns 

and cannot be integrated by quadratures or other purely elementary 

methods. When mathematicians were forced to ab!-!ndon their cherished 

hope of finding a method for expressing the solution of every" differ

ential equation in terms of a finite DQ~ber of known functions or 

their integrals• they turned their attention to the question of whether 

a differential equation in general had a solution at all, and, if· so. 

ot what nature. 

This study resulted in the development of whAt is known as the 

.Existence Theorem ot Ordinary Differential Equations. This theorem 

states that for every ordinary differential equ~tion of a fairly gen

eral type there exists a solution. The type of equf7tions included 

in the theorem includes those that are usually encountered and used 

both in ap;>lied and pure mathemi:?t ics. The theorem is no less import

ant in the field of' calculus than is the cardinal proposit.ion in the 

theory or algebraic equations, that every such equr-!tion has a root. 

The theorem may be stated ~s follows: 
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Given ~ system ~ ordinary differential equations: 

dy1/dx ~ f 1 (x, Y1• Y2s•••1 Ym) • 

dy2/ax:: r 2(x, Y1• Y2••••• Ym)' 

• • • • • • • • • • 

dY,rn/dx-; fm(x, y1 , y2 ,:•• ., Ym), 
l . . 

in which the functions tr(r ==-1, 2, ••• ,m) .!!!. continuous .!!! ~neigh-

borhood~ (x0 , Yi,o• y
2

,
0

, ... ,ym,o> which neighborhood k defined !?.I. 

\x- x0 ·} 2 a, }Yi -Yi,o \ ~ b1 ,(1:.l, 2, 3, ••• ,m), 

.!!!. M .!?!, ~ maximum .2! \ti I • \t 2 \ , ••• • ) fm \ _!!. ~·neighborhood ~

f'ined. Suwose rn there exfsts !!. ~ E!_ constants, Kl' K2, ••• , Km' 

~,rn, .!'oiany ~points (x, Y1 , Y2 , ... , Ym), (x, Yi• y2' ... ,ym) 

in !!!!!, ~ivcn neighborhood _!!!! having !h.!, .!!!!!. value .!2.!, !.h2. independ-

ent variable x, 

Jtr(x, Yp Y2 , ••• ,Ym}-tri(x, y1 , _y2 , ••• ,ym) I_ K1 jf;-:(Jr)+~\Y2- Y2\ 
. . \ 

+ ... .+ ~\Ym-1m\, where r:::.l, 2, 3 •••• • m. ~. these conditions 

being satisfied, there exists..!!.. unique ..!2i.2!. functions 

Y1::. :tl (x) • Y 2:: t2(x) • • • ·• • Ym -:::.f'm (x~ 

which, ~lx-x0 f ~a•, a• being.!!!!_ smallest of th,e (m+l) vo.lues 

a, b1/M (1-= 1, 2, ... ,m.), satisfies .!.!!!. given eauatlons !!.!!.! reduc~a .12, 

2 
Y1 :=Y1,o• Y2 :.Y2, 0 , ••• , Ym-= Ym.o f'or x:x0 • 

1All functions, both the given and the required, considered here 
and throughout this thesis are single-valued and finite. 

2Slight changes in this statement would be necessary in the 
complex domain. (See Chapters III and V). 
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Even as important as this theorem is in the calculus, the 

historical facts concerning its.development have never been published 

in English. T~ere is no English translation ot the original proofs 

of the theorem or of the modifications and developments through which 

they have passed. 

Three distinct proofs of the theorem have been developed, two 

ot whloh are due to Cauchy and one to Picard •.. The purpose ot this 

thesis is to bring together the historical facts concerning the de

velopment and publishing or these proofs and a brief biographical. 

sketch of the grent mathematicians who developed them; a translation 

into the English language of these original demonstrations and the 

modifications, developments and simplifications by later mathema

ticians; and, finally, a discussion and comparison of the conditions 

upon which the various proofs are based and the extent of their 

generality or ap'..,licability. 

:E'ollodng this introduction, one chapter will be cletroted to 

each of the proofs with t~e final chapter devoted to the general 

discussion. 
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CHAPTER II 

"THE METHOD OF DIFFKREt\ICE EQUATION·sn 

2.1. ORIGINATED BY CAUCHY.--The oldest of the three proofs 

of the existence theorem for ordinary differential equations has 

been called "The Method of Difference Equntions." It was or1g1-

neted by Augustin Louis Cauchy, who was one of the leaders in 

insisting on rigorous demonstrations in mathematical anAlysis. 

CAuahy was born at Paris, August 21, 1'789, and died at Seeaux, 
I 

'!trey 23, 1857. In 1805 he entered the Ecole Polytechnique, which 

was the nursery of so many French mathematicians. ·TWo yea.rs later 
I 

he e:itered the Ecole des Fonts et Chaussees. From 1810 to 1813 he 

was enga~ed as an engineer ~t Cherbourg. He was a professor at the 

E~ole Polytechnique from 1816 until 1830, v1hen he went into exile 

because he was too conscie~tioua to take the oath of allegience de-

~anded ot him es a result of the Political revolution. In 1838 

Cauchy returned to Paris end taught in certain Church schools, the 

oath demanded of him still preventing his acceptnnce of a chair in 

the College de Fr::mce. When the o~th was suspended during the 

. " 
political events of 1848, he egai~ entered the Ecole Polytechnique 

as Professor of Mathematical Astronomy. 

Cauchy was en untiring worker, e man of uncommon scientific 

ability, a prolific and profound mathematician. From 1830 to 1859 

he published more than 600 original memoirs and about 150 reports. 

In spite of the obscurity, repeti t1on of old results, and blunders 
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caused by his feverish haste, his prompt publication ot results and 

his preparation of standard text-books enabled him to exercise an 

influence on the great mass of mathematicians that wa.s more immediate 

and beneficial than that ot any contemporary wr1 ter. Ilia work in-

eludes researches into the theory of residues. the question of 

convergence, ditferential·equations, the theory of functions, the 

elucidation of the imaginary, the theory ot numbers, operations with 

determinants, the theory of substitutions, the foundations or calculus, 

the theory of .probability, mathematical astronomy, and the applications 

of mathematics to physics. 

2.2 FACT'3 /~ID ~!RCUMSTAT-!CES $URROUNDING .Tli.E DEV8LOPHENT A::-m 

PUBLISilING OF THIS PROOF .--It was during his first. -lectureship at the 

' . . .Ecole PolytechniquB · 1n Paris that Cauchy developed, 1.n 1823, the proof 

we are studying in_ this chapter. This· proof' was summerized in e. Memoir, 

"Sur !'integration des Equations Ditferentielles;" lithographed Prague, 

1805, and this summary was reprinted in "Exercises d'Analyse," 1840.l 

It was given to the public end preserved for ua in its complete totm 

only through the work ot Cauchy's friend and pupil, l'abbe ;_~oigno, in 

his "Lecons de Caloulua,n 1844. The printing of Moigno's book began 

in 1841. Eis original purpose was to publish only one volume, but 

the abundance or material forced him to alter hie plan to include two 

volumes. The first volume, on the differential calculus, which had 

already become a fixed science, came out according to schedule. But 

t:1e second volume, on· the integral calculus, was delayed for two rea-

sons. First, Moigno's duties as leader of a monRstery demanded part 

1rnce, "Ordinary Differential Equations" (1927) p. 76 (Footnote). 
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l r"£../' 
- • ?\ .. /} 
V··h 

of his time. Second, end of chief importance, the integral calculus 
i 

was rapidly changing. A new era s~eMed to ~come. trany noted soiantists 

were rorking on this branch ot mathe?!latics. It requ.1 red time to ana-

lyze and condense the many papers being published by such men as 

MM. Liouville, Slurin, Binet, Lame, Celalan, BlAnchet, and Bertrand 

in France; !~t. Gauss, jacoby, Lejeune-Dirichlet, and Richelot in 

Allagmagne; ?1ru. Ostrogradzky and Bouniakowsky in Russia; and 'M. Tortolini 

in Italy. At this pHriod Cauchy himself put out more than twenty-

tour papers about the integral calculus which Moigno wished to ana

lyze in his lessons. Therefore, Moigno's book, which was very modern 

in its day, was not completed until 1844. Cauchy's proof' of the ex-

istence theorem by means or difference equations is found in 

Vol. II, pp. 385-396. In the follo·:;ing section I. r-h:e ~ translntion 

ot the proot of the theorem and corollaries in their original ronn. 

To my knowledge, :they have never bee;i publishecl in English. 

2 • 3 A TRlUSLATIOlt OF CAUCHY'S ORIGINAL PROOF. ·· 

2•31. Whenever the differential equation 

is integrable by one of the methods explnined in the previous lectures, 

we can easily obtain, as we have shown, a function of x for the unknoVvn 

y, which will·satisty the differential equation and will equal y
0 

when 

x .=x0 • Conversely, the equation 

dy -=::. f' ( x, y) dx 

can be integrated and hes A general integral with an arbitrary constant, 

it one cen prove that there is a. general value of y which fulfills the 

two conditions mentioned above. Tb.is goal one reache·s in :most cases 
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by means or the principles about to be set up. 

Let X denote a new special Tel ue ot x and let x1 , x 2 , x3 , • • • ,xn-l 

be quantities which lie between the limits x and X and which constantly 
0 . 

increase or constantly decrease from the first to the second limit. 

Let us turther suppose that by means ot the equations 

y1 - y = ( x1
- x ) f (x , y ) , 

0 0 0 0 

Y,.,-Y-= (x -x )r(x ,y ) , 
~ l 2 l l l . 

• • • • • • • • • • • • • 

Y-"" ·
1

= (X-x )t(x , y ) .. 
· ,,n~ n-1 n-l n-1 ~-

one has calculated n Taluas of y corresponding)~:-y~, y
1

, ••• ,yn-l' Y, 
. , . 

and that one hati by eliminating y
1

, y
2

, ••• ,yn-l·~ a ·v~lue or Y of the 

tom. 

Y = F.( x
0
· ,x

1
, x , ••• , x 

1
, X, y ) , 

2 n- o 
which has Tery remarkable properties. If one now a.dds all these 

equations together one has 

Y-y 
0 
= (x

1 
_.x

0
) t(x

0
,y 

0
) + (x

2
- x

1
)r(x

1 
,y

1
}-t • • • (X-x~_,lt(x~_,,Y...,_,). 

Ifow, howeTer, the sum in the second part of this last equatton equals 

the product of the sum or the dif'fereneea x1 - x , x - x •••• ,X - x lJ or 
· o 2 1 n-

x~x , end a mean quantity which lies between the coefficients 
0 

f'(x
0

,y ), f(x, y ), ••• ,f(x , y ) 
o l 1 n-1 n-1 

and if one designates the largest or the absolute values of these co-

efficients by A, ,then the mean value will necessarily be expressed by 

a.n expression of tbe form ±@A, where &denotes ~- positive nu.'llber 

Enaller than unity; one now has 

Y -y = ±"<9 A(X -x ) 
0 0 

y = y ::I: G A(X - x ) 
0 0 
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and rroo this it follo~~ that the value of Y must noeessarily lie be-

tweon the 11~1 ts y
0 
.i A(X -x0 ). In like ?nanner we find th?J.t the quen

t it 1 es :v1 • y2 , •••• Yn-l lie respectively between the limits 

Yo A(xl Xo)• Yo A(x2 xo>•••••Yo A(~-1 Xo)• 
and honce nll these quent1t1ea, ea well eB Y, may be reauoe4 to ex-

presaiona or the form 

Renee, it follows that the coefficients 

are particular vnluea of the expression 

t [x
0 

:t-B (X -x0 }, y
0 

-::l:eA(X- x
0

) 

lih1ch oorresJ)Ond to the vru.uea ot e and B lying between O and l. 

rlow, ~Ht will sup-~ose that the largest and the smallest of the coefrtcirmts 

i:ere under discussion correa:>ond respect .1vely to the values ot: 

(} = CJ j-e ~ (;) ' [} = Bu -f- e I .:t@: ~ -t- "2_' J 
O I • O ) 

so th.et every quantity lying l: ,tween these two coeff!e1~rits, or between 

r[.c0 t- Ceo+ e)(X -x:'.',), y0 L (Q + elA(X -x0fl encl 

t[x-tB.,(X-Xo)• y0 +6{,A(X-x0 )J • 
can be regerded ns n ~rt1cular VP-lue of tho expression 

t ~ + ( f)o +et )(X-x0 ), y0 +(G>o + ej )A(X-x
0
I} a 

w:11oh corresponds to a value of J lying between the limits o and i. 

a~d, hence, es particular vslue of the expression 

r~o '*e (X-xo). Yo± & A(X-xoO/ 

which oorreap.:mds to V!-ilues or l:J and Q lying betw~en the a~e limits • . 
It follows th~t since the difference Y -y0 is equel to the product 
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of X-x0 and n mean quantity of the kind mentioned, one ce.n say that 

Y -Yo ~ (X -x
0

) r[i0 -r e (:X: -x0 ) , y 0 ± IJ A(X - x 0 >] 
and therefore . . . 

y::; Yo -f- (X-xo) tfxo + e (X -xo> t Yo± e J\(X- xoD, 
where {) e.nd GJ again denote two positive numbers less than unity. 

2•311. Corollary l. If' ~ ~ elements !!.! ~ difference 

X -:x0 , ~ ll• ~binomials x1 - x 0 , x 2 '.'""-x1 , ••• ,X- xn-lt ~ _!!

duced ·.li .!l single ..2!!,!, which would ,!?!. ill! difference itself, then 

.2!!!. would ~ only 

If 211!! compares !.h!.! equation .!1!h. ~ nrevious ~. ~ .2!!.! ~ 

th9t 1 through the nature of !!:!!.. di vision of ~ intervl'il X - x0 ~ 

elements, the second fe.ator .Q! th(:) nroduct, which exnresaes !!!.!. value 

.2! Y - y0 , changes in~!!!.! auantitiee Xo• y0 .!!!. !!. increase.!!! 

~ .!!. wBz_ ~ their increases .!!!:!. .!!!!.• respectively, ~ !!!.! 

nu"!lerical value .2! !.h!_ first factor !!.U2. !!!.! ™when multiplied 

.:2z. ~ constant A. 

2•312. Corollary 2. Ir m denotes .!.!. numb!£.!!!!. rn n ~ .2!!!. 

assumes x~ ~ ~ ~ = ..,, ~ !?!!.2. l!!1!! 
Y- .,, ~(~-~)/ft+~ (K-f), '1 :t- G'A (E- ~)J. 

2•32. After we have learned to Jmow the form of Y, we will also 

deter.nine in what way this quantity changes with 701 or calculate the 

increase (3~ '7 y which corresponds to an increase (.;>. i (J 0 • Let 

H' ~ + {X -x0 ) indicate the numerical value ot the dif~erence X-x
0

• 
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Let us fUrther suppose that when x remRins in the limits x 0 and X, 

the derivative df(x,y)/dy remains continuous with regard to the 

variables x, y and therefore slso lies between the limits C, C being 

a positive quantity. Now let 

($) (x, y) dx -t-X (x, y) dy 

be the· total differential of the function t(x,y) so that one has 

identically 

df{x,y) /cbc -= .~ (x,y), df(d,y) /dy = X (x,y). 

Also let @,
1 

~-i. 1 ~ •• ; (]~ be the respective increases of 

Yl• y2 , ••• ,Y when one assigns to ·y0 the increase (],,, and let e/ @o/ 

@,, @7-1 @":J
1 

. . . J GJl'k-, each be a positive quantity less than unity. 

Since the equation Yi-Yo=- (x1-x0 )f'(x0 ,y0 ) must hold, if one allows 

Yo to increase by @0 and y1 by ~1 , one then. has 

1'1 -t{31 - (yo -t r o ) =: (xl - xo) f(xo, Yo -t(3a) • 
and hence 

(3,- (3• - (x1 - x0 ) [ t{:xo. y 1.P. ) - t{:xo, y0 iJ . 
Further, one has,. by means ot a well-known formula in the supposition 

made, · 

and consequently 
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Similarly one finds ,1 
(3 ~ :- p I [I ± (;> I c ( x 'l- - )< ,)j / 

~~ • = <::311-1~, [1--t @~~· t-Cx~ x __ ,)J, 

0~-:: Po [1 ± G)11 c(x,- Xo)J[l ± B, { (X:J.-x,)] · · · [1 t: ~~-• <: {X- Y~--,)J. 

It the difference X - x0 is positive, then the nu.TJteri~al value of the 

binomial I .± e t (xl - Xo) is less than the sum ) +c (xl - xo) and 

hence, smaller than the exponential quantity 

r'}cc~.-x.o)_ I 'f"((X,-~o)+ c'\X,-xl".,_. ~ . 
~ - ,.~ 

For the srene reason the nu."Ilerical val.ues of the binomials 

are smeller respectively than the expone~tial quantities 

ec (x2 - X:l) • ...... ec (X -xn-1) ; 

and it follows that the product of all the binomials occurring ln the 

value or·~"' is less than the pro 15uot of all these expone-:-itial"',-quanti ties, 

that is, less than ·ec(X-xo), and is thus reduced to an expression of 

the form 

where again@ denotes a nu.ii.bar lying between O and 1. For this -~expresw. 

sion we W>uld obviously have to substitute 

8
C(x0 - X), -

1t 1ihe difference ~-x0 were negative. Accordingly, we have 

~~:: ± B~o Q ±C (Y-t<o) = .± ~{lo -e~ H) 

which is the increasep~o:r Y, corresponding to the increase (3
0
of y

0
• 

It, for the sake of brevity, we substitute K for eCHt K being e. positive 

and finite-constant, then we have merely (2"" = ±~l<~o-
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2•321. Corollary 1. .!!. .!h!!. elements x1 - x 0 , x 2- xi, •• ·.2! .!J!!. 

difference L x0 . .!!!l receive numerical values ~ !!:!!.!!. 1/0 / !!:!!.!!. !!!.!. 

factors 

~ .ruJ:. positive, ~ !!!_ necessaril:v ~ 

2•322. Corollary 2. !h!_ value .Q!. Jr;, = @ K r3o becomes l!!.

finitely small .!'!!!!!..{.So; hence, !!!. infinitely smAll increment £!. !.!!?. 

quantity Y .!!!ll always correspond 12. !!!!. infinitely small increment .2!,. 

~quantity y0 !!a!~~ first!?:!.. these guantities .!!..!. continuous 

function or ~ second. 

2•323. Corollary 3. !.t .21!!. considers only~ eauations 

Ym-1-l - Ym _:::lXm+l -Xm) f(Xm, Ym) • 

Ymt~ - Ym+l (Xnt-1-2- Xm.-t-1) f'(Xm+l• Ymtl) 

• • • • • • • • • • • 

'?." - Yn-1 (X- xn-1) t(xn-1'·· Yn-1) • 

they!!!!,. sufficient !21:. ~ detexminetion .2!. !. .!!.!!. ~function .2!, ~ 

guant 1t1 es ~' Xm .+l • ••• ,xn-1' x. y m' .!!1!!. .2!!!. .2!!.!l again easily !!h2.!. ~ • 

..!!. .2!!!. assip-ns !2, Ym !l_ certain increment / the corresponding increment !?.!. 

Y !!, .2! !!!.!?. following 12!!. 
± 6J/,J,.__ e :± C (Z- )<~).· 

Hence, this last increment has a lower nu.--:ierical value than that of the 
~ ------- ._._...... -- .__. -- ...._, 

product and, even more so, than that of the -- .__. _._ ~ ----. - -
product 
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2•33. T~~e quantity Y is obviously dependent, (1) on the limiting 

values x
0

, X; (2) on the quantity y
0

; and (3) on the number n and the 

values of the elements into which the difference X -x
0 

is dh'ided, or.I 

in other words, on the chosen manner of dividing the difference. It can 

be shown, however, that the value or Y is dependent merely on _the 

three quantities x ' x and y ' if one lets ths numer-ical values of the 
0 0 

elements ot the difference X - x approach the limit 0 lJy increasing 
0 

their number indefinitely. To this end, one needs only prove that 

the chosen manner of division no longer has any perceptible influence 

on the value of Y if the nu.inber n becomes very large, ~uhich one can 

easily do in the following manner. 

If the elements of the difference X- x
0 

reduce themselves to a 

single one, tvhich then becomes t?:e difference itself• then the value 

of Y is determined by the equation 

Y - y = {X -x } f(x , y ) • 
0 0 0 0 

If, on the other !1and, this difference X -x is divided into n elements 
0 

x1 - x
0

, x2 - x1 , ••• ,X- xn-lJ 

we h~ve then 

Y-y
0

::: (X-x
0

) t[x
0

-t- e (X-x
0
). y

0 
±: GJ A (X-x

0
U • 

In order to proceed to a second manner of division we need only to 

divide each element of the first division into new elements, and one 

can then by approximation caloulate the influence which each subdi-

vision has on the value or Y. For, if one, for example, divides-the 

element x1 • x
0 

into several parts, then we have for the equation 

Yl- Y :::: (x - x ) t( x , y ) 
0 l 0 0 0 
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several other equations of the same form; but it one proceeds in the 

well-known manner, one finds 

"1
1
-Y =-(x

1
-x) :r[x +-tJ (x -x ), y -:t: GJ ,A 1 (x - x LJ 

0 .o 0 l 0 0 l 0 ) 

where e and~ again denote tt.io positive numbers l.esa than unity. · 

It one supposes 

one has 

rfxo -t-D (xl- xo) • Yo ± ©'.!A (xl - x ol] ::- f'(x o • yo) ± E., 

:± E- (x - x ) 
0 1 0 . 

But before the further division ot the element x
1

- x . one had 
. 0 

-r:1 - Y -= (x -x ) t(x • y ) • 
0 1 0 0 0 

and, hence, the value of y
1

, by this new division, is changed by the 

·product ± fo (x - x ) • 
l 0 

If, however, the remaining elements of the difference X-x retain their 
0 

original values w~le the quantity y
1 

receives the increment -:i e
0
(x

1
-x

0
); 

then Y receives, according to the statement above, another increment of 

the form 

Hence, the increase of Y caused by the subdivision of the single element 

x - x has a numerical value less than the quantity 
l 0 

Similarly, one proves that the increase of Y caused by the subdivision of 

the element x - x has a lesser numerical value than the quantity 
mi-l m 

;f J\ f,.,__ ( x~ t-1 - )',,_.)I 

where the number ~~is determined by an equation of the form 
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If one thus successively divides anew all elements of the difference 

X-x , then Y receives a series of increments, whose sum. is less than 
0 

where f denotes e middle quantity among the nu"?lbers ~ ... , E:, 1 €~,- · · 

If the di:trerenoes x
1

- x , x - x , ••• become 1nt1ni taly small
1 
then the 

0 2 1 
same is true of the quantities E,,1 G., 1 <214 . . . as well as of the 

expression 

and, therefore, the value of Y, corresponding to a cart~in division in 

which the elements of the difference X-x have very small nu.7narica.l 
0 

values)will not be perceptibly changed, if one proceeds to a second di-

vision in which each of the elements is again divided 1nto several others. 

Let us now assume that one observes at the same time two divisions 

of such a nature that the elements of the second division are no longer 

subdivisions of the elements of the first division. Then one can comkflre 

both these divisions with o. third or such a nature that eaoh element of 

the first or second division is formed by the union of several elements of 

the third. For the fulfillment of this· condition nothing further ie re-

quired except that all.values of x inserted in the first divisions are 

aiso used ln the third, and one can prove that one cr.anges the value of Y 

very 11 ttle when one proceeds from the first or second di vision to the 

third. It, therefore, the elements of the difference X-x beco~e in
o 

finitely small, then the manner of subdivision no 100ger has any perceptible 

influence on the value of Y, and if one lets the numerical •al.ues of these 

elements decrease 1 by increasing their number infinitely, then the value of 
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Y converges toward a cert~in limit which depends only on the fonn ot the 

fun.ation t(x,y), on the limit vcluos X Md x0 of the variable x and on 

the quantity Yo• 

2•331. Corollary ·1. Since the limit townrd vzhich Y converges, ~ 

!!!!?. elements .2!,. ~difference X- x
0 

become infinitelv small, depends only 

.2!!. 1!'!.!. three values x 0 , X and y
0

, let ~denote.!!!.!..! limit E.z F(x0 , X, y 0 ); 

and by F(X, y0 ), F(X}, .!!.!!!.!1.!l!.12. allow onlv !h!!~ aunntities X, y0 , 

.QL ~ .2.D!. quantity X !.2. ~changed. 

2·34. It can now be easily pn>ved that there always exists one 

function of x, which satisfies the differential equation dy= t(x,y)dx ~nd 

which assumes a special but arbitrary value y0 if one assigns to the vari

able x a given value x
0

• For let F(x) be the value of F(X) if one Rub

stitutes x for X. Since F(X) is the value of Y, if the elements of the 

difference X- x0 become infinitely small, then we have fromJ the equation 

Y-1 ~ (x-f) f U+-fl(X- (), 7 r e A(X-t)]
1 

the equntion 

F ('K)- F {[)°' ("K- t)j [f-r9(K-f)/ f((}x@AfE-f}]; 

and if one substitutes 

where x and x th lie between the limits x0 and X, then we have at the 

B8n'le ti.me 

F(x) = ye -r(x -x0 ) r[i0 -t- e (x - x 0 ), YO -=I:. GJ A(x -x0 Q 
and 

F(x t- h} - F{x) ~ hf[xt-Sh, F(x) r €J ~ .. 

Uow it is easy to sea that (1) w::en x= x0 / F(x} reduces to y
0

; (2) if h 

becomes infinitely small, the corresponding increase of the :function F(x), 
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namely, F(xth).,. F(x);also is an infinitely small quantity; and (3) that 

from this equation divided by h the following results: 

which expresses the feet that the function F(x:) satisfies the differen-, . . 

tial equation dy = f(x .y)dx. 

Therefore, .!!'..~:function f(x,y} ~ fil derivative ~)remain 
finite and_ continuous_ between !!!! limi.ts !o, and X, ~ there exists !!. . 

function S!£.. x which satisfies~ differential eguAtion dy _- t(x,y}dx, ~ 

which assumes ~ VAlue y0 , ll .2!!!. assi~ns !2.1!!.!. v~riable x .!!. given 

value x • · 
0 

2•341. Corollary 1. If .2!!!. designates !11!. limit .2f. Y !>.z F(x ,y0 }_ 

~ ~ function y ap~1enrs....!..n_!h.e~...2! y = F{x,y0 ) ~..!!.!!!!.general 

integral .2!:, ~given differential equation, because y
0 

.!!. .!ill. arbitrary 

constant, !.24. !J!!.! integral also, !.!lS!. Y, .!!. ~ continuous function .2f. y 
0

• 



Page 24 

2•4. IMPJ~OVE~~IBNT DUE TO LIPSCHITZ.--In a paper published in the 

"Bulletin des Sciences Mnthematique et Astronomiques" (1) 10 (18?6). 

pp. 149-159, 11. R. Lipschitz has greatly improved Cauchy's proof by 

making prominent the conditions upon which it is bnsed. This improve-

ment by Lipschitz has become almost as famous as the oriq'.inal proof by 

Cauchy. Follov1ing is a translation of the improvement due to Lipsohi tz 

taken from the paper mentioned above. 

We shall suppose a given system of differenti~l equations. with x 

as the independent variable and yl, y2, •••• yn as the dependent veriAblee, 

in the form 

where~ ~ 1, 2, •.• ,n. The 'functions to{ are given for con'l'lected set or 

Talues of the variahles x,yl, y2, ••• ,yn. 1'.rhis set of values is said to 

be the domain G. (If n·~ 2, we cAn consider x, yl, y2 as representing a 

point in space. and we h~ve a very nice image of G.) For all points in 

t\e domain G the n functions f°' e.re to be uniform, continuous and bounded. 

Moreover, they must satisfy the following inequality 

{
/t'( t.., ,( (' .. . 1 i""J- f'Y ( z,' z:-. .. , l/ I 

(
2

) < C°''' I A.'... ti +e.""'J/{'.:. 7 'It. -. + t""· .... I{~ L''L 

for any two Points ')(-:.~' (j"~p,_"' ,,_____( )(-:. f.., (/'1 l <( , having the same value for 

the indepeadent variable. C
~,p . 

The quantities are positive constants and 

here, as in the following, the symbol/wj represents the absolute value 

1 A domain G is said to be connected when it is possible to join any 
two points wllatever of that domain by a continuous path v~hioh lies entirely 
in that region of the plflne. {Goursat-Hedrick-Dunkel, "Funct ;_ons of A 
Complex Variable", Vol.II, Part I, p.11). 
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of w • . The imposed condition of continuity demands that for any two 

systems of values x:: h, y~ k« and x :: j, y0
-: l°<, 

the difference 

1 /"( ( ( -t ... , 1 "'J-/~r1 , t: r-... , !'") 1 

can be made es small as we please if the differe~oes }h -j), lk~-1~/ 
approach zero. If' we consider inequality (2} we see that this condition 

assumes that we can choose the differenoe)h .... j \ so small that it has, as 

a consequence, tho inequality 

howsoever smell 0 may be. 

The system (i) will be completely integrated if we determine a 

system of functions y-1, y2, ••• ,yn satisfying equations (1) and for a 

given value of x, x :::x0 , satisfying the equations 

(1 ) 

The system of values {x0 , y~, Y5, ••• , yg) ~ust be included in the a.amain G, 

exclusive of the boundary. So that we mAy· find positive quantities 

Bo, b~, such that the 1nequal1 ties / x - Xo j ~ a0 , J y"'-- y~) ~ b~ de:t'1 ne " sub• 

domain or G; consequently, there exist positive finite constants c'd such 

that, tor all points of tlle subdomain, we shall have 

(4) ; Fl <- c. 9 • 

If we determine tha positive quanti t!' A.0 so thnt we i1ave 

(4 } 

the domain described by the inequalities 

(4 ) /x -x0 } ? A0 , Jyc(-Y~) ~ b~ 
will lie entirely within G. We shall call it H0 • 
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~ ~ conditions, tlliu:f! always exists ~ unique system Q..f 

functions yl, y2, ••• ,yn, satisfying eQUations (l} and varying continu-

QWi].y' within H0 Uthe varinble x passes tz:mn x0 -A0 to x0 +A
0

, and 

satisfying the equations y~ y
0 

when x-;: x0 • 

For th.a proof of this theorem 1 t is sufficient to consider only 

those vslues of x in the intervoi x0 ~x~ x0 
+-A for the proof in the in

tervnl x0~ x ;;x0 +A can .be developed in the same way. Suppose that 

there is between x0 and x0+A a sequence of intermediary vnlues 

and determine n qua11tities Y1J1' :t>Y the. n eqµations 

( 5} ~ 0( - tP'l( 1 2 Il) ( ) "1-1-Yo - Xo, Y0 , Y0 ,···•Yo x1-x0 • 

These equations would be the same as the given differential equations 

(l) it we replace, in the left hand me"'lber of them, dx: and dy by the 

0( ~ 
t"inite quantities x1 - x 0 , "lfl - y0 respectively, and in the right hand 

me'1ber x1y"" by x
0
,y;. From the inequalities (4) and (4Q') we can con

clude that the equations (5) have as consequence the inequalities 

\111- y~) ~ o~ (x1 -x0 ) < b~, 
and, therefore, the system or values (x1,Jti•1J-f•···•'t~} is in the domain 

Ho• In the sa-ne manner v;e can form the sequence of systems of values 

by substituting successively a:::: 1;2, •••;P:: l in the equation 

(sq> 'J ~+,- 11~ = f'Cxa.i 17~, -i,~, - - -, .,, :.)(><"+·- X1.1.). 
All the systems of values will certainly remain in the dom:nin Ho· Vle 

continue the decooiposition of the interval. by i"lterpolnting between x ~ 

and x"-1-' the /I{ -1: values of x. 
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. x"'-,•J X"','l..J . . "J Xo..,~ -r <. x~,ie..-:::. 'X~'t•J o ~Xe...,.., -

By this new division we obtain a new sequence of systems of values be-

ginning with (x0 .li, y~, ••• ,yg) each or which will be included in ·H0 • 

I 

This new sequence of values ('Xe:. u "' u ... 11;,~o.. ) will be obtained 
J 1" J .,°"1r• .. I ' 

by replacing in the equation 

(6) 1!~1 1-1.r• -'!;ft•-=- t'fx.,!f..' 7~,,... 111~1"1•1 · • · J )~ff .. )(X"J..,•'"' """X'}'1·); 

a by O, l, 2, ••• ,p-1, 11"'-by the numbers O, l, 2, •••• 7~-l, and, finally, 

by placing 

It is now our task to establish that, regarding the first quantities 

xi, x2 .- •• ,xp-1 as fixed, increasing the number qc:t.. indefinitely-, and 

indefinitely decreasing the intervals by any law whatsoever, the values 

-ii" - 4"' 
·1~"tlJO - (}Cl+I ) 

correspond! ng to the value x::: x
8

T 1 of' the independent variable, con

verge to a tixed limit independent or the law of increasing q~ and the 

law or decreasing the secondary intervals into which we :1ave divided 

the intervals between the quantities x0 , xl' x2 , ••• ,xp-l • xp. This 

proof shows that under the conditions given above it is always possible 

to choose the quantities x1, x2 1 ••• ,xp-l so that the absolute value of 
(;t ~<\ 

the ditferances ~o..-t 1 ~ 'l~-t1 remain, for each a, s:r.aller than a 

quantity ~, chosen arbitrarill" small. 

If in equations (6) we set successively ~°' -= o, 1, 2, ••• J f1Q. and 

;:~ them,~;" o~t~: t~c2~ ,f ~l,~ :o(:ng ~ 
1 

~ ) ( 

. t\Jfte.,-tl Cl,/o..;' ~,11~, 'fQ.( ,..,~, • • ') 11,, I x 1 
- x I ) 

/f-tc.: a.111+ l °/Ho... J 
tt~-:0 
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which gives by means of inequality (4) 1 

111:,M. -YI:,./< c.: (/\<A, 11.-r• - X .. , .) < c; ( X"-t-• -x .. ). 
This inequality expresses. that the system of values ( Xe., -"'e.. J 14,f(""J · 

) remains, if we let a be fixed and if we give 

f((A. all the VRlues from o to <is.' l, in the domain K0 whose limits with 

respect to each of the n i-1 va.riables can be made as close toget!1er as 

we please by taking the difference x
8
+ 1 -xa sufficiently small. As, 

by hypothesis, the functions f°' remain continuous in the dom~in I:l.a; the 

difference xa .J. l - x8 cnn be chosen so an.all that in the domain K0 the 

difference between two values or this function will beco;ne smaller than 

a quantity /\ , chosen arbitrarily small. Supposing that the difference 

is determined in this way, by tP.king the nuMber f itself sufficiently 

la~e, we obtain from equation (7) v1hen f1 "'- --=- Jct - / , the result 

°" t-r J. j I rl.( . ' ' ~) (
1
' 1/ ( ~ ) · 

{8) :Jc..+1-<Jk.: D Xa.,:Ja..1 '(]~1-. ·1Jc... i- c.I' Xv.ii ~I 

where the quantities c: are proper fractions, either positive or 

negative. 

Subtr~cting the equation (5 ) from this equation we get 
'J,~ -Ud d.. Q. 

( 9) ();o.'+1 -lfc:..t-1-:::- Jc:.. -tia.. q 

+I /'fx~, g :.., · · / o ~) -prx., 1:, .. · ~;;:) -r c: .. ;.J<x"_,.,-x,.) j 
p~t, beoause or (2), we shall have 
I L d.{ , -?tj' ~ , 11 ~I 
r '>1~ ;I .. : d 7/-( d~~1"'' ;4.1 ·,,.·} · / _,"'" . d,~/ "" l1..,} 

' c I at\. -ia. t c. d ~ - 7 o. f • - .. + C,. J ~ - . , '{. • 
If one then olaces 

I -a. "'J-z~ 
( 10) ~ °' .-'1 a. - ~ 

the equations (9) give the sequence or inequalities 
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(11) 

Moreover we have 

(llol) 

Now it is clear that if we form. a sequence of quantities by means of 

the equations 

( 12) C\..t• vt e.... - c.-. -"' c. r l\c;:..,., ~ 

[ 

L<.°' - , ,~ _ ( C. ""· 'u..1 + c_ <:1., 1...u .,,_ + ~ · -+C~' "u..~ -t-"::i)(v - X ) 

l<.~:: 0 

in which the index a truces values from O to p- l, we will constantly 

have 
o( Q( . 

(13) 2-a. 71 < Uc...+ 1 • 

Now we need, for our demonstration, to show thnt, taking "/' 
a< 

sufficiently small, the quantities 2'A 7 ,remo1n as smell as one would 

desire; our purpose will be attained if we prove the same thing for the 

J.~ . 
quantitieSV\tt+1 or tor greater que.ntittes. 

"2-Let c be a positive quantity superior to the greatest of the n. · 

consta.nts <!. C(,,fo ; if one detemines the quantities V: by the equations 

(12d) r v..~. -:: :- I c (_ vJ t- v; -t- ... t- v :) +}-/ (Xq,-X.\ 

I VC> = 0 I . 

one will evidently have, for~-:. 1, 2, 3, •• ·• ,p -l, 

c13~> LA~+• < vh~, . 
Mow the tirst equation (l2o<) gives 

I I 'l. L. ' - ~"' - II"". 
~.,., - Vtl -:. Vo..+, - Ve.. :: --- • • - tt-t-1 a-. , 

and, by virtue of the second, we have 
I 'l.. '? ~ Va..::: Ve..~ V~:=- ... =Vo.. 

The first equation (12~) may then be written 

v~: 
1 

- V ~ ::. ( n l. V ~ T 1-) l X :,..,_ t - X ~)I 

or 
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one then has 

(14) . 

»ut the product 

/tt-~c.(>',-)'"J}\ 1-t-~l(x~-x,)I· · · J Jr-11 c.(X~t-•-x"'"))J 

in which no is positive, has itself a positive value inferior to 

-e 4\ c.. (Xe.,..,- Ko) 

we then have 

The comparison of this ineQuality with the 1nequel.1t1es (13) and (13a) 

gives 

/ 
c( - ~ ' - 2~ < (15) &o...+1 17 a..-t-1 - a.-r I 

- /+ e 1tc.lX ... .,.,-x.) A-< 
"'1 c.. 

end since the factor 

hes a finite value, one concludes from it that the difference 

) ~~+.-'1~T,/ 

may be r11ade as small as one would desire; because /-- is a o,uanti ty as 

small es.one desires, depending only on the choice of the intervals 

x1 x0
, x2 - x1 ••• , xp -xp-l. Since the d iff arencas/ g.:.-11 ':..., Jmay be taken 

d. 
ss s~all as one desires~ the quantities~At 1 which correspond to the 

fixed value x-= x
8

_1 of the variable, converge toward a determined limit, 

independent of the law of increase of the number/~ , and of the law of 

decreas£· ~of the new intervals. These limited values, by virtue of equa-

tions (8), define a system of ·solutions of the differential eouations, a 
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system for which the functions y ct are reduced to y~ v1hen X::: x0 • The 

existence of a system of solutions satisfying the imposed conditions is 

then established, and the first part of our program is 'fUlfilled. 

That there exists no other solution of the system (1) satisfying 
cl ye< 

the stated_ conditions, one seas as follows: let tJ :: I be such a solu-

tion, the interval of x0 , x0 -A, to which one may still be limited, may 

be divided, by the introduction of the· quantities x1 x2 , ••• ,xp-l in 
o{ 

intervals for which, f A. being a· proper fraction, pos1 ti ve or negative, 

e.nd 1' a quantity as small es one would wish, one will have the equation 

(16) (f.,_:,- Y~) = W (~c., 'f ~, ... Y._''')+ f. ~ fl/ (Xe.,_,- X,._) / 

Jo. Y°' in which the values d ~ correspond to the value x ;:: xa or the indepen-

dent variable, and in which one has, by hypothesis,'(;·= a~ . This se

quence of equations is an immediate consequence of the two hypotheses 
cJ.. ~ 

by virtue of t,-hioh the given system of functions (J : Y satisfies the 

differential equati.ons {l), and varies continuously when the variable 

x goae from Xo to x
0 

-t A. If, by the equations (5) and (5~), one forms 

the quantities 1~ according to the vnlues x0 ,xl' ••• ,xp-lt one recog

nizes that the differences 

} Y~.-11~ ... \ 
should behave like the di ffe:rences 

I ~ :-t. - ri;-tl I , 
because the equation (16) is deducted from the equation (8) by replacing 

ck °'- ol.. o{ 
y

8 
by Y8 and ya-tl by Y8 +l• and one has besides Y0 = y0 .' it results 

- l ~ from this that the differences Y~-t;--,~_,.f may be nade, like the differences 

l ~ ~ ~' ( , as small as one desires; but, because of the inequality 
0~-t.-·1 A."f1 
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l Y:,.,- ~:~. J i I Y--~ .- 1-i ~ •. I ,.. / 1 :,. -'1~ •. I I 
the difterence}Yc..~,-d:-t,jmay evidently be made as small as one desires; as 

~ ~ . a consequence, the ~iven system Y
8 

or the functions Y8 may not differ 

from the system of the f\mctions y~ obtained by the division of the 

first intervals into new 1nterva1s that one has made decrease indefinite-

ly. Our demonstration is thus entirely completed. 

There is reason to make some remarks on the conditions imposed on 

the functions t ~. We have supposed in giving a sufficiently small in

crease to the independent vnriable and.in keeping the same values for 

the y, one could satisfy the conditions of continuity 

tr being taken as small as one desires; moreover, we have imposed, 

for variations of the quantities y, the conditions of a special nature 

. ' 

Our demonstration supp0ses essentially that these conditions are satis-

~· In order to be convinced of it, one may limit oneself to the case 

of a single differential equation 

7h~ I (.,.,3). 
If, instead of the inequality (2), one supposes only thnt one has 

(2~ I JI ( /.._) - /{I:, l) <cf/£- ll ~ 
in which ~ is a positive quantity smaller than 1, the reasonings. 

copied closely from those which we have made, lead to replacing the in-

equality (11) by the following: 
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(11*) 

still taking 

In order to learn whether the quantities Za tl may, for a value 

of f'. sufficiently small, be made as small as one desires, one will 

form the system of equations 

(12*> U.a..t-,-~ -(c'-':-r?)(X"1,--.. x~) ~ 0 , 

and one will have then 

(13*) 

one must find out then whether or not, t~r a V<'!lue of } sufficiently 

small, the quantities Uc._m.ay be made as smell as one would desire. In 

the first case, one would arrive at the same conclusion; but, in the 

second case (and we are go1-ng to· see that 1t is v.r1.th this one that we 

must deal), our demonstJ:'.'8tion collapses. One has supposed the inter-

vals xl - x0 , x2 - x1 • ••• ,xp - xp-l small enough s.o t h~t , in a ~omain K0 / 

in which the difference of the values of x is less tha.n x
8
+1 -x

8
, the 

difference of the two val uea or y is less than the µ;1 ven. quantity}. • 

The intervals x1 - x0 ,x2 -x1 , ••• ,xp- xp-l being chosen arbitrarily, 

nothing prevents subdividing them into smaller intervals; the assumed 

eondi tion remains' fulfilled. By carrying the subdivision ta~ enough 

and designating by /A.,._ the value corresponding to x 8 • one sees that the 

equations (12*) may be replaced, with an approximation as great as one 

desires, by the equation 

trom which 



Page Z4 

l{ o I -d't-J 

I ~~~ ~~ 
X't\. -'XI) ( ~ - c.( .. 1-~)-

.,.. -
)

- ~-ti 
Ue..) (-~-ti)<: (><a.- Xo .. 

Then since ).. is a fixed qunntity. one can by no meena make u~es small 

as one dos!res; t 1;e 1nequ1:1ltttea (13"*} cn1'not th.en lead the quantities 

zai-1 to 8 proper limit. 

It is clear that the ine~uP.lities {2) ere el~ays s8tinried tmen 

the functions / c<, for ell the points of the do'.':lain G, ':'lVe p~rtlal dA

rivatives of the first order, unitorm, tin1te 1 e.-,d t",ontinuous i!l rela

tion to the n vnrlables yrf. ; boonuso then the differe':'lce r( ~I (1..,~. · _ 1,_ )- /"(~I z; l > .. , (') 
may, in aceordanoe ~Ith Taylor's theoremt be ~lnced und~r a formula 

which mnkes t1~r~e 1ne~ualities evident. On ths oth.g.r h:!llnd 1 one can 

conclude nothing on the nature of pHrt1al der1vet1Yea from these aup-

pose;1l7 true 1n&:~u·jl1 ties. 

In the ease Where the functions /~o not oont81n the verlsbles b ~ • 
UH) functions re~ein un1fom. finite, ~nd continuous in rebtlon to x; 

1
~ c( 

our analysis shows that the ~-integral. / {f)rff ;ias a determined sense 

Md thet the derivat he or t ~ts function, taken tor n value of the 

vnrinble equal to the upper li~1t of the integrt>l. is equal to ~ (x). 

The !)Ost:lumous mamo1n ot Riemnnn, on tho represe~tetion of a function. 

by ~ tr1gono~etricol series. has thrown light upon this r~et, that tbe 

existence of the definite integral de,ends upon n more ~anersl condition r 'Xo t-A . / -< 
t'\1e.n continuity: th9 1ntflgral//Y f) RS 'rlll exist tr the fr.mction O (xl 

x,, 
rem~dns fin! t;e ~en x v1u'1es from: x0 to Xo +A. and it by dhiding the 

interval trom x
0 

to x0 +A i~to intervals indefinitely decreasing, 
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x1 x
0

,x2 x1, •••, the total sum of the intervals for which the oscil

°" letion of the function f (x) remains less than a given quantity 0-, as 

small as one would desire, can be made as small as one ~~uld desire if 

these conditions are fultilled, and if x is a quantity between x0 and 

Xo TA, 1 t is clear that the 1 nt egra1J;. • ..,,{"' (~ )J. S will exist ; but , aa 1 t 

appears to me, these conditions entail in no way this consequence, 

that the derivative of this integral, is equal to f~(x): end so I 

thought I should retain the con~tion of continuity of the fUnct1ons 

~(x) for the study of the integration of differential equations. 

Note: In the final chapter of this thesis there are listed the 

names and works of other mathematicians wb'.o have made noteworthy 

investigations of the method of difference eauations. 
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OP.APTER III 

"THE CALCULUS OF LD.1ITS" 

3·1. ORIGINATED BY CAUCHY.--Cauchy's first proof, which was the 

subject of the preceding chapter, is for real functions and real vari-

ables. He :-:as given a second proof, which he celled "The Calculus ot 

Limits," for complex variables. lThis proof was published in the litho

graphed memoi-rs of Turin (October, 1831, 18&2, and March, 1833), mid of 
~ 

) ' ·- J Prague (1835 • The first of these memoirs was ·reproduced~, in part, in 

the "Exercises d'Analyse et de Phys. Math." 2, Pnris, 1841, p. 41; the 

second was reproclu ced · in the "Ex ere ises d t Analyse et de ·rihys. Math." 

1, Paris, 1840, p. 32?. Extensive notes on this theorem were later 

published by Cauchy in the "Comptes Rendus Academia of Sciences, Paris," 

9-11, 14, 15, 23 (1839-4.6.) end "nany of these notes were republished in 

"Cauchy's Collected Works," Series 1, Vol\L~es 4-7 and 10. The most im-

portent of tha!ll bear the following dates: November 5 and 21, 1839; 

June 29, October 26, November 2 and 9* 1840; J"une and J"uly, 1842; 

September, October, 1846.2 ,In the following section is a statement of 

Cauchy's original demonstration by meens of the calculus of limits trans-

lated fl'Om Vol. ? of his ncollected Works.tt 

lp~ Painlev~, "Encyelopedie des Scieµces Mathematiquea" t. II, Vol.~j 
P• 16' 

2see also "C• R. Aced. sc. Paris" 9 (1839), p.184-90, 637-49; 10 (1840), 
pi 957•69; 11 (1840); P• 639-58, 66'1-'17; 730-~6; 14 (1842), p. 1020-8; 
15 (1842), p. 14•25; 23 (1846), p. 485-7; !)29-37, 553-9, 617-9, 702-4. 
729-40, 779-87; ucollected Works" (l) 4, Paris 1884, p. 483-91; (l} 5, 
Paris 1885, p. 5•29, 236-49, 360-409; (l) 6, Paris 1888, p. 461-?; (1) 7, 
Paris 1892, p. 5-17; (1) 10, Paris 1897, P• 107-9, 124-33, 143-50, 150-3, 
169-,l. 171-86, 186-96. 
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3.2. A TRf~qsLft.TIOM OF CAtlOHY'S ORIGn:rAL PROOF. 

3·21. General Considerations. 

Let us be given a system of differential equations ot the form 

(1) D-tz=Z,- ••• 

with the independent varieble t and the unknowns x, y, z, ••• • Let 

X, Y, z, ••• designate given functions of the unknowns x, y, z, ••• ,t. 

On the other side, let L 11 1 g , ... be the new values which the un-

knowns x, y, z, ••• , acquire tvhen the variable t acquires a new value 

deal f?Ilated by C-. If one subst 1 tut es 

! for x, 1 for y, J for z, ••• , 

a given function 

(2) R::F(x,y,z, ••• ) 

of the unknowns x, y, z, ••• will have e new value represented by 

F( S1 YJ' J, .... }; 
end if this new value can be expended according to Taylor•s formula into 

a convergent series of ascending powers of the difference (1- t), then 

one will have 

(3) -t-·-···,. 
If in equation (2) one replaces successively the function F(x)y,z, ••• ) by 

each· of the unknowns x, y, z, ••• ,one shall have the formulas 

E y 1" t: , 6- :-tr~ J. 
.5 :: + -T- D-f: )\ + I~ D~ x + . ~ . ) 

1-1 -:: Od: -+ '{- t " ct")- )..,_ .. . , '(J I 1-Jt:~ Tl -t D 4,.. - . ·. ) 
(4) d /·'1- tr/ 

x -0 2.t- ¥ D-1 t + 1 ~~;1 ... o~r . -. , 
which will represent the solutions of equations (1) whenever the sequences 
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\J--t) 'D '/. tr--t)'-D~ x · . ) 
)<I ~ t) I· "l. -t 

(r-, tJ P-t a, 0- - i:) ..._b .,_ d .. ) 

(5) 'a I /.?- -t 

I 

are convergent. That, at least, one can easily demonstrate by the aid 

of-a general theorem which I have found about the expansion of functions 

into series! Therefore, to establish the existence of general integrals 

ot equations (1), it will be sufficient to prove that one can assign to 

-rr - t an absolute value sufficiently small to make the sequences ( 5) 

convergent, all of which are special oases of the more general sequences 

(6> R -Y- -t D R C1-t)1.- D~ R, .... 
I -, ./:. J /·'2- . 

Therefore, if one designates the absolute value of?:- t by l and by 

ryo:I J,,, .J:1..~ , • . :· 

the upper limits of the absolute values of the quantities 

RI --!- D .. R) -f2 D:R, .· .. I 
it will be sufficient to prove that the absolute value l can be made so 

small as to render the sequence 

{ "/) . . . 
convergent. 

Now let us note that, from formula (2) connected \rl th equations (1), we 

shall have 

1Goursat-Hedr1ck-Dunkel, "~t:!athematical Analysis," Vol. II Part l,p.'18. 



(8) D)?.::: D: F( >-, d· z I . .. )l('-, D~ F('x, ~I 2-, ... ) r· . -
t !l. D)\ Dd F< x, d, 2-J ... J x r .,... . . . 
-+ Dx J:.("><, d' z." ... ) D<: x -t- p0 r:-(x, U' 2'" - .) Dt- r-+ 
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so that the general value of D ~ R will be composed of te:rms which Ylill 

be the product of a positive integer, one of the partial derivatives 

of different order of the function F(x, y, z, ••• ) , and the powers ot the 

functions X, Y, z,... or their derivatives. Next, let 
I I I 

x t y t z ••• ,-t 

be the absolute values o~ the imaginary increments assigned to the 

variable quantities 

x, y, z, ••• -t 

and selected in such a way that for these absolute v~lues, end for 

lesser absolute values, the functions 

x t y, z t ••• ' ·J' ( x ' y • z •••• ) • 

modified by these incr~~ents, will remain continuous with respect to the 

arguments end the absolute values of the increments with which we deal. 

Finally, let 
I I I 

X , Y , Z , ••• , R 

be the maxima of the absolute valu,es of the functions 

corresponding to the absolute values 
I I t I 

x t y • z , •••• t 

of the imaginary increments assigned to the variables x, y, z, ••• t. 



From the theorem established in a preceding sectionl 

for obtaining the upper limits, 

Jo I .J, } J~) • • •) 

respectively, the upper absolute values of the quantities 

_J_ "2. 
1,2-D--t R, ••• 
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it is sufficient to colculate these quantities in the special case in 

which one has 

( 9) 

and 

X -1 ::::ax _, _, t-' y z •.• , 

Y -- bX - \ - I -r t- I y z • • • t 

. I -I -I -I Z ::. ex- y z ••• t 1 

• • • • 

(10) R = .Kx-1y-' z-1 ••• , 

a, b, c, ••• designating.constant fac~ors, and then to assign fo the 

variables x 1 y, z 1 ••• ,t and the constants a, b, c, ••• , K · .i the 

values detennined by this system of formulas 

(ll) 

I 
x =-x, 

I x :::. x 

I 
y =-Y1 

y -::- y 

I I 
Z =. -Z, • •• , t -= - t 1 

I I 

z = z •.• R .:: R 

related to equations (9) and (10). For the rest, to deduce the sequence 

{7) from the sequence {6) it will be sufficient to join with the fonnulas 

(11) the following 

(12) / 'L - t \ = L j 
end• in the special case, which wa have to consider, the sequence (6) 

lncomplete -works of Cauchy", s. I. T. VI, p. 464--Extrait no.16?. 
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will not cease to represent the expansion of 

corresponding to the values f, Yl1 5. which give the integration ot 

equations (l). Finally, if the absolute value i '2 t - t is sufficiently 

small so that sequence (7) is convergent, the sequence (6) will be even 

more convergent. Therefore, to establish the existence of general in-

tegrals of equations (1), and furthermore, to obtain·.&· limit w1 thin 
,. ·~- - ' . . 

which the difference I:- t can vary without the integrals ceasing to be 

developable: ·into··i convergent series of integer powers of this differ-

ence1it will be snfficlent to integrHte· the system of auxiliary equa-

tions 

D _, _, _, t-• 
t'X-==8X Y Z ••• . t 

(13) 
T' b -I -I -I t-' "".-t "1 "':: x y z • • • , 

T't "" -I -i -I t - I ... :.t Z -:: ""X Y' Z • • • , 

• • • • • • 

If the functions X, Y, Z, ••• did not contain the variable t, then in the 

values of these functions determined by the .fonn.ulas (9), one would evi

dently have to suppress the factor t-'. Then the formulas (9) would 

become 

X 
-I _, _, 

=a y z ••• , 

Y b 
_, _, _, 

=- x y z ••• , 
(14) 

Z _, -1 - ' 
~ox y z ••• ' 

• • • • • • • 
and the equations (13) would reduce to the following 



(15) 

D x - ax -r y - 1 z- • 1: ... • ••• 

Dty ~ bx-•y-tz-t ••• , 

D-t. z ::: ex -1 y-• z _, ••• , 

• • • • 
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• • 

3•22. Integration ot the Auxiliary aquations. 

Let us consider the system of auxiliary equations 

(1) 

Di:::x: = ax-ly- 1 z _, ••• t-', 

D-t. y :::- bx - I y- I z -r ••• t - 1 , 

D -t z ::::- ex -1 y-1 z-• ••• t - • , 

• • • 

in which a, b, c, ••• designate constant quantities. One will deduce 

from these 

D)l -~= Dt~:= 
(2) 7 - t- c. 

I 

) 

then~ by integrating the formulas (2) and designating by 

a new system of values corresponding to the variable quantities 

x, y, z, ••• , t, 

z-5 --=, I • ' c. 

Now, let us represent the value cont"1on to ell the ratios which constitute 

the different members of the formula (3) by the letter & , or what is the 

same, by the ratio -8/k, k designating a new arbitrary constant. 

Then the formula 
z-5 

"::.. 
c., 

, .. 
J 
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and the last equations combined w1 th the formula ( 2) give 

t -1 
••• • 

or• what amounts to the same 

(6) . dt/t:: xyz ••• o.&/k; 

then, integrating the two members of the rormuls (6), having substituted 

for x, 7, z, ••• the values given by formulas (5), one will find that 

Thus, the integrals. of the auxiliary equations are represented by the 

formulae (5), the value of ~being given by the formula·(?). One would 

be able, in these f'onnule.s, to suppose the constant k equal to unity; 

but, ·to render the application easier, which is the end we seek, it 

would be bette~ not to suppose k equal. 1. If' the auxiliary equations 

reduce to the following 

D .a.Y -~y-\v-lz-' 
~- Q.A ., .•••• 

(8) 
D X

-1 _, - \ 
tZ:=O "JI Z •••• 

• • • • • • .. ) 

then the first member of the formula (6) reduces simply to the differ-

ential dt, and, in the place ot the equation ('1) one v.,ould obtain 



Page 44 

3.23. Consequences of the formulas established in the preceding 

sections. 

In the particular case in which ·the system of given differential 

eQtJ.ations reduces to the system of auxiliary equations and where one 

supposes, besides, that 

R =F(x, y, z, ••• ) = Kx-'y- 1z-1 •••• 

not only·do we·heve, by virtue ot formula {4), Section 3·22 

(l) g :- ~ -- ~ $; 'F d - ~ ~' t =· z - ~ d, · · . J 

the 'tlTJ.ue of S being determined by formula ( 7) of the same section, which 

or. what amounts to the same, 

(2) u {-) :: [ b ( x- -R 11) ( ~ - {ti) . £.& 
K J 

but also 

F ( t-, 1, ~ . · ·) :: K 5-' '1-' b -·. . ; } 

.and, hence, using formula (1) , 

That sta11ding, let us suppose that, in the general ease where the dif

ferential equations and the function F(x, y, z, ••• ) are of any fom what-

ever, one constructs the sequence 

(4) R I.::!. f\ R (1-tL D"' D .. 
I I IJ-t I J. 7... -r' \, . . . , 

which, according to Taylor's formula would represent the expension of 

F( J 71 _t ••• ) arranged according to the ascend 1ng powers or T - t. 
I ,I 
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In order to obtain another sequence 

( 5) Jo, .'.J,jl J: l~ .. '.-' 

of which the different tams are respectively greater than the absolute 

values or the terms of the sequence(~). it is sufficient, by virtue 

of the ?r1nc1ples established in Section 3•21 to expand according to 

the ascending powers of . L the value S of F( ~, '1
1 

b; ... ) determined by 

the formula .(3) combined with the equation (2), after having substi-

tuted tor the quant i ti 'es 

x, y, z, ••• ,t, a,b,c, ••• ,x 
their values taken from fo:rmulas (9), (10), ~l), (12) of Section 3·21. 

Now, it one chooses the constant k so that one has 
I I. 1 I 

{- x)( -YH - z) ••• (- t) ::. - k, 

the formulas (9), (10), (11), (12) of Section ·3·21 will give, not only 
I . I I I . 

:x -::. - x, '1 ;::.. - y. z -=:. - z t ••• ' t = - t. 

a"ld the follo~ing, 

but also 

I - L t'J 

~---v' }:: __ y' 
.I~ - A I 1'<. - .1 

1/'_ KR' 
A - .'t' . 

z' 
J 

Than to obt~in ~he sequence (5) it ~~11 be sufficient to expand, 

following the ascending powers of l , the particular VRlue S of 

F( S1 111 f, · · · · · ) 
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detennined by the systan of fonnulas 

(6) t'l( 1-f,)~_f{1- ~:IJ )(1- f ~J( ,_ ( &) .... J.t;, 

y I _l I -' . I -f 

( 'l) s ~ R , (I - X' ~)(I - f, ~J (I - ~. 6 J . . . . 

Besides, in order that the sequence (4} be convergent, it is sufficient 

that the sequence (5) be convergent. One can then est~blish the follow-

ing proposition: 

3•231. Theorem !.--Givan!. system~ differential e9uations !!!!!!.. 

!h2. indeuende.mt variable t -~ .!h.2. unknowns 

x, y, z, •••• 

~ ~ ~ .!!.!!.! values .2!. ~ unknowns 

f1'11 t, . . ·. 
·which correspond ,!2. .!!. ~value 7 £!.!!!!,.variable t, .2!12. ~determine Ez 

!fil!.. given differential e".:::uations ~ VRlues !2!. 

{, 11, .t . '. . 

F( ~ -i, f, . . . . ) ' !j/ -,, '/ 

developeble · !!1i2, convergent series E!.. !.!!!!_ascending powers .2!, T _-f::, !! 

!!'!!.value of 5 , determined .!?I,. enuation ('1), joined !2_ fonn.ula (6), .!!. 

1 tself developable .!!!!2.. a conver~ent series arranged ac,~ording !f!_ ,!!-

cending powers of l • 

3·232. Corollary l. ll .2!!!. lets, !2.!:, !!!!!, ~21 brevity, 

(a) t:-·t'L(l-_f,)-1 

the formula (s}-becomes 
--- J r' )( y',\/ x' l' 
(9) £ ~ [ {1 - };' • I -y, Bjl.,,1 - z:; fJ/ •.. J__{J, 
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3·233. Corollary 2. If'~ given dif'ferential enue.tions ~ .!!21.!.!!.-

elude explicitly!!!!!. variable t, then, after~~~~ before 

(see Sec. 3•22), 2.!!!. .!!.!!. be able .!.!!. ,!h!?. formula (2) El replace .!.!!!. 

first member, rn ~ 12. ~ the product L ( ~) !>.I. !.h!. difference t -I 

~. h establishing besides 
I I I 

( -x) (- y) (- z) ••• ::-- - k. 

~!!ill obtain in place .2! ~formula (6) 2.£_ (9), !!!!. equation 

[
& X' I , ~ 

(10> t='O r1-x;~X·-r~){J-~,e,. , . c(B. 

3·2~;4 Corollary 3. !!!.!. value 2!. which ~ given .!?z. equation (8) 

.!.£!. developable ~ ~ convergent series .!?.l, !!.!!, formula 

(11). 

(12) L<+' .. 
!!!.!. value Et. & which ..!!!. determined !?I. eauat1on · (9), ·is developable !?l: 

!!:!!. formula .2f Lagrange, ~ !!. conver!)ent series arranged according to 

ascending nowers .2!. E. • ~ .2!!. .h!!!. 

{13) l ( t (1 -~: 9 )(1-fe)b- ~.'(I) ... J 

i being ~ smallest of the ratios 

X' -!i- z' 
X'J )'') J:..'J . ... / 

.!.lli!. .!.! suffices evidentlz rn l!llt conditions (12) ~ (13) .!!:!!. fulfilled 

!!!. order~ .ll1.2. v~lue ..2!, · S , furnished .!?z. eouation ( 7) • may .2!. expand-

~ .!.!!.12. !!. convergent series arranged!!!. ascending powers .2!. _l • ~ 

established,~~ .!U!_ !il!!!.12. st11te !h!. following proposition: 
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3•235. Theorem II.--!.h.!. ~ thin~s being assumed.!!!. l!!. Theorem I, 

(3•231),.!h!_ value~ 
; 

. . ) 

) I 

: l • 

.?!!!!. ~ developable !!!!2. .!.. convergent ser1 es .2!, ascending powers 2!. 

T- -t , ll ~absolute value l 51!.. l-t verifies simultaneously.!!!!, !!2. 

conditions 

(14) i<t' 
.. cfJJ 

~also, in terminating after.!. certein number£!. terms, ..lh!. series 

which represents !h!_ expansion .£!. F( [ 1, J, . _.) .!!!, ascenains powers .2!. 

T _ t , ~ obtains ~ remninder whose absolute value !!.!ll 12.!. ~ ~ 

1!!!, corresponding remainder g_t .1!!!,. series which represents .!!!!. expan

~ .2! .S .!.!!. ascending powers .2! l • 

5•23:6. Corollary 1. .!! ~ given differential eouations ~ !!2l 

include ex-;Jlfeitlx: ~variable t. ~ • ...!1!! formula (10) havins ~ 

renlaced !?z formula (13), !!1!t first .2!. !.!:.!. conditions (14) .!!!!!. fill!.-

appear ~ ~ second !!!.!!., .!?!!, replaced .!?1'. 

(15) 

In concluding this memoir, we "mr~ke one important observation. The 

absolute values· or the different terms of the expansion of F( ( .11, 1, . .. ) , 

arranged in ascending powers oft-+ ~ will not cease to be less than 

the absolute values of the corresponding terms of the expansion of S , 
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if one increases the letter. Now that is exactly what one does when 

one substitutes for each of the ratios 
y· y_ 1' x b' J v) ' ~ .. J 

the cuantity equal to the ~P..xim\L~ among them, that is to soy, the posi-

tive quantity f , considering that, in the expansion of S', each tem 

will be positive and proportional to a positive power of each of these 

ratios. It follows from this observation that the formulas (6) and (7) 

would be replaced by the following 

{16) 

(1'1) 

fro.~ which one concludes 

n designating the total nu.111ber of the variables x, y, z, ••• , t. 

In substituting the formula (10) for the formula· (6), as one can 

do when the given differential equations do not include explicitly the 

variable t, one viou1d obtain instead of (18), 

(19) 

Similarly, the second of the conditions (14) and the condition (.15) 



can be, if one wishes, replaced by the following: 

t 
(20) t'L(1- ~.)<. ~ J 

and 

(21) 

[..,. 

l < ~ 
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The formula (21) • in the case in which we suppose n -= 2·, is found in 

the lithographed memoir of 1835~ 

3•4. SIMPLIFICATIONS AfID DEVELOPMENTS BY OTHSR SCIENTISTS.-It is 

easy to see that the ·original fom of Cauchy's demonstration based on 

the Calculus of Limits is much more complicated than necessary. It has 

been greatly simplified by Briot and Bouquet1 in France. Following is 

a simplification of the proof according to the plan of Briot and.Bouquet. 

3·41. First, lat us take a single equation 

(l) dy/dx = t(x,y). 

Let it be assumed that f(x,y) is holoporphic (analytic) in the 

neighborhood of x0 and y0 • \Hthout any loss of generality it n:tay be 

assumed also that x0 = y 0 -=. O. The function f(x,y} will then be holornor

phic with respect to x and y, when x and y are respectively ~~thin the 

circles C and C' drawn with the points x = 0 and y-:::.0 es centers, with 

the radii a and b, and we suppose it continuous on the circumferences 

themselves. Let M be the maximum absolute value of t{x.y) in this 

region. 

i / 
Briot and Bouquet. "journal of the Ecole Polytechnic,·" Vol.XII. 

(1856) pp. 153-198. 
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Let us suppose that equation (1) hns an holomorphic solution in 

neighborhood of x -::::0, which vonishes when x =.-0, ne~r1aly 

- ' ' ,, . 2 y-:: t(x) .. t(Xo) + T f(Xo)x ~ -7-ry_ t{~0 ) x =-t ••• 

which may be written in the form 

~r (4;J. x -f-f.,_ (~).><'-+- · 
We can obtain by me~ns of equation (1) itself, the VP.lues of the suc

cessive derivatives dy/dx, a2y/dx2, d3y/dx3, ••• for x=. O. It is suffi

cient to differentiate equ~tion (1), first one time, to hAve d2y/dx2, 

and to substitute, in the second term, x = o, y .=0; differentiating 

again, we shall have d3y/a:x.3, and so on. It should be noted that it 

f(x,y} and all of its partial derivatives, at x ::::.y :O, are positive 

then all the derivatives of y with respect to x are positive also, 

their values being derived by a nroceas of addition and multiplication 

(not subtraction) of positive quantities. We shall then have 

It is obvious, from the manner in which the coefficients of the 

series in equation (2) were determined, that if the series is convergent 

it is the unique solution of equation (1). Therefore, the essential 

point in the proof consists in demonstrating that the series thus· ob-

ta1ned converges if x has a sufficiently small value. This point ea-

tablisbed, it is clear that the function y so determined satisfies the 

differential equation, since the functions of x 

dy/dx and t(x,y) 

have, from the way in ~·rhich y has been obtained, the SP..me value for x..:: o, 



Page 52 

and so do their corresponding derivatives of every order; they are 

equal then; that ls, equation (1) is established. 

By comparison with another series we can prove the convergence of 

series (2), and the idea of such a comparison forms whet is really in-

teresting and fruitful 1n what Cauchy called the "d°'~lculus of LL~1ts." 

Now, let us take the function 

M F(x,y) ) 
(i - >Ye..)( I - ~ 

holomorphic within the same circles C and C' and whose partial der1va-

t1ves, 1 all positive for x-=-0 and y=-0, are such that 

(a) 

(~ ::. J, "2/ 1,.. . . - ) 

( p " 1, 1-1 '3,.. • - . ) 

Let us next consider the auxiliary differential equation 

dY/dx~ F(x,Y), 

and sup:iose, as we shall prove later, that there exists an integral Y 

of this equation. holomorphic in the neighborhood of x =O and vanishing 

for x-:.. o. We shall tb,en have 

c3 i y,, {~)/+~(<£):~ · · · =A,X-t A.._x~ · 

The coefficients of the powers of x in this series are, tor reasons men-

tioned above, positive, and from the inequalities (a) we shall obviously 

have 

The series (2) will then certainly be convergent in the regions 

in which the series (3) is convergent. Now, it is easy to show the -

lp1card, "Traite n• Analyse," Vol. II, p. 259. 
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existence of the function Y. Let us write the equ3tion 

in the form M 
·.c. I- ~ 

It the function Y e»ists, the two ~ern.bera ere respectively the deriva-

tives of 

We will take the value of the lor.~ri thm wM.ch vanishes for x:::: 0 1 

log(l-x/a)= -x/a.-x2/2a2- x3/3a3 .... 
Since Y vanishes tor x = O, we shell then have 

f'- ~-::- Mo. iq (1- ~)} 

and, consequently. 

taking for the radical the value +l for x:::: 0. 

The function Y, thus determined, satisfies the equation 

dY/dx ~ F(x,Y). 

It vanishes for x.:=O, and it is holomorphic within a circle having as 

center the origin and a radius r which causes the qua.ntity under the 

radical to vanish; that- is, r is determined by the equation 

which gives 

I+ 2-~ % ~{1-~)= o 

_ _L ) 
. ;i_Mc.... 

(\_ -:;.. tL (1 - -e . 

We are then certain that the series (3) converges within the circle 
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ot radius r; it is likewise true then that series (2) converges in the 

sa~e region, and consequently, we may state that equation (1) has an 

holomorphic _integral in the circle of radius r h11vi ng the origin ~s 

center, that it vanishes for x=O, and that it is unique. 

It may be noticed that within the circle ot radius r we have· 

and consequently 

within the same circle. 

3•42. Application to n· equntions. The preceding analysis covers 

without modification the case of n equations 

dy1/dx ::: t1 (x, Yi- Y2, • •• ,yn) , 

dy2/dx-.:: f2(x, Y1· Y2· ••• tYn>} 

• • • • • . . , 
dyn/dx -=-fn(x, Yi• Yv •• • ,yn). 

We suppose that the functions t 1 , t 2 , ••• ,tn are holomorphi_c ·with respect 

to x and y in the circles of radiu.s a and b, respectively, having the 

origin as center in the planes of x and y. Let M denote the maximum 

absolute value of the f's in the designated regions and let us compare 

this system with the following 

dYi/dx == dY2/dx -=- ••• = dYn/dx =.F(x, Y1 , Y2 , ••• ,'111), 

taking 

{a) F(x, Y1· , Y2, ••• ,Yn) ::= M 
" . (l-x/a)(1-Y1/b) ••• (l-Yn/b} 

' .. 
Since the Y's must vanish for x:::. 0 and the second 10.ernber of the equAtion 

(a) is symmetrical ~~th respect to the Y's. the Y's are identical and we 



Page 55 

only have to consider the single equ~tion 

dY/dx ~ (1-x/a) (1-Y,b)ll 

The radius r of the circle in which the series ·are known to be convergent, 

3•43. Cauchy's second proot has also. been modified in Gennany by 

Weierstrass (1815-1897>1. 

Following is the essence of Weierstrass' exposition. 

Suppose that the differential equation F(y' ,y,x) =O (where y' 

stands for ~y/dx) is put in the rann 

(1) · y'::: f(x~y) · 

which is always possible~· The proof is limited to the case where 

t(x,y) ls a function which cari be'represented by a power series 

Boo +a1ox + 8 01Y-t 8 2ox2 + 8 11XY 4-fio2r1 ••• 

in which the a's are all known, since f'(x,y) is known, and which con-

verges for /X/ ~ fL.) ( & J i_ l , say. Without any loss of generality 

y =0 when x ~o is taken for the initial condition. 

It is to be proved (a) that there is .2!!!. and only one series 

(2) y =b1X --tb~2-\-b3X3-t •• • 

which ide~t.ically satisfies 

(3) a':= &oo+a.10 x+a0 1Y+s11XYt-820 x2-t- a0~-r •••-t-8mnx:V-f- ••• , 

end (b) that within certain limits for x this series is convergent. 

· lWeierstrass, "Mathematical Werke,tt Vol. I, pp.67-115, (1842). 
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On transforming the series in (3) which has been supposed con

vergent for 17'\ ~ 11-
1 

/ (JJ ~ t_ , by putting x :- rx1 , y = typ equntion (3) 

takes the :rorm 

I ( ) I r r I 2 / I 2 
y:::: f r.x1/tY1 =. eoo t-aloxl +aolYl +a2ox1+ allxlyl -1-ao2Y1-t •• • 

The second mar.iber of this equation is· a convergent series, and con-

I I I 
verges when x1 =Yi= l; and, therefore, a

00 
r-a10+ a01 + •.. converges. 

This shov:s that the absolute value of each a' is not larger than a 

certain finite quantity, say A. The substitution just made for x and 

y does not make any essential change in·the probla~, and hence, it 

might have been assumed at first that t:.:.e a's of (3) were each not 

greater than A. In what follows, therefore, the a•s ere regarded a~ 

not greater than A. 

It (2) satisfies (3), the value of y and y' derived from (2), when 

substituted in (3), must make the latter an identity; and, therefore, 

bl + 2bfXl + 3b3X2-T 4b 4X3 + • • • 

= a00 +a1-0x+ a01 (b1x+b~
2+ •.. )+ a20x2 +aux(bf&: +b2x2+ b3~+•••> 

+&o2Cb1x--t b~2-t- b~3 ••• ) 

is an identical equation. Hence, 

that is 
I I (/) . t( A. ). · .. ' -Q -+ A.01 (a.., d + Ro, 'loo)+ a, I Q.Ot):, 

'1--'2. ::- -:z:_ &..;.1or o, &o / /fl..~ - 'l..o ~ /. 

and likewise for b4, b5 ,... • It is evident that all the b's. can be 

determined as rational integral functions of the a's; and eleo that all 

the numerical coefficients in the expressions for the b's are positive; 

and, consequently, the b's will not be diminished i:f each of the s's is 

replaced by A. 
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From the method of deri~etion,it is evident that (2), ~1th the b's 

determined es a~;ove. ide~tically satisfies (3) and that it 1s unique. 

It must now be determined whether this series is convergent. 

On replacing each of the a' s in ( 3) by A, a quantity not less than 

any of the a's, there results 

(4) Y 
1
=-A(l+x+ y rx2+ :x:y +y2+ x3 

-rx2y + ••• ). 

Tbe integral of this equntion is found by replacing each of the 

a's that occur in the expressions for the b's of (2) by A. None of 

these latter coefficients is diminished by changing each of the a' s to 

A, as pointed out above, consequently, if the integral of (4) is con

vergent, the integral ot (3} is also. 

Now, let us c..olve (4) directly. On factoring the second membar. 

the equation becomes 

Therefore/ 

y~A(l+x tx2-t-•••><1-t-Hy2Ty3+ ••. );'A~''~(/ · 

(1-y)dy-:: A ~ 
I~)<. J 

and upon integrating we get y -b2::: -A ti( I - 'x)f<!. · 

We take for the logarithm. that branch which vanishes for x ~o, and . 

:from the initial condition that y ::0 when x-=.O we see that c =O. 
. I . 

Consequently , ~ = J - ~A 4L r - Y..) -t-j] ~ 
Since y ::: 0 when x :: 0 v1e· must take for 

that branch which, for x = 0, has the value +1.· 

Then · , 

cs> j -= 1 - [1-1-::i..A~ { 1- x) L 1-[l-;)_A (x-+ ~'+. ~+ · · )] ~ 
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The sariea 
'""\.. 'V 3 

x+~+~-+r - . 

converges when the absolute value of x is less than l; consequently 

the value of y in (5) is finite, and, therefore. the value of y in 

(2) is finite for x ~;thin certain limits. The proof for n equations 

can ~e carrie<l out in much the serne way. 

Note: In Sec. 5·3 are listed the names and works of other 

mathematicians who have given good treatments or the Calculus of Limits 

or sone of its phases. 
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CJIAPI'ER IV 

"TfIE !.~"THOD OF SUCCESSIVE AP?ROXI!JATIONS" 

4•1. D~'VELOPED BY PICAP.D.-The method of successive approximations 

·was probably known to Cauchy but appears to have been first published 

by Liouville, "journal de Mathematicsn (1) 2 (1837), p. 19; (1) 3 (1838), 

p. 565, who applied it to the case of the homogeneous linear equation 

ot the second order. Extensions to the linear equation of order n are 

given by j. Caque, "1ournal of MathemRtics" (2) 9 (1864}, p. 185; 

L. Fuchs, "ALl.Ilali di Meth." (2) 4 (1870), p. 36 (Ges. Werke, I. p.295); 

and G. Peeno, "Math. Ann." 32 {1888)·, p. 450.l 

In its most general form, however, it has been developed by 

Charles Emile Picard ( 1856- ) or France •1 

I 

Picard was born in _Paris and was educated at The Ecole Normale 

Superieure where he was inspired by J.G. Darboux. In 1877 be was 

lecturer on mathematics in Paris. From 1879 to 1881 he was lecturer 

on the same subject at Toulouse. He married a daughter of Hermite 1n 

1881, and that same year returned to Paris and became Professor of 
./ 

Mathematics at The Ecole No:rmale and the Sorbonne. 

His most famous work is his "Traite d' Analyse" (3 Vols., 1891-96; 

2nd Ed. 1901-8) which is still a sta11dard textbook. Bis other works 

include ~Theorie des Fonctions Algebraques de deux Variables Independantestt 

(1897-1906)• with G. Simart; and "Sur le Develop~ent de l' Analyses et 

Sas Rapport Avec Diverse Sciences" (1905), lectures delivered in .America. 

11nce, ttQrdinary Differential Equ~~tions" (192'1) p. 63. 
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Picard's demonstration of the existence theorem is remarkable for 

its simplicity nnd brevity, and requires no auxiliary propositions. It 

is so simple and complete that no other mathematician has been abl.e to 

improve. it. Pic~rd'a proof was first given to the public in 1990, while 

he was lecturing in Paris, in his memoir. published in "Journal de Mathe-

"":~t.i,.,ue." In the following year it was. published in the "Bulletin de 

la Societe Mathe':':latique de France" for March, and was reproduced, on 

aocount of its striking character, in the "Nouvelles Annalee des Mathe-

matiques" for 1:!ay. A translation of Picard's proqf by T. s. Fiske was 

published in "Bulletin of the New York Mathematical. Society" Vol. I, 

pp. 12-16 (1891-92). The most complete form of Pieard's proof may be 

found in his "Traito d' Analyse." The translation by Fiske was made 

durt-:1g the early stages of Picard 's work on this theorem and. therefore,. 

it is not the most general form of· the proof. For that reason we are 

presenting in the f'ollowing section a translation of the <lemonstrat1on 

as it is stated in "Traite d' Analyse" (2nd Ed.) Vol. II P?-340-344. 

4•2. A TRA..11.ISLATIO:N OF PIC.r...TID'S DEMONSTRATION.--Consider the 

systerii of n equations of the first order1 

-4:;" /. (x, t.(, "/ · • ·1 IAI )1 . 

cLv - I ('ti. LL LI .. ·; w), 
~ er:; -6 '1- _r1 I I 

\ 

_1 ·· / (x LA v. · · · CA.J) ~::.. .~ I JI I 

the real quantities x, u, v, ••• , w in the neighborhood of x0 • u
0

, ••• ,w
0

, 

and have determinate values as long as x, u, v, ••• ,w remain within 



the respective intervals 

(x0 - a, x0 +a) 1 

( u0 - b, u0 + b} , 

(v
0

- b, v
0

·-+ b), 

• 

a and b denoting two positive magnitudes. 

Suppose that n positive quantities 

A, B, ••• , L 

can be determined in such a manner that 
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} r ( x, u; v', ••• , w' ) - f ( x, v, u, ••• , w) / < Alu' - u} -+ B \ v( v) -+ .•• .+- L} w ~ wl, 
in which Jq I denotes as usual t~e absolute value of °'- and x, v, u, ••• ,w 

are contained in the indicated intervals. This 't".n.11 evidently be the 

case when the functions· have finite partial derivatives with respect to 

u, v, ••• ,w. 

Starting with these very general hypotheses we will demonstrate 

that there exist functions u, v, •.• ,w of x, continuous in the neighbor-

hood of Xa, satisfving the dvan differentinl equations, and reducing, 

We proceed by successive approximations. Taking first the system 

~ :-f (x, ll.1 Vo, .. . 1 "°•), 

t ti, # ( ,/ . (,AJ ) 
. c;0y.. ::- 0 1. )</ UoJ Vol • . 'J o I 
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we obtain by quadratures the functions 

determining them in such a manner that they take for x0 the values 

Forming then the equHt ions 

!;;-= l ('x,.u,1 v~ . . . 1 tPo) 1 

~ > f ~ ('t.., ti.., J v,} • . ) w.) J 

c{ w''l.. I I )< K. v. 
~ ..._ b ~ \.. 'J, 'I . 'J ) c.»,) J 

we determine u2, v2, ••• ,w2, by the conditions that they take tor Xo the 

values u0 , v 0, ••. ,w0 , respectively. Vle continue this process indefinitely, 

the functions llut• Tm••••i~m being eonnectod with the preceding 

ll_m-i• •m-l••••• •m-l by the relations 

~ce;· :: f (~ .U,..,_,) !/"'°"_~ · · . J tu,__,) 

~-. " ,,.. (Y../ u.,,__, 1 v,,,..._') ... , w,,,.._,) 

and, for x ~x0 , satisf~ring the equations 

!!!!, .!1!! .!!2!! nrove !!!21 ~ m increases indefinitely, ~· vm• ••• ••m 

~toward limits v1hich represent the integrals sou&~t orovided x remains 

sufficiently~ x0 • 

Let M be the maximum absolute value of the functions t 1 (i=l,2,3, 

••• ,n) when the variables upon which ther depend remain between the 

indicated limits. Denote by r a quantity at most equal to a. It now x 
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remains in the interval 

we have 

\ u1 - '10 ) ~ M J x -x0 \ , •••• \w1 - w o) ~ M \x -x0 \. 

Hence, provided M•r<b, the quantities ui, Vp ••• • w1 remain within 

th& desired limits, and it is evident that the same is true or all the 

other sets of values of ~· vm•. ••, wm. Denoting by d a quantity at 

most equal to r, suppose that x :renaina· in the interval 

and write 

Since 

the preceding equations show, by means of the Lipschitz condition, that 

Ji;;\ z A I 1f'":'_, l-t BI V,,__,l -r · · · -r LI W-- -·I) 

l/X;l i A J 1f ,__,I+ 13\ V--· l-i- . -t- LI W,.__, I) 
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In particulart when·m 2 we get. by using 

/ lf. l ~ NI I 'X-~.1, ... } J w, I ~ IX- x. \, 

the following: 

/t~; M {A t.B+: · ··T /_, )/x- x.t 

I ~ 'v\I j <M ( . . . . ·1 ct,y 'L :c A t 13-t- · · -i- L) X -x. ~ 
By integrating we get 

/ 1f ... l ~ I (I )< - )<~l /\A {A t B -t-- • . . + I- ) c4 ) I . 

. . 
'. 

or 

and the same limit holds for 

And in like manner we get. form =.3, 
. . ' . '] 

)l l"L \ · ) [x- Xo \ · 
j 1J; I ~ ) (~{A tl3+-- ·-t L )1 }~~:· ~ oM (A-rBt-· .. 1-i,.1·7.· 3 ' 

And the same limit holds for 

Continuing step by step, it may be shown thnt 

l I f l ,. w l <.. I { 8 . . . 1) '1-1 - I I )( -y lJ \IV\ 
UAh ) ... , "Ji -: /V A t + ... + ~ I· ;l.· .. ,,, • 



Therefore, each of the series 

u =Uo + (ui·-uo) +•••t<'1n.~ ~-1) + ••• 

v:::.vo 1" (vl -To) + ••• +(vn vn-1> + ••• 

• • • • • • • • • • • 

• =-•o 7 (wl -•oh- • • • t<wn •n-1> 4 •• • 

is uniformly convergent in the interval 

(:xo-d, Xo +d) • 

d being the smaller of the two quantities a, b/M. 

Moreover, we have 

u,,,. 1;,x / { x, l{_.,_,
1 

v,.,_, 1 . . . 1 w_,.,_,) ~-r t-t" 1 
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and. since Un• vn••••• •n uniformly approach the limits u, v, ••• , w, 

we have in the limit 

hence 

.VL ~ ;;o t { y..J u, VJ .. 'J w) 4 + Uo j 

~ . 

~ " I ( 'J., IC., v, ... , "°) . 
Similar results held for the other functions. 

The functions u, v, ••• , w, are therefore the intecrals sought. They 

are defined in the interval (Xo - d, x0 t-d). 

Note: No important contributions to the method of successive ap-

proxlmations have been nade since it was developed by Picard. So~e ob-

servations and references on the variation and necessity o~ the .conditions 

involved will be found in the first part of Chapter V. Ince, 1'Qrdinary 

Differential Equations" (1926) pp. 63-66 end Goursat-Hedrick-Dunkef. 

"Mathematical Analysis,".PP• 61-68, are among the modern writers who have 

given good treatments of this method. 
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CHAPrER V 

GENERAL OBSERVATION'S 

5•1. OBSERVATIONS ON THE METHOD OF SUCCESSIVE APPROXIMATIONS.-- · 

Ernst L1ndelot1 has demonstrated that, in a great many cases, there 

exists an interval more extended than (x
0
-a, z

0
-t a) in which the in

tegrals are continuous. It the tunctions (t1 , f 2, t 3 , ••• ,tn) are 

continuous tor all the values of x in the interval (x0 -a, x0 +a) and 

tor ell veJ.ues ot u, v, ••• , w, then it is unnecessary to make the re

quire..~ent that M•a <'b in the proot ot Picard. In order to prove the 

convergence of the series expressing the values ot the integrals 

(u, v, ••• , w), it is sufficient that there exists positive quantities 

(A, B, ••• , L) such that the Lipschitz condition remains true for all 

values u, v,... w when x remains in the interval (Xe, -a, x0 +a) • 2 Ac

oordi ng to the law ot the mean, these conditions are satisfied it the 

functions (t1 , t 2 , ••• , tn) have partial derivatives with respect to 

the variables u. v, ••• , w which remain f'inite for ell values of 

u, v, ••• , w when x remains in the intervaf (x0 - a, x0 -t- a) • 

Ince3 has also made some interesting observations on the method ot 

successive app.roximations of which a brief sumrriary is here given. He 

n.Otes that the continuity of the functions (fl' r2, ••• , tn) is not 

necessary tor the existence of continuous solutions. They may admit 

lg. Lindelot, "1ournal de Mathematiques." (4) 10 (1894J, p.117; 
"O. R .• Aoad. Sc. Paris," 118 (1894) p. 454. 

2aoursat-Hendrick-Dunkel, "Mathematical Analysis" Vol.II, Part II, 
p. 65. 

3Ince, "Ordinary Differential Equations" (1927) pp. 66-68. 
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of a limited number of finite discontinuities, co•1sisting of discrete 

points or lines parallel to the axes of the de!)9ndent variables.- Any 

other lines ot discontinuity imply a violation of the Lipschitz 

condition.· Mie, "1~atbemat1cal Annals" 43'(1893) p. 553, has shown 

that solutions exist whenever the functions are continuous in the 

dependent variables and discontinuous but integrable (in RiEID.ann'a 

se~se) with respect to the independent variable.1 

It the !unctions (t1 , t 2•·••• tn) are continuous but do not 

satisfy the Lipschitz condition, I. Bendixson2 has demonstrated 

that if the approximation series or Picard converge, the limits or 

their convergence will be solutions ot the given equations. 

The Lipserit~ condition' or n condition of similar character} 

is necessary to insure the uniqueness ot the solutions. Pesno3 and 

Osgood4 have proved that, if f(x,y) be continuous in. the neighborhood 

ot (x0 , y0 ), and the Lipschitz condition, or a similar one, is not 

imposed, there exists in gene·rai a one-fold infinity of so1utions 

satistying the initial conditions. Hov;ever, the uniqueness of the 

solution is not destroyed if the Lipschitz condition is replaced by 

lThe differential.equations are tra~sformed into integral equa
tions. See Bocher, "I!ltro. to the Theory of Integral Equ~tions ;" 
Whittaker and Watson, "?lodern Analysis," Chap. XI. 

2Bendlxson, "Otvarsigt Vetensk. Akad. forhandl." (Stockholm) 
54 (189?), p. 619. 

3Peano, "Math. Ann." 3? (1890) p. 182; "Atti. Accad. Torino," 
26 (1890-91), p. 6?7. 

4osgood, ttMonatsh. Math. Phys." 9 (1898), p. ·3:U. 
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one or another of the less restrictive conditions 

~n which K1 • K2 , ••• , K are constants. · The value or the constants t>c.

curing in the Lipschitz condition determines ~he utility of the ap-
. ~ 

prox1mation series in determining the yelue of the integrals. Praoti-
, 

ce.l methods ot approximate computation based upon the method of suc

cessive approximations have been devised by Severin!, "Rend. 1st. 

Lombard." (2) 31 (1898), pp. 657, 950; Cotton, "C.R. Acad. Sc. Paris," 

140 (1905), P• 494; 141 (1905), p. 177; 146 (1908) 1 pp. 274, 510; 

"Meth. Ann.," 31 (1908), P• 107. 

5•2. OBSERVATIONS ON THE METHOD OF Dm'EF:EZ·IDE Eq,UATIONS.-Among 

. the French m.athema.ticie.ns the most noted treatment of the method of 

differ~nce equations vms given by Louis Philippe Gilbert, "Cours de 

mecanique Analyt1que," (1877). 

V. Volterra1 has given a new demonstration of this method, which 

enlarges e little the condition ot Lipschitz. The method of v. Volterra 

has.been interprat~d graphtcally by G. Picciatt2 • 

Pa1nleve3 has proved that the int~ri-~1 of con'Yergence in the 

Cauchy•Lipschitz,,u.thod is greater than the interval )x-x0 j '-. l 1n 

which l is the minimum. or a and b/Jl.. He round that l can be replaced 

lvolterra, "Giorn. mat.w (1) 19 (1881), p. 353. 
2Picciat1, n11 Politecn1co" 41 (1893), P• 493, 537. 
3Pa1nleve, ftBull. Soc. math. France" 27 (1899), p. 149. 
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(1) a end l/k1 -t ••• +kn •log& -l- b(k1 t- •• •-t kn) fllJ , 
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where M0 designates the maximum of the absolute values of the n functions 

for /x -x0 / 2: a. · 

In a great number of cases 1'./ l .. I:r, for instance, the functions 

t 1 ( 1 = l, 2, ••• , n) are continuous and. their derivatives are also 

continuous fUnct1ons for \ x -xJ <a, whatever the vAl.ues o~ y1 , • •• , Yn 

~ may be, and if' their derivatives a (JJ- remain absolutely less than 

a f'1xed quantity A, the second ot the two qu~ti ties (1) will become 

infinite with b. and the solution corresponding to the initial condi- · 

tions is continuous a~d unique in the whole interval {x -x
0
) < a.1 

Theoretically, the method ot difference equations is superior to 

the method of successive approximations because 1 t not only gives the 

interval in which the integral certainly exists, but also. leads to a 

solution which converges uniformly throughout any greater interval 

(x0 , x0 .f-k) in which the solution. defined by the assigned initial 

conditions, is continuous. The proof of this point may be· found in 

Ince, "Ordinary Differential Equations" {1927) p;1. 80, 81, or in 

Goursat-Hedrick-Dunkel, "Mathematical Analysis" Vol. II, Part II, 

(1917) pp. '13, 74, in which works ere round two of the best modern 

treatments of the method ot difference equations. 

lBendixson, "Ibidtt 54(189?), p. 617. 
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This method also applies-to complex variables. The investigations 
. I . 

of E~ Picard and ot Peinl~~e have shown that it ~eads to developments 

ot the integrals in convergent series in the whole region or their ex-

1stance it the right-hand sides of the given equations remain analytic 

in this region.l 

5•3. OBSERVATIONS OM THE !fa"TIDD GALI.ED "THE CALCULUS OF Lr.AITS. n_ . . . 

Some authors use the terms· "holom9rphic" andftanalytic" interchangeably . . . 

and others make a distinction. In this thesis they are used inter-

changeably and according to Cauchy's definition. That is, t(z,w) is 

an nnelyt1c 1'1nct1on of z end w in a domsin D if (1) f(z,w) is a con

tinuous function of z and w in D; and (2) if~ • ~ £ both have a 

finite existence at every point of D.2 The investigations of Gourset3 

have shown that, when the functions are assumed to be analytic, the 

method of successive approximations can be applied to the complex 

domain w1 th merely verbal alterations. The development in power series 

of the integral is identical with that furnished by the calculus of 

limits. but the limit obtained to7 the·radius of convergence is greater. 4 

As stated above, (5•2), the method ot difference equations can also be 

applied to the complex domain. However, the meth~d of limits is the 

one that is per~aps most appropriate in this caae.5 . The condition of 

laoursat-Hedrick-Dunkel, t1Matbematical Analysis" (l.917) Vol. II, 
Pert II, p. '14; Painleve', ttc. R. Acad. Sc. Paris," 128 (1899), p. 1505; 
Picard. "Traite d' Analyse," 2, P• 1363; "Ann. Ee. Norm." (3), 21 (1904), 
p. 56. 

2E. Picard, "Traite d' Analyse.'* 2, Chap. IX. 
3Goursat-Hedrick-Dunkel. "Ibid" PP• 66, 67. 
4Pa1n1eve'. "Bull. Soc. Math. Frnnce,u 27 (1899) p. 152. 
5Ince, uibid" p. 281. · 
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analyticity when the variables are complex, replaces the condition that, 

when the variables are real., t 1s a continuous function and satisfies 

the L1.psch1tz condition; The fact that. when 'f(z~w) is analytic~ ij la . aw 
bounded takes the place of the Lipschitz condition in the proof of the 

exi.stence ot a aolution.l· 

The fundamental idea of The Calculus or Limits consists in the 

use of dominant functions.2 Since every analytic function has an in-

finite nu..'ltber of dominant functions, we see that the method can be 

varied in a·great many ways. The simplicity or the demonstrations 

depends largely on the choice of the dominant functions. Since the 

work of Cauchy, his proofs have been perfected and extended to more 

general oases·by Ch. A. A. Briot and j. c. Bouquet (3•41~ K. Weierstrass 

(3•42), Koenigsberger, 3 Ch. Meray,4 Riquier,5 Mada::ne Kovalevsky,6 

1ordan "I and others. Mo improve?11ent or change has been made in the 

fundamental principle or the proof. Even today the same method is con

stantly used to treat analo+8 questions relative to ;artial differential 

equations ~1th various initial conditions.8 Among the·modern works on 

1Ince, "Ibid" p. 281. 
2For a definition of dominant functions see Goursa.t-Hedrick, "Ibid" 

Vol. I, p. 386. . . . 
3The work of Weierstrass (3•42-) was simplified by Koenigaberger, 

"J. fur Math.," 104 (1889), p. 1'14; "lehrbuch," p. 25. · 
~!eray, "Lecons nouvelles sur 1 '·analyse infinitesimale" 1, Paris ,1994. 
5Riquier, "Sur les systemes d'eqlli~tions aux der1vees partielles". 
6Kovalevsky, ,,J'. de Orelle" Vol. LXXX. -
?Jordan, "Cours d'Anal.yse de l'Ecole Polytechnique" Vol. I-III,· 

(1882-87). 
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the subject 1 two of· the best treatments of The Calculus ot Limits that 

we can find are Ince, nordinery Differential Equstions,tt (1927) 

pp. 281-284; and Gours.at-KE~drick-Dunkel, ~!athematical Analysis," 

Vol. II, ~art II, pp. 45-61. 

5·4 APPLICATION OF THE EXI&rEHC:E .T".dEOREM TO AM F,QUATION NOT OF 

THE FIRST DEGREE.1...-Consider the differential equation of "the form 

F(x,y; dy/dx) = o 

in which F is a polynomial in dy/dx, and is single-valued in x end y. 

Let {xo,Yo) be any initial pair ot values of (x,y) •. Then, if the 

equ.ntion 

F(x,y,p) ;-0 

has a non-repeated root p = p0 when x ::-x0 , ·y = Yoi it l'Jill he.ve one and 

only one root 

p ::r(x,y}, 

which reduces to Po when x =x0 , y :::-70 , and t(x,y) will be sine.le-valued 

in the neighborhood of (Xo,y0 ). 

Now, it f(x,y) is continuous and satisfies a Lipschitz condition 

throughout a rectangle surrounding the point (x0 ,y0 ), the equ~tion 

dy/dx .=-f(x,y) 

will possess a unique solution, continuous for values of x sufficiently 

near to Xo• and satisfying the assigned initial conditions •. Thia 

solution clearly satisfies the original equation for the same range of 

values of x, and thus in this case the problem presents no new features. 

11nce, ttOrdinary Differential Equations" (1927) pp. 82,83. 
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On the other hand, when the given equation 

F(x ,y ,p) ::- 0 

has a multiple root p-=:. Po for x:: x0 , 7 :- y0 , then p is a non-unitonn 

function of (x,y) in any domain including the point (x0 ,y0 ) and, 

therefore, the existence theorem la not applicable. 

5•5. DIFFEHENTIAL EQUATIONS OF ORDER HIGHER THAN THE FIRST.-A 

single difterantial equation or order n. with one dependent variable, 

is reducible to a system of n equations of first order. Likewise, a 

system of n equations of any order in n dependent variables may be re

placed by a system of equations of the first order by letting each or 

the derivatives of the dependent variables except the highest ordered, 

in the case of each variable, be a new variable.l Therefore, the 

existence theorem is applicable to ordinary differential equations o~ 

any order. 

1cohen, "Differential Equations" (1906) pp. 160, 161. 

THE END 
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