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CHAPTER I

INTRODUCTORY

There are a great many devices for solving differential equations
of certain special forms. But there is a large number of classes of
differential equations thaﬁ are not included in these special foms
and cannot pe integrated by quadratures or other pural& elementary
methods. W%en mathematiclans were forced to absndon their cherished
hope of rinding s method for expressing the solution of every differ-
ential equation in terms of a finite number of known funetions or
their integrals, they turned their attention to the question of whether
a differential equation in genersal had a solution at all, and, if so,
of what nature.

This study resulted in the development of what is known as the
Existence Theorem of Ordinary Differential Equations. This theorem
states that for every ordinary differentisl equation of a fairly gen~-
eral type there exists a solution. The type of equ~tions included
in the theorem includes those that are usually encountered and used
both in applied and pure mathemntics. The theorem is no less import-
ant in the field of caleulus than is the cardinal prcposition in the
theory of algabraic equations, that every such equrtion has a root.

The theorem may be stated as follows:
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Given a system of ordinary differential equations:
dyl/dI: fl(x, Y1» Toseees Ym):
de/dx: fz(x, T1s Toseees ym):
dym/dx: fm(xv i1 Tgreees ym) 1‘

in which the ﬁmctionsl fr'(rrl, 2,...,m) 8re continuous in the neigh-

borhood of (x

o 71,0* yz,o”"’ym,o) which neighborhood is defined by

\x—xo) z ao}Yj_"Yi.o\ Z bit(ir-loka’ 3,e00,m),

let M be the maximum of |£;|, |fg),«e, ]fm\ in the neighborhood de-

fined. Suppase that there exists a set of constants, Kl’ Kz,..., Km’

such that, for any two points (x, 3o Ygpeees Y, (x, 1 yz,...,ym)

in the given neighborhood and having the same vaslue for the independ-

ent variable x,
|tetx, ¥;, Yz,...,Ym)-fl‘;‘(x, Ti» Toreeoo¥y) & Ky |Vimg+Kg ¥y vy

+...+Km]Ym- yml, where v=1, 2, 3,se4, Me Then, these conditions

being satisfied, there oxists a unigue set of functions

V=85, y=1,(x) e, ¥, =1, (x),

which, for|x-x,[Z a', a' being the smallest of the (m+1) values

a, bi/M (1=1, 2,..'.,m), satisfies the glven equations and reducus to
2

yl:yl’ob yz:yz.o’QOO' Ym:Ym’o fOI‘ x:xOO

1a11 functions, both the given and the required, coasidered here
and throughout this thesis are single-valued and finite.

2811ght changes in this statement would be necessary in the
complex domain. (See Chapters III and V),
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Even as important as this theorem is in the calculus, the
historical facts conocerning its development have never been published
in English. There iz no English trenslation of the original proofs
of the theorem or of the modifications and deve}opmanta throggh which
they have passed. R o

Three distinct proofs of the theorem have been developed, two
of which are due to Cauchy and one to ficard.;.The purpose of this
thesis is to bring together the historicél facts concerning the de~
valopmeﬁt and publishing of these proofs and a brief biographical
sketch of the great manthematicians who developed them; a translation
into the English language of these original demonstrations and the
modifications, developments and simplifications by later mathemanl
ticians; and, finally, a discussion and comparison of the conditions
upon. which thelvarious proofs are based and the extent of their
generality or apnhlicability.

Yollowing this introduction, one chapter will be devnted to
each of the proofs with the final chapter devoted to the‘general

discugsion.
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CHAFTER II

"THE METHOD OF DIFFERENCE EQUATIONS™

| 2.1. ORIGINATED BY CAUCHY.--The oldest of the three proofs

of the existence theorem for ordinary differential equations has
been called "The Method of Difference Equations." It was origi-
nated by Aﬁgustin Louis Géuchy, who was one of the leaders in
insisting on rigqrﬂus demonstrations in mathematicéiyanalysis.

Cauchy was born at Paris, August 21, 1789, and“éied at Sceéux,
¥ay 23, 1857. In 1805 he entered the Ecole Polyiéef;n‘ique, which
was the nursery of so many French mathamaticiaﬁs. ”Tﬁo years later
he entered the E;ole des Ponts et Chaussees. FroﬁJISIO to 1813 he
was enga~ed as an engineer at Cherbourg. He was a professor at the
Teole Polytechnique from 1816 until 1830, when he went into exile
because he was too.conscientious to take the oégh of allegience de-
manded of him as a result of the political revdlution. In 1838
Cauchy returned to Paris end taught in certsin Chﬁrchbsehools, the
o;th denanded of him still preventing his acceptance of a chair in
the College de France. %“hen the oath was suspended during the
political events of 1848, he egain entered the Eéo1e Polytechnique
as Professor of Mathematical Astrononmy.

Cauchy was en untiring worker, & man of uncommon scientific
ability, a prolific and profound mathemstician. From 1830 to 1859
he published more than 600 original memoirs and about 150 reports.

In spite of the obscurity, repetition of old resuits, and blunders



Page 11

caused by his feverish haste, his prompt publication of results and

his preparation of standard text-books enabled him to exercise an
influence on the great mass of mathematicians that was more immediate
and beneficial than thet of any contemporary writer. Iis work in-
cludes resesrches into tha theory of residues, the question.of
convergence, differential equations, the theory of funetions, the
elucidation of the imaginary, the theory of numbers, operations with
determinants, the theory of substitutions, the foundations of ealculus,
the theory of .probabiliiy, mathemﬁtical astronomy,'and the applications
of mathemetics to physies.

2.2 PACTS qu CIRCUMSTANCES smommc “Tﬂ,ﬁ?ﬁémzmmm AYD
PUBLISELNG OF THIS'PROOF.—-It was during his fiféﬁ_iectureship at the
Egole Polytechnique in Paris that Ceuchy deveibped, in 1823, thé proof
ﬁe are studyiné inttﬁié chapter. This proof was sumﬁarized in a Memoir,
"Sur l'integratioﬁbdes Equations Differentielléé;" iithographed Prague,
1855, and this sumﬁary was reprinted in "Exercisés d’An&lyse," 1840,2
It was given to thé éublic end preserved for usrin i?Syéomplete form
only through the work of Cauchy's friend and pupil,vl'abbe Yoigno, in
his "Lecons de Calculus," 1344. The.printing of'Moigﬁé's book began
in 1841. EHis originel purpose was to pudblish oﬁly one volune, but
the abundance of material foresd him to slter his pl=m to include two
volumes. The first volume, on the differential éalculus,'which had
already become a fixed science, came out.according to schedule. But
t'ie second volume, on the integral calculus, was delayed for two rea-

sons. First, Moigno's duties as leader of a monaster? demanded part

lInce, "Ordinary Differential Equations™ (1927) p. 76 {Footnote).
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of his time. Second, snd of chief importaﬁce, the integral calculus
was rapidly changing. A new era s=emed toifome. any noted acisntists
were vworking on this branch of mathematics. It required time to ana-
lyze &nd condense the many papers being published by such men as
. Liouville, Slurin, Binet, Lame, Celelan, Blenchet, and Eertrand
in France; 1. Gauss, Jacodby, Lejeune-Dirichlet, and Richelot in
Allegmagne; 21, Ostrogradzky and Bouniakowsky in Russia; and ¥. Tortolini
in Italy. At this psriod Cauchy himself put out.more thén twenty-
four papers sbout the integral calculus wﬁich Eoigho.wished to ana-
lyze in his lesééﬁé} Therefore, Mbigno'é book, Wﬁich‘was very modern
in its day, was not completed until 1844. Oauchyféfproof of the ex-
istence theorem by means of difference aquatioﬁs'is'found in
Vol. II, pp. 385-396. In the following section I give a transltion
of the proof of the theorem and corollaries iﬁ;their‘original form.
To my knowledge, they heave never desn published in English.
2.3 A TRAVNSLATION OF CAUCHY'S ORIGIRAL PROOF.n<
2+31. ﬁhénever the differential squation
dy:r‘(xv.y)dx
is integrable by one of the methods'explnined iﬁ the previous lectures,
we ozn easily obtain, as we have shown, a function of x for the unknown
¥, which will satisfy the differential equation and will equal Yo when

X :xot

Conversely, the equation

dy = f(x, y)ax
can be integrated and has & general integral with an arbitrary constant,
if one can prove that there 1s'a.general valus of ¥y which fulfills the

two conditions mentioned ahove. This zoal one reaches in most cases
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by means of the principles about to be set upe.

Let X denote a new special value of x and let x5 Xgs Xysere > -
be quantities which lie between the limits xo eand X and which cons;antly
increase or constently decrease from the first to the second limit.

Let us further suppose that by means of the equations
V=T, ={xp-x )2lx ,y ),
V=¥, = (xz-— xl)f(xl.yl) 3

¢ ¢ » e - L » - * @ * & o

T ‘;.Yn?l:: (X - 1Kn--l,) f.(xn 1Y 1) *

- N

one has calculated n values of ¥y correspondingi»'_l:,é‘)’"'jfé,Yl....,yn_l. Y,
and that one has'bsr eliminating ¥y ya”"’yn 1' a value of Y of the
form

Y:F‘(xo.xl, XypeeesX o

s X, yo) s .
which has very remarkable properties. If one now adds all these

equations together one hes
Yoy, =z ~x M 0lx g,y ) 4 (xp—x) )00, 07 ) 4 o0 (‘X-xﬂ-,lf (X s ¥mid o
How, howsever, the sum in the second part of this last equation eguals

the vpi'oduct of the éum of the differences xl—-x , xa-— xl,...,X -x

o n-1) or

X*xo, and a mean quentity which lies between the coefficients

, f(xo,yo). f(xl, yl) ,-...,:t'(xg1 VY )

-1 1

and if one designates the largest of the absolute values of these co-
efﬁcie‘nts by A, then the mesn value will necessarily be expressed by
an expression of the fomm i'@A, whers (9 denotes = positivé number
sneller than unij;y; one now has

Yoy =% Oalx -x_)

Y-y + ® ax-x)
o o]
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and from this it foliouws that the valus of Y must necessarily lie be-
tweon the linits y,1A(X-x,). In like manner we find thnt the quen~-
tities Yy. Voseeer¥p3 lie respootively between ths limits

Yo A{xl xo) v Yo A(rs xo),....yo A(xn-]. Io)-
and honce all these guantities, a8 well as Y, mey be reduced' to ex~
pressions of the form

Yo £ @ Aa(X xo) .
HAence, it follows that the coefficlents
t{xy, Yols Tlx1, ¥3)seee,flxpays ¥y
are particular velussg of the ‘axpression
tlx, Fo{x-x,), v, EOAMX-x,)
which correspond to the walues of O aud & lying betwsen O and 1.
How, we will sup-oze that the largest and the smallest of the coéfficients
i.are under discussion correspond respectivsly to the vnlues of
6:-0,, +0- @o/' p-6+¢€, t0-gre,

80 thet evory gquantity lving b tween these two coefficionta, or between

f[xo+ (P4 e} X -x,), 3 [ (6 + e,)ﬁ(x—xoﬂ and

£x 16,(2-x5), o+ & AX-x,) ] ,
can be regarded mas a particular velue of the expression

r[io+(9,+e§ X ~x,}, yo+(é’o+ e_{ )A(K-xoﬂ ,
wiich corresponds to & value ot § lying between the limits 4(3 and 1,
and, hence, s varticulayr valua of the expmssion | |

oty F6(xox,), v, 0 Alx -xOD/

whick corresponds to values of & and © 1ying betwsen the sane limits.

It follows thst since the differsnce Y—y, is ejual to the product
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of X-x, and a mean guasntity of the kind mentioned, one cen say that
Y—y0 = (X ~x ) E[xt+ 6 (X ~x5), Tk BAXK -x,) ]

and therefore ...
Yoy, +(X—x ) Efxyt O (X -%4), Yo+ OAX-x,)],

where O and @) asgain denote two positive numbers less than unity.

2+311. Corollary 1. If all the elements of the difference

X -xq5, thet is, the binomials x) - X5, Xp-Xjsese, X~ X 5, WOre ro-

duced to & single one, which would be this difference itself, then

one would have only

Y-~ YO: (X"xo)f‘xo. yo) -

If one compares tliis eguation with the nrevious one, then one sees

thst, through the nature of the division of the interval X-x, into

elemenf.s, the sacond factor of the product, which expresses the value

of Y-y,, changes in that the guantities x,, ¥y, in it incresse in

such a wny that thelr increases are less, respectively, than the

numerical wvalue of the first factor and the same when multiplied

by the constant A.

2+312, Corollary 2. If m denotes a number less then n and one

assumes X,m- §/ = h then one has

A (X\(zg)ﬂihe (X-£), nt 04 (F-€)]

2+32. After we have learned to know the form of Y, we will slso
determine in what way this quantity changes with ¥o» OT ocalculate the
increase 6m7y which corresponds to an increase (9, 73(, . Let

H: + (X -xo) indicate the numerical velue of the difference I»xo.
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Let us further suppose that when x remains in the limits x, and X,
the derivetive df(x,y)/dy remains continuous with regard to the
variables i, y and therefore also lies between the limits C, C bsing
a positive quantity. Now let
O (=, vax ) (x, y)ay

be the total differential of the function f£{x,y) so that one has
identically

arlx,y) fax = @ (x,y), df(d,y)/dy X (x,¥).
Also let _ @,/ (2” S (2.3& be the raspective increases of
Y1+ Yosese,¥ when one assigns to 'y, the increase ()),,, and let 6, @0,
0, @, 0,
Since the equation y; —y,= {x3 - X5)£(x,,y,) must hold, if one allows

Ly @)..., each be a positive quantity less than unity.

Yo to increase by [, end y; by ﬁ, , one then has
yl +B1 - (yo"f (;u)-f (xl“'xo) f(xOQ YO ‘tﬁ,))

and hence
@,- pn = (xl‘ xO) Ef(xo:' ¥ Tpo ) - f(xo: YOD .
Further, one has,. by meens of a well-known formula in the supposition

made, -

£{xo0,y0 fﬂ" )'f(xnaYz)) - X(;o,yo + 6 (30 } < + @o ¢ .
(3o |

r(IO’YO ‘f'po ) ’f(xO,Yo) -4 & BOC )

and consecuently

= e 26, ¢ (x- Yo)]
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Similarly one finds
(3% - (3- L * 90 C(X;*X:\]/

= Grass D1 O (K- K], |
64« = P" [’i @,CQX; XO)J[’ t @l ((xnf Xi)] T [“ k Q’h-: ¢ (X" YM--n)J .

If the difference X -x, is positive, then the numerical value of the
binomial | £& C (x;~-x,) 1s less than the sum ) +C(x; -x,) and

hence, smaller than the exponential quantity

a4 Rt
QCIXO‘XD): ‘ 1~((X.~7‘o)+ C (le"‘-ZD) + -

For the same reason the numerical vslues of the binomisls

14, C(xw) y 4 B, (X - %)

are smaller respectively than the exponential quantities

ec(xa—x;) s aC(X—xn_l);

> -

and it follows that the product of 21l the binomisls occurring in the

value of@,,, is less than the product of all these exponential“.quaﬁtitias,

(X—x0)

that is, less than e’ , and is thus reduced to sn expression of

the form

+ O LI{Xxp) .
where sgsin(® denotes a nunber lying between O and 1. TFor this ‘expres«

sion we would obviously have to substitute
oS lxo— X} -

if the difference X—xo were negative. Accordingly, we have
+C(¥-%0) _ ¢H
B..= +8B.% R R o

which is the 1ncraase(3mot Y, corresponding to the increase ﬂ,of Yoo

CH

If, for tne sake of brevity, wg gsubstitute K .for e ', K being a positive

and finite constant, then we have merely (34, - * @l(@,.
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2-321. Corollary l. If the elements x; - Xx,, Xp— X3,...0f the

difference X— x,. all receive numerical values less than 1/C , then the

factors
/£ QC(X,-n), 1 TG COG~¥),

ere all msiﬁva, and we necessarily have
B =O K[, .
2322, Corollery 2. The value of (5., = @ K({, becomes in-

finitely smell with B.3 hence, an infinitely small increment of the

quantity Y will always corrsspond to an infinitely small increment of

the guantity y, and thus the first of these gquantities is a continuous

function of the second.

2+323. Corollary 3. If one considers only the souations

Ynil - ¥m = (Xp g - X)) £lxg, v,),

Tmi? - Ym4l (Im+2— ﬁfl) f(xm,,]_» ymil’

. - * * = 4 - - - - - L] L4 » L3 7.

T-Vpop (K-xp ) flxg 0 vpa),

they are sufficient for the determination of Y as a function of the

quantities Xy EpgprecasX, 3o X, Vs and one ean again easily show that,

Af one assigns to y, a certain increment the corresponding increment of
7 " —

Y is of the following form
-%
ey eic(X »n)..

Hence, this lest increment has a lower nuuerical value than that of the

product ﬂ”‘ E C(X"XM) and, even more so, than that of the
product

X —xo)
_ ﬂwqd o = /(P,,“
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2.33, Tue quantity Y is obviously dependent, (1) on the limiting
values x_, X; (2) on the quantity ¥,; and (3) on the number n and the
values of the elements into which the difference X X, is divided, or,
in other words, on the chosen manner of dividing the difference. It can
be shown, however, thet the value of Y is dependeqt merely on the
three quantities xo. X and yo. if one lets ths mﬁnerical values of the
elements of the difference X-xo approach the limit O hy increasing
their number indefinitely. To this end, one needs on'ly prove that
the chosen manner of division no longer has any perceptible influence
on the value of Y if the number n becomes very large, which one can
easily do in the following manner.

If the elements of the difference X - X, reduce themselves to a
single one, which then becomes tie differeﬁce itself, then the value
of Y i{s determined by the equation

Y-y, = X-x)) flx , yo).
If, on the other :and, this difference X -, is divided into n elements

- xo, zz- xl....,x- xn-l/
we have then

Y—yos (x- xo) f}:xo-r 6 (X—xo), v, @ A (X-;oﬂ .

In order to proceed to a second manner of division we need only to
divide each elanent'ot the first division into new élements, aﬁd one‘

can then by approximation cslculate the Influence wliich each subdi-

vision bas on the value of Y. For, if ons, for exszmple, divides the
element xl’xo into several parts, then we have for the equation

Vi~ = (xl~x°) f(xo. yo)
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several othsr eguations of the same form; but if one proceeds in the
well-known manner, one finds
-y = - o - @ -

b (xl ?to) f}:xo + (xl xo), Y * /ﬂ (x1 xQD/
where @ and @ again denote two positive numbers less than unity, -
If one supposes _

- A - = 4 €

fx +olx-x), 5, +@Alx xo)] 2l 7))+ €,

one has
- = - =+ ¢ -
V7Y, =lx-x) £z, v,) ox xo).

But before the further division of the element xl- x .one had
. o

- - {x.~x ) £ix '

v,-¥ = 1 o) ( o’ yo).

and, hence, the value of yl, by this new division, is changed by the
product *€({x —-x).

1 o
If, however, the rsmeining elements of the difference X-x retain their

: o
original values while the quantity yl recoives the increment = Ga(xl—xo);
then Y receives, according to the statament above, another increment of
the form
4+ 0Kke€ (x-%),

Hence, the inorease of Y caused by the subdivision of the single elament

xl—x has & numerical vslue less than the quantity
o

Similarly, one proves that the increase of Y caused by the sudbdivision of

the element x 1" x has a lesser numerical value than the éuantlty
. n n

+ Ké (Kmer™ x""‘)r

where the number €, _is determined by an equation of the form

+ ew :/fXM'f-Q(X/mﬂ” Ko )/ﬁn—-—\ x QA(XMQ-I_ Ko )]‘/(K”" g”“)
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If one thus successively divides anew all elements of the difference

X—-xo. then Y receives a series of increments, whose sum is less than
K e" (X'\Y‘)) f'(e,[X1~¥|) LR T I{ em-l (X—Xm-l): /(G(X"XO)I

where € denotes a middle quantity smong the numbers €., €., €.
If the differences xl-xo, xz-xl,...become infinitely small’then the
same 1s true of the quantities €., €., ¢ ... as well as of the
expression
)< e (R -x.);

and, therefore, the value of Y, corresponding to a certoin division in
which the elements of the difference X-—xo have very small numerical
values)will not be perceptibly changed, if one proceeds to a second di-
vision in which each of the elements is again divided into several bthers.

Let us now assume that one observes at the same time two divisions
of such a nature that the elements of the second division are no longer
subdivisions of the elemeﬁte of the first divisiou.\ Then one can compare
both these divisions with a third of such a nature thet each element of
the first or second diviesion 1s formed by the union of seversl elements of
the third. For the fulfillment of thies condition nothing further is re-~
quired except that all velues of x inserted in the first divisions are
also used in the fhird, and one can prove that one changes the value of Y
very little wien one proceeds from the first or secbnd division to the
third. Ir, therefbre, the elements of the difference X~—x° becone in-
finitely small, then the manner of subdivision no longer hes esny perceptible
influence on the value of Y,"and if one lets the numerical walues of these

elements decrease, by increasing thelr number infinitalyg then the value of
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Y converges toward a certain limit which depends only on the form of the
funation f£(x,y), on the limit volues X and x, of the variable x aund on
e quantity y,.

2¢331. Corollary 1. Since the limit townrd which Y converges, uhen

the elements of the differsnce X -x, become infinitely small, depends only

on the three values x,, X and Yo» let us denote this limit by Flx,, X, y,);

and by F(X, y,), F(X), if we wish to allow only the two cuantities X, y,,

or the one guantity X to be changed.

2¢34, It can now be easily proved that there always exists one
function of x, which satisfies the differential equation dy- f{x,y)dx and
which assumes a special but arbitrary value y, 1f one assigns to the vari-
able x a ziven value X, For let F(x) be the value of F(X) if one sub-
stitutes x for X. 3ince F{X) is the value of Y, if the elements of the
difference X-Xx, becone infinitely small, then we iave from,the equation
Y‘"‘] z (X- f) 2{'[§+9(X- §)I LR @A(x&g)]/
the equation
FI(X)~F€)- (x- §)/[§~r9(¥~§)/ FE)+0A (%- {)J/-
and if one substitutes

§:></ X = x+4

here x and x +h lie between the limits x_ and X, then we have at the

o
8ame time
F(x) - yo +(x—x;) fﬁo +olx-x,), ve + @ Alx -x,) |
and ‘
Flx + h) - F{x)= he[xs6h, Fix)t & anl .
How it is easy to see that (1) wien x= xo/ F{x) reduces to Vo3 (2) if h

becomes infinitely small, the corresponding increase of the function F(x),
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namely, F(xfh) - F(x)/ also is =n infinitely small quantity; and (3) that
frmg this eguation divided by h the following results:

P (xl): fE:, F(x)];
which expreases the factk that the funetion F{x) satizfies the differen=-
tial equation dy -f{x,y)dx.

Therefore, if the function f{x,y) and its derivative 8 )remain

finite and continuous between the limits x,, and X, then there exists a

function of x which satisfies the differentiasl equation dy.: f{x,y)dx, and

which assumes the value y,, if one assigns to the voriable x a given

value X .
- "o

2.341. Corollary 1. If one designates the limit of Y by F(x,y,)

then the function y apsears in the form of y=F(x,y,) snd is the general

integral of the given differential equation, because Y, is =n arbitrary

constant, and this integral also, like ¥, is a continuous functiom of y,.
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2+4. IVPROVEUENT DUE TO LIPSCHITZ.--In & paper published in the
"Bulletin des Seiences Yathematique et Astronomiques® (1) 10 (1876},
PP. 149-159, . R. Lipschitz:has greatly improved Cruchy's proof by
making prominent the conditions upon which it 1s besed. This improve=-
ment by Lipschitz has become almost as femous as the oririnal proof by
Cauchy. Following 13 a translation of the improvement due to Lipschitz
taken from the paper mentioned above.

%e shall suppose a given system of differentinl eguations, with x
as the independent variasble and yl, yz....,yn as the dependent varisbles,
in the form
(1) ay7ax =t (x,y!, v2,...,79),
where# =1, 2,...,n0. The functions £ % are given for connected set of
values of the variahles x,vl, 72,000, ¥ lThis set of values is said %o
be the domain G. (If ﬁ::z, we cen consider x, yl, ya as representing a
point in space, and we hove a very nice image of G.) For all poiﬁts in
t-e domain G the n functions £% are to be uniform, continuous and bounded.
Moreover, they must satisfy the following ineqguaslity
ISR Lm)- /“(ﬁ, 51|
{2) <Cq"}£tz'}‘l‘(’.d'l)ﬂ<t 71I+‘ ‘___F'Ca,’klﬁ"lzul)
for sny two points X:ﬁ)a“;ﬂfwx= ﬁ,f‘; Zc( , having the same value for
the indepenmdent variable. The quantities CW2 are positive constants and

here, as in the following, the symbol/bv’ represents the absolute value

lA domein & is zaid to be connected when it is possidle to join any
two points whatever of thet domain by a continuous path which lies entirely
in that region of the plane. (Goursat-iiedrick~Dunikel, "Functions of A

Complex Variable", Vol.II, Part I, p.1l1).
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cho‘.~ The imposed cbnditiou of continuity demands thet for any two
systems of values x-h, y-kx¥ and x = §, y°- 17, |
the difference

AR ) VAT
can be made as small as we plesse if the differences )h —j,, ]k9-13[
aprroach zero. If we conaider inequality (2) we see that this condition
assumes thet we can choose the diffarevoe)h j\ so small that it has, as

g congsequence, the inequality
@ AL 1)L, )

howsoever smallé may be.

The system (1) will be completely integranted if we detemmine a
system of functions yl, yg,...,yn satisfying equations (1) and for a
given value of x, x::xo; satisfying the equations
(1) a 5
The system of velues (xg, y%, ¥5,.-+,¥R) must be included in the donain G,
exelusive of the Loundary. So that we may find positive quantities
80 Y3, cuch that the inequalities )x ~x5\éja°,)y y°)< H* define » sub-
domain of G; consenuently, there sxist positive finite constents d? such
that, for all points of the subdomain, we shall have
() /%d/ Lt
If we determine the positive quantity Ay so that ve have
(4)  Aocs {b3, ko La
the domain described by the inegualities
(4) x| S 8o Jyivs) S0

will 1lie entirely within G. We shall call it H,.
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Under these conditions, there slwavs exists a unicue system of
functions yl, y2,...,yR, satisfying equations (1) and varying continu-
ously zithin H, if the varisble x passes from x5 —4A, to x,+A,, and

satisfying the equations y=y, when x<x,.
For the proof of this theofem it is surficient to consider only
those v_alnes of x in the interval XOSXS x°+—A for the proof in the in-
terval x3> XS>x5+ A ¢2n.be developed in the same way. Suppose that
there is between x, and x,+ A a sequence of intermediary velues
X)» X2seeesXpals such that
Xp <X) <{Xp< * -~ ¢ <xp:xO+A
and deternine n quantities AL, by thé n emations
(5) M -Vo = £ (%0, 75 yg,....ﬁfg) (x;-x,),
These equations would be the same as the glven differential equations
(1) it we replac_e, in the left hand member of them, dx and dy by the
finite quantities X - X,, *qi‘-— y: respeyctively, and in the right hand
menber xlyq by xo,y:. From the inequalities (4) and (4") we can con-
clude that the equations (5) have as consequence the inequalities
- 3] < o8t (xy ~xo) < B,
and, therefore, the system of values (xl,‘q}_;x}lz,...,wﬁ) is 1;1 the domain
Hgs In the same manner we can form the sequence of systems of values
(Xas1s Aasgoeess Ao a)
by substituting successively ax1,2,...,p <1 in the equation
(9 e 2 e, me, - AR ) (e ).
All the systems of values will certainly remain in the domain Ey. Ve

continue the decomposition of the intervsl by interpolating between x .

and )(M_| the 74“(:,values of x,
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XA.,[) xc\,i) - Y) Xa,ﬂ‘l{)(q,ﬂ: qu,)o T Xa +1 -
By this new division we obtain a new sequence of systems of values be-
ginning with (x,,5&, ¥5,...,73) each of which will be included in H,.

This new sequence of velues (xa),‘“ }‘p\; "112,,1& ) will be obtained

_ ;/"‘ﬁ/ T
by replacing in the equation
a « o9 ; ' > ~ -
{6) 'hc‘m.m '11“//1“ -K (x“”f“' 77,“"““’ YMey - ')‘17‘//4&) (X"/H«“ X“/"“)/
aby O, 1, 2,.e.,p—1, }fa by the numbers 0, 1, 2,...,75\—1, and, finelly,
by placing
A o o _ 1y
7/10,0 - 20 J 770., 70‘ —.‘74—1-0,0
It is now our task to establish that, regerding the first quantities
X), XpyeeesXp.] 88 fixed, increasing the number q, indefinitely, and
indefinitely decreasing the intervals by any law whatsoever, the values

R,‘N)D 7“‘” )

corresponding to the volue x= x 1 of the independent variable, con-~

at
vorge to 8 fixed 1limit independent of the law of increasing g, and the
law of decreasing the seéondam intervals into which we have divided

P
proof shows that under the conditions given above it is always possible

the intervals between the quantities x,, Xy XpyeesoyXpo]s Xye This

to choose the quantities xy, xB""”‘p-l so that the abeolute value of
the differences éj:‘nf a1 remain, for each a, smaller than a
quantity {, chosen arbitrarily small.

If in equations (6) we set suecessively Ya = 0 1, 24eee, fla  and

add them, we obtain th- following

(7) 11“//‘1«"" 71“ RS § { (XQ'H“/ “ ""\l C '}M:/H'A) (X‘Un'—l—(-— X“/M"’J )
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which gives by means of inequality (4),
)—l’lqm "y %a,g/<c (2‘ H“,\XA,O)<‘C:(XQ,-."K“>.

This inequality expresses that the system of velues ( )h,ual hé/ﬂv»
ﬁ:/“J }'7:2k ) remains, if we let a be fizxed and if we give

He. 811 the values from o to g - 1, in the domain Ko whose limits with
respect to each of the n {1 variasbles can be made as close toget:sr as
we please by tsking the difference Xg+1" %, sufficiently emall. As,
by hypothesis, the functions £ remain continuous in the domnin H@lthe
difference X 41" %a &M be chosen so small that in the domein E, the
difference betweeg two values of this function will become smaller than
a quantity A, chosén arbitrarily small. Supposing that the difference
is determined in this way, by tesking the nurber 7 itself sufficiently

large, we obtain from equation (7) when - -/ , the result
: M e 74
. od J‘ d Tt Y 2, l‘ _ .
(8) 3“"3’0\ j M (X“/j“' g "5“)’“& N (e ),
. o ’
whers the quantities fk are proper fractions, either positive or

ﬁegative.

Subtracf?ng the equation (5 ) from this eqﬁation we get
ék&' Q*‘ .:hi J
sl s, )« R

put, beceuse of (2), we shall have

L §(%e g4, - --/(7?%"({"‘««,17;, Y. %J
e o P P S LR D

If ons then places
4 | _ 234
I ]* a

the equations (9) give the sequence of ineqﬁalitiea

(10)
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(11) T (i 2 @R KGT R,

Yoreover we have

o
(11%) Zes< o
How it is clear that if we form a sequence of quantities by means of

the equations “ B '
{12) {a:tl‘ai = (€M S e -+c’hKﬁQf;\)(X<+TK“)

Ui o |
in which’tha index a takes wsolues from O to p— 1, we will constantly
have |
(13) 2%, < U,

Fow we need, for our demonstration, to show that, taking /\
sufficiently small, the quantities Z :( +1 remsin as smell as one would
desire; our purpose will be attained if we prove the same fhing for the
quantities (/\t.-g.l or for greater quanti‘t ies.

Let ¢ be a positive quantity superior to the greatést of the n =

constents Cq’ﬁ s+ if one determines the cuantities V: by the equations
Vi < VA = [ clVa+ Vs + - V) +A] (K~ Xa),
Voo,
one will evidently have, ford=-1, 2, 3,...,0 -1,
(a8 Ui, < VS

Now the first equation (12%) gives
M "'\‘

' i < PN _
\/R,,‘Vo;‘—l/c“,ﬁva.~‘f - ATt Sy

(129}

and, by virtue of the second, we have
[} T .5 N
VA:V&: Qr“’:VQ
The first equation { 12"‘) may then be written
4
’Vai' - VZ - (% ¢ Va ﬁ‘)’)(x“*:’ X“),

or
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+ 2 .
V:Tl }/hc:(l/: t M.)/l'f"'\f-( XH,‘X.,)')
one then has

(14) ‘l V:+ - —%c + %c‘l“"“c(X'-XD)»i'f“c(Xt.\xl)“ U"*/‘/”c'(x‘\fl\xo)l‘

But the product
TESRIC I ]| EERRTC RS B NP R TG PWRR ] §

in which nc i3 positive, has itself a positive value inferior to

_QMC(Xc.r,\x")

) have
we then rac(XaN“Xo)

V:<‘“Z\'“ 2z e )

The comparison of this inesuality with the inequalities (13) and (138)

glves e e’hc(XM.‘XD) < 1+ QMA', 1
(15) [6&1». 17&-“! a+1 nc e /
and since the factor -
0 "+€MC@‘
: 2 C

has é finite value, one concludes from it that the difference
[N

may be rade as small as one would desire- because )k is =a ouantity as

small as one desires, depending only on the choice of the intervals

X~ o,‘xz-fxl...,xp<;xp_l. Since the diffarences/;ifui*Jmay be taken

as snall as one aesires! the quantities?i”mmich correspeond to the

fixed vslue X=X, 4 of tne variable,’converge toward a determined limit,

independent of the law of increase of the numbar;&l, and of the law of

decrease 0of the new intervals. These limited values, by virtue of equa-

tions {B8), define a system of solutions of the differential eovations, a
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system for which the functions y Yare reduced to yg when X= X,. The
existaence of a system of solutions satisfyling the imposed conditions is
then established, and the first part of our program is fulfilled. .

hat there exists no other solution of the system (1) satisfying
the stated conditions, one sess as follows: let 5‘3 To‘be such a solu=-
tion, tie interval of x,, X, A, to which one may still be limited, may
be divided, by the introduction of the quantities x; xz,...,xp__l in
intervals for whieh, fi being a proper fraction, positive or negative,

and /\ a cuantity as small es one would wish, one will have the equation
o 3 4 1/4 ' W % v -
(16) b/aﬁ“ YQ) - lé (XC‘/YAI T Ya )+ o | Crie XQ)/

in which the values a T correspond to the value x = . of the indepan—
dent variable, and in which one has, by hypothesis, \f 8° « This se-~
quence of esquations is an mmeﬁi;aw consequence of the two hypotheses
B WIRVA Y
by virtue of which the given system of ?unctionsa =Y satisfies the
differentisl equations (1), and vesries continuously when the variable
x goes from X, to x,+A. If, by the equations (5) and (5*), one forms
" _
the quantities 710\ according to the values xo,xl,...,xp_l, one recog-
nizes that the differences
q g \
} Ya-ﬂ" 77\&-&1
should behave like ths differences
o 4
l éﬂ»ﬂw 71““"‘ l)
because the equation (16) is deducted from the equetion (8) by replacing
& by Yg‘ and y a+l by YO(+1' and one has besides YO: Yo it results
t\
from this that the differencesl\{a ;’QL.‘may be nmade, like the differences

Oty

}%]4 -‘p{(" _H‘ , as small as one desires; but, because of the 1nequalvity
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DN DARSC I R PR o
the difference}ﬂ,,pafﬂjmay evidently be made as small as one desires; as
a conseguence, the riven system Y; of the functions Y;?may not differ
from the system of the functions yg obtained by the division of the
first intervals into new intervals that one has made decrease indefinite-
ly. Our demonstration is thus entirely completed.

There is reasbn to mske some remarks on the conditions imposed on
the functions £ ®. We have supposed in giving a sufficiently amall ine
crease to the independent variable and in kéaping the same velues for
the y, one could satisfy the conditions of contiauity
R ST S N NTA NS R/ L

U being taken as smell as one desires; moreover, we have imposed,
for variations of the quantities y, the conditions of a special nature
defined by the 1neqnaliﬁies
R KA )

(2)
e A e g g

Qur demonstration sﬁpnoses essentially that these conditions are satise

fied. In order to be convinced of it, one mey limit oneself to the case
of 2 single differential equation
%-’/()‘/ﬁ),

If, instead of the inequality (2), one supposes only that one has

@9 ({hD-fE D c]h1E

in which S is a positive quantity smaller than 1, the reasonings,
copied closely from those which we have made, lead to replacing the in-

equality {11) by the following:
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(11%) ZA1I<ZQ"‘(C‘Z§‘+A)(XG+'—XG)
stili taking Z.= 0.

In order to learn _whether the quantities Z&1 "y may, for a vs;lﬁa
of N\ suff‘icieﬁtly small, be made as small as one desires, one will
- form the system of equations
(1235)' L(&ﬂ._l,(‘\*((kcs\'r‘))(xc\.,qu):0/}‘
and one will have then
(13%) Za T+ < (’("»'H/'
one must find out then whether or not, for a value of 7\ sufficiently
small, the quantities {(, may be made ss small as one woﬁld desire. In
the first case, one would arrive at the same concluslon; but, in the
second case (and we are going to see that 1t is with this one that we
‘must deal), our demonstration collapses. One has suprosed the inter-
vals X1~ Xgs Xg=Xjeee,X

D
in which the differsnce of the values of x is less then x

~Xp small enough so thot, in a qomain Ko;

a +l'-—:é, the
difference of the twq values of y is less than the given: Quantity)\, .
The intervals X~ xo,xz-xl,...,xp— xé_l being chosen arbitrarily,‘
nothing prévents subdividing them into smaller intervals; the assumed
condition remains fulfilled. By carrying the subdivision far enough
and designating by Unthe velue corresponding to x,, one sees that the

equations (12*} may be replaced, with an approximation as great as one

desires, by the equution
U é “
. Xk‘ Xﬁ = jo Cq&‘_,_;{ )
from which ‘ '
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uq o ~51—l
Yo =Xo ([ pce:a’ Y ‘S)'

“47("5“) (XA X)

8+|
Then since ) is 8 fixed quontity, one can by no meens make & &8s szall

8s one desires; the inenualities (13*} cmnnot then icad the quantities
Za+1 to a proper limit.

It is clear that the insqurlities {2) are alwars satinfied when
the functions /‘{, Tar all the points’of the démain G, ave portial de-
rivetives of the first order, uniform, finite, snd continnous in rela-
tion to the n variehles v4 ; beoonuso then the difference

] My Y
AR A7) 1,0
may, in mccordsnce with Taylor's theorem, be plézcad under 8 formuls
which makes these inecualities evident. On ths other hand, one can
conclude nothing on the neture of purtiel derivatives from thess zup~
poss::%ly true ineuslities. ;

In the case where the functions / ido not contein the vxsriables (17"‘

tie functions remeln uniforn. finite, =nd continuous in relation to x;
our snalysis shows thnt the _integral j 1 /;‘ )qu ias e deternined sense
snd thst the derivative of t:is function, taken for = value of the
varisble esual to the upper limit of the integral, is egusl to { {x).
The postiumous mamoirs of Rismann, on the represestation of a function
by a trigonometrical sﬂriss, has thrown light upon this fret, that the
existence of the definite int agr)z?}; despends upon & more menersl condition
then continuity: the 1ntagr&l//"o(f ) t{]f 7111 exist if ths function K *(x}

Xo

remaing finlte wien x varies from x, to Xy TA, =0d if by dividing the

interval fronm Xy to xo-\»A into intervels Indefinitely decreasing,
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X} EgrXg Xlseees the total sum of the intervals for which the oscil-
lation of tiLe funetioné?2x) remains less than a given quantity ¢, as
small as one would desirse, can be made as small as one would desire if
these conditions are fulfillegd, andkif x is a quantity between x, and
, ¥

Xo T4, 1t is clear thst the 1ntegra;)lg{ (§)o@§ will exist; but, as it
appears to me, these conditions sntail in no way this conseguence,
that the derivative of this integral, is equal to £7(x): =nd so I
thought I should retain the condition of continuity of the functionms

fa(x) for the study of the integration of differential equations.

Hote: In the final chapter of this thesis thers are listed the
namas end works of other mathemeticians who have made noteworthy

investigations of the method of difference ecuations.
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CHAPTER III

"THE CALCULUS OF LIMITS"

3.1. ORIGIWATED BY CAUCHY.-~Cauchy's first proof, which was fhe
subject of the preceding chapter, is for real functions and real wvari-
ables., He has given a2 second proof, which he éalled "The Calculus of
Limits," for complex varisbles. 1This proof was published in the litho-
graphed memoirs of Turin (October, 1821, 1832 and March, 1833), and of
Prague (1835). The first of these memoirs $53'reproduced;:in paf%. in
the "Exercises d'Analvse et de Phys. Math.” 2, Paris, 1841, p. 41; the
second was reproduced in the "Exercises d'Analyse et de Thys. Hath."

1, Paris, 1840, p. 327. Extensive notes on this theorem were later
published dy Cauchy in the "Comptes Rendus Academie of 3ciences, Faris,"
9-11, 14, 15, 23 (1839-46) and many of thess notes were republished in
"Cauchy's Collected Works," Series 1, Volumes 4-7 and 10. The most im-
portant of them bear the following dates: November 5 and 21, 1839;

Tune 29, October 26, November 2rand 9, 1840; June and July, 1842
September, October, 1846.2 .In the following section is a2 statemsnt of

Cauchy's original demonstration by mesans of the calculus of limits transe

lated from Vol. 7 of his "Collected ¥orks."

1?: Painlevé, "Encyclopedie des 3ciences Mathematiques™ t. II Vol. 3
p. 16 ' ' '

23¢e also "C. R. Acad. sc. Paris" 9 (1839), p.184-30, 637-49; 10 (1840),
pi 957-69; 11 (1840), p. 639-58, 667-77; 730-46; 14 (1842), p. 1020-8;
15 (1842), p. 14+25; 23 (1846}, p. 485-7; 529—37, 565~9, 617-9, 702-4,
729-40, 779-87; “Collected Works™ (1) 4, Paris 1884, p. 483-91: (1) 5,
Paris 1885, p. 5-20, 236-49, 360-409; (1) 6, Paris 1888, p. 461-7; (l) 7,
Paris 1892, p. 5~-17; (1) 10, Paris 1897, p. 107-9, 124-33, 143-50, 150-3,

169-71, 171-86, 186-96.
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3.2. A TRANSLATION OF CAUCHY'S ORIGIVWAL PROOF.

3.21. General Considerations,

Let us be given a system of differential equations of the fom
(1) - DpxzX, by =Y, Dz =2, «es ,
with the independent varisble ¢ and the unknowns X, ¥, Z,«e« « Lot
X,Y,%,... designate given functions of the unknowné Xy Ty Zreseyte
On the other side, let E)'n, 5 see» bDe the neﬁw values which the un-
knowns X, ¥, Z,e+., acaquire when the varleble ¢t accuires = ﬁew value
desiznated by T . If one substitutes

£ for x, ﬁfor v, £ for z,...,
a given funoction
(2) RoF(X,7,Z5000)
of the unknowns x, ¥, Z,... will have a new value represented by
F( 5, N, 5, -}

and if this new value can be expanded according to Taylor!s formula into
a convergent series of ascending powers of the difference {T- t), then
one will have _ .
(3 F(§, M 5.... "R +I%" DR + LT,—:—P D:R S AEERTTI
If in equation (2) one replaces successively ths function F(x,y,Z,...) by
each of the unlﬁnowns X, ¥s Zyess0n0 shall have the formulas
£ ¥+ TEp x4 @F?IDEX‘*' SR
W T Dy s g
: Z: Zf‘LiiD‘t?—-f-(%:__r.D;-g_'l‘"')

A J

which will represent the solutions of equations (1) whenever ihe segquences
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X h_;t) (D{\’“) (I/’\:) D:X )
1 gt;:i):ﬂ by )
(5) a L)D"?' /> D"H
, ¢ 4 . ! )

are convergent. That, at least, one can easily demonstrata by the aid
of a general theoren which I have found about the expansion of functions
into series% Therefore, to establish the existence of general integrals
of equations (1) it will be sufficient to prove that one can assign to
f ‘T — t an absolute vslue sufficiently small to make the sequences (5)
convergent, all of wnich are special cages of tha more general sequences
& R, TEp,R, EIDLR,
Therefore, 1if one designétes the absolute value of‘f—-t by L and by

Ty Ty oy o
the upper.limits of the éhé&iﬁte valueé of the quantities

[?/. ’lLD'*R) _'._‘_2D:R,

it will be suffiqient to prove that the absolute value ( can be made so

"1

small as to render ths sequence

(’?) . \70, \701’/ jgt} .
convergenf.

Now let us note that, from formula (2) connected with equations (1), we

shall have

D,R=DiF(x, i )Y+D F[Xg 2. )T+

1Goursat-Hedrick-Dunkel, "iathematical Anelysis,™ Vol. II Part 1,p.78.
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(8 D:R= DuFnyz,. XD Fly g2, DY
f:ZD,‘DaFl()‘,g,Z,...)XYT- .
+ Dx}:(x'alz‘/’ --)Dex "‘D‘dr(x/a; Z, DD+ - -

N -~

so that the general value of D@R will be composed of tems which will
be the produet‘ of a positive integer, one of the partisl derivatives
of different order of the function F(x, ¥, 2Z,...), and the powers of the
functions X, Y, Z,.es OT their derivatives. Next, let .
x', y.’. z'...,*t'
be the absolute values of the imaginary increments assigned to the
varisble qgantities
X, ¥y Zyeeet
and selected in such s way that for these absolute values, and for
lesser absolute values, the functions
X, Y, Zpeeey, F(X, Ty Zyoee),
modified by these increments, will remain continuous with respect to the
arguments and the absolute values of the increments with which we’bdeal.
Finally, let
X, Y, 2 eees B
be the maxima of the sbsolufa values of the functions |
X, ¥, Zyeeey, REF(x, ¥y Zyoos)
corresponding to the absélute values
x/, y/, z' seeey t/

of the imaginary increments assigned to the variables X, ¥, Z,...t.
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From the theorem established in a preceding section!

for obtaining the upper limits,
o, Ji) Jay -
respectively, ths upper absolute values of the quantities
®r, io,R, -L0)R,...
it is suffieieht to calculate these quantitie's‘ ;n the special case in
which one has ’
|

- - ~ 1
X=ax" ylz7 ...t ,

Y=bx'y 'zt ,

{9) _ - _
Ze=ex vz st T,

and

(10) R=Kx-'y'z!...,

a, b, ¢, ... designating constant factors, ard then to assign to the
varisbles x, ¥y, Z, ..-,t @and ths const=nts a, b, ¢,..., £ ' . the
values determined by this system of formulas

/

/ ’ !
x:-—-x, :—-——Y' Z:—Z,..., t:‘—t'

y
(ll) / ] /
X =X Y - ¥ Z - Z...R=R

7

related to equations (9) and (10). Tor the rest, to deduce the sequence
{7) from tﬁe.sequenee (6) 1t will be sufficient to join with the formulas
(11) the following \ |

(12) [ U - t|= L)

énd, in the special case, which we have to consider, the seguence ()

lngomplete Works of Cauchy", S. I. T. VI, p. 464--Extrait no.167.
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will not cease to represent the expansion of
FE,n 5 )

corresponding to the values .ﬁ)1,§... wiich give the integration of
equations (1). Finally, if the absolute value [ 3 T — t is sufficiently
small so that sequence (7) is conﬁergent, the sequence (6) will be even
more convergent. Therefore, to establish the existence of general in-
tegrals of equations (1), and furthermore, to obtain 2 1limit within
which the differcnce T- t can vary without the 1ntegfals ceasing to be
developable’ -into- convergent series of integer powers of this differ-
ence, it will be sufficient to integrute the system of auxiliary equa-
tions |

Dx-ax'y7'z7 ...,
(13) éfyzsz"y‘fz"...t",
, Dazox 'y 'z so87,
If the funetions X, Y, Z,... did not contain the variable ¢, then in the
values of these functions determined by the formulas (9); one would evi~
dently have to suppress the factor t~ . Then the formulas (9) would
becone |

X-ax'y'z'...,

Y-bx"'y ' '27"ees,
(14)

" Z=cx 'y 'z ...,
e &+ s s e e @ .

end the equations (13) would reduce to the following
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Dx -ax'y-'z7' ...,
D{-y = bx‘.y~'z-‘ sssy
(18)
Dz - ex7ytlz” ...,

3-22. Integration of the Auxiliaery Bcuations.

Let us consider the system of auxiliary equations

Déx = ax—ly-'z“.o.t-"

D,y = bx~ly-tz-t ...t !,
(1)

D Z = GI_'Y"’ Z-' ..ct —"

1

- L - L -« o - [ L 3

in which a, b, ¢,... designats constant quantities. One will deduce

from these _
X DA - D: < o . . - ,
(2) 'Dﬁf’“ = ‘7-& T e /

then, by integrating the formulas (2) and designating by
§m 4.7
a new system of vslues corresponding to the variable quantities
X, Vs Zyeees t,
one will find | ¢ ,
m  XE s e

Now, let us represent the value common to sll the ratios which constitute

the differont members of the formula (3) by the letter § , or what is the
same, by the ratioc 5/1&, k designating a new arbitrary constant.

Then the formula

- - Z~§ c e = )
(4) ——-Xj: y il X
- becomes

b - :
(‘g) X;f'ﬁ%g’a:ﬁf({'é‘/ ZN;+TC<“S‘/"'/~
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and the last equations combined with the formula (2) give
DS skx” y 'z L7,
or, what smounts to the sanme
(6) _dt/t = xyz...38/k;
then, integrating the two members of the formuls {6), having substituted

for x, ¥, Z,.«. the volues given by formulas (5), one will find that

o L)L st se). 4

Thus, the integrals of the auxiliary squations ars represented by the

formulas (5), the value of § being given by the formula (7). One would

be able, in these formulas, to suppose the constant k equal to unity;

but, to render the application easier, which is the end we seek, it

would be‘befhte;r not to suppose k equal 1. If the suxiliary equations

reduce to the following

Dxr-ax~'y'z7 ..,

Dyy=bxy'27'...,

(8) '
D z -ex! ¥y 'Z ' eea,
R .

then the first member of the formula {6) reduces simply to the differ-

ential dt, and, in the place of the equation (7) one would obtain

¢ .
() .{.,_T:[(g"f%e)(“z-r,—fe)(;f]%e)' C '(4%‘
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3.23. Consequences of the formulas established in the preceding
sections. |
In the particular case in which the system of given differentisl
equations reduces to the system of auxiliary equations and where one
supposes, besides, that |
| RSF(x, ¥, Z,...)= Kx"'y-l2-V .., |
not only do we have, by virtue of formula (4), Section 3.22
(1) g:X“f‘S; 71=§)“{:‘3' f-‘-z'%s' )
the vzlue of § being detqrmined by formula (7) of the same section, which
can be reduced to S . n . 56
L&) Bz lo-alye ol - 52
or, what smounts to the same,
@ LA el %) R
but also ' ~

Flen 4 . )=Kt '8 ..

and, hence, using formula (;),
@ FlE7 )R- 58 (- =58

That standing, let us suppc')se’that, in the general case where the dif-
ferential eéua"tio;zs andithbe ﬁ'mction Fi(x, ¥y, 2,...) are of any form what-
sver, one construets the sequence

T
(4) R, IT‘—*DTR,Q,—‘_%D;R,,....,
which, accoi‘ding to Taylor's formula would represent the expazision of

F(f/ 7?/ £ ...} arranged according to the ascending powers of T-—t.
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In order to obtain anothsr sequence

(5) L, Iy T
of which the different terms are respectively grsater than the abzolute

v

values of the terms of the sequence (4), it is sufficient, dy virtue
of the »rinciples established in'Section 3+21 to expand according to
the ascending powers of ¢ the valueS of F(§, 2, 5..0) determined by |
the formula (3) combined with the squation (2) , after having substi-
tuted for the quant iti es
X, ¥ z,...,t, 'l”/ o a, b, Cpevey K
their velues taken from formulas (9), (10), Q1), (12) of Section 3.21.
How, 1f one chooses the constant k so that ons has
(=D -D - t) = — X
the formulas (9), (10), (11), (12) of Section 3.21 will give, not only
x= —-x,’ y = -y’, z= —z’. veey T = ~ t,A

and the following,

T L
T 1=
but slso
L y' oo ’
X, gV k- %
<
K- %R

Then to obtain the sequence (5) 1% will be sufficient to expand,

following the ascending powers of ( , ‘the particular value S ot

rqf/g/;;. e )
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determined by the systan of fommulas

{6) th‘—)f(l (. )Ca) I~ Z 9)
5= R ;~—~5)(r J\ig(: z'gY.

Besides, in order that the'sequance (4) be convergent, it is sufficient
that the sequence (5) be convergent. One can then est=blish the follow-
ing proposition:

3.831. Theorem I.--Given a system of differential equstions with

the independent varisble t and the unknowns

Xy Vo Zi000¢y

and also the new velues of the unknowns -
g/ 71[ g/

which correspond to a new value [ of the varisble t, one c»n determine by

the given differsntisl e-ustions the values of .

é'@ £ ..

and even of

Ff 7,5

developable into convergent series of the ascending powers of T—t, if

the value of S, determined by ecuation (7), joined to formula (6), is

itself developable into a convergent series arranged sccording to as-

cending powers of ( .

~ 3.232, Corollary 1. If one lets, for the save of brevity,
(8) e tL(i-5

the formula (6) becomes

(9) G x <o) - ,'e)(:-ij_—fe)\.
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3.833. Corollary 2. If the given differentisl esuations do not in-

clude explicitly the variable ¢, then, after what has been said before

(see Sec. 3-22), one will be able in the formula (2) to replasce the

first member, that is to say the product L(:%) by the difference ¢ -T ;
and, in establishing besides '
’ / [
(-x) (~y) {(-2).c. =~ K,

one will obtain in plece of the formula (6) or (9), the equation

S r ! ’
woy L 0-FA-XH0-Z6). - - de.

3234 Corollary 3. The yalue of which is given by equation (8)

is developable into a convergent series by the formula

T 3
(11) ¢£= L-:—%.—% +—<'-2;{’71-- Ce,
when one has
(12) (<t

The value of $ which is determined by equation (9), is developable by

the formula of Lagrange, into & conversgent series arranged according to

ascending powers of & , when one has

(13} & (f[,-%'g)(;-%e)[l- %7’9). e

{ being the smallest of the ratios

X/ 7 ZI
X/ {r"'/ ’f) Ty

and it suffices evidently that the conditions (12) and (13) are fulfilled

in order that the value of §, furnisted by eguation (7}, may be expend-
ed into a convergent series arranged in ascending powers of [ . That

established, one will be nable to state the following proposition:
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3+235. Theorem II.--The same things being assumed as in Theorem I,

{3-231), the value of
f/ 71/ 5/. o)

and even of

®En L ),

will be developable into a convergent series of ascending powers of

o~

T-4 » 1f the sbsolute value ( of "+ yerifies simultaneously the two

conditions

é st [ '
(19) £<¢ i’L(b%,){fo (l~§,é)(;-%’,o)/;- ?—,e). 7

Then also, in terminating after a certsin number of terms, the series

which represents the expansion of F(§ %, 4, _..) in ascending powers of

T-+t » one obtains a remainder whose absolute value will p_g_‘ less than

'the corresponding remsinder of the series which represents the expan~

sion of § in ascending powers of [ .

3+23:6. Corollary l. If the given differential eguations do not

include exslicitly the varisble %, then, the formula (10) having been

replaced by formula (13), the first of the conditions (14) will dis-

appear and the secbnd will be replaced by
» t ’ . / l/ ’
(15) L<£(z—%9)(:~ﬁa§0)(z— ;9). - As.

In coneluding thié memoir, we make one important observation. The
absolute values of the different terms of the expansion of F{ §; A, 3, )
~ arranged in aescending powers of T-+ s, will not cesase to be less than

the sbsolute values of the corresponding terms of the expansion of 3 ,
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if one increases the lstter. HNow that is exactly whet one does when
one substitutes for each of the ratios

Xy r .,

xl 5' ZI

the cuantity equal to the meximum smong them, that is to ssy, the posi-
‘tive gquantity j? , considering thet, in the expansion of S‘, each tern
will be positive and proportidnal to a8 positive power of eamch of these
ratios, It follows from this ohservation that the formulas (6) and (7)

would be replsced by the followling

(18) fl(l'%g»)-':ing("%)mwé z é [’ - (1 "?‘)i‘ )

| D’ 5 \~(m-1)
(17) S=R ("7) ,
from which one conclﬁdes ‘
| Sy | _ Ly~
(18) 5:'/? [1—717'“'. t’)}

n designating the total number of the variebles x, ¥y, Z,...,%t.
In substituting the formula (10) for'the formula {6), as one cen
do when the given differential equations do not include explicitly the

variable t, one would obtain instead of (18),
‘ ) / ! a1~ | ‘
(19) S = 7? (}-m’z‘)‘ -

. Similarly, the second of the conditions (14) and the condition {15)
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can be; if one wishes, replaced by the following:

Z
00 tL0-F)<%)
and
) &
(21) AN

The formula {21), im the case in which we suppose n = 2, is found in

the lithographed memoir of 1835;

3*4, OSIMPLIFICATIONS AND DEVELOPMENTS BY ’(?I‘H?IR SCIFNTISTS.--1t 18
easy to éee that the original form of Cauchy's‘demonstration beged on
the Calculus of Limits is much more complicated than ﬁecessery. It haé.
been grestly simplified by Briot and Bouquetl in Franqe. Follm%ing is
a simpliﬁpation of the ‘proof according to the plan of Briot and Bouguet.

| 3.41. TFirst, let us tske a single equation o
(1) dy/ax - £(x,¥y).

Let it be assumed that f£{x,y) is holoporphie (analytic) in the
neighborbood of x, and y,. ¥ithout any loss of generality it may be
asénmed also that X,= ¥, = O. The funetion f(x,y) will fbhen be hblorémr-
phic with respect to x and y, bwhen x and y are respectively within the
circlas € and C' drawn with the points x=-0 and y =0 as centers,v with
the radii a and b, and we suppose it continuous on the circumferences

themselves. Let M be the maximum absolute vslue of f{x,y) in this

region.

’ /
3'B:cioi: and Bouguet, "Journal of the Ecole Polytechnic,” Vol.XXI.
(1856) pp. 133-198. . ,
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Let us suppose that equation {1) has an holomorphic solution in
nelighborhood of x =0, which venishes when x =0, nsauely

y= 2lx) < £lxo) + L flxglx + 43 £lx,) x%...
which may be written in the fomm

(S )X

We can obtain by mesns of equation (1) itself, the‘values of the sue-
cessive derivatives dy/dx, a%y/dx2, dsy/de,..fror x= 0. It is suffi-
cient to differsntiate equation (1), first one time, to heve d2y/dx2,
and to substitute, in the second term, x- 0, y=0; differentiating
again, we shall have d%y/dx®, snd so on. It should be noted that if
£(x,y) and ell of its nartial derivatives, at x =y =0, are positive
then all the derivatives of y with respect to x are nositive also,
their values being derived by 8 nrocess of addition and multiplication

{not subtraction) of positive quantities. We shall then have
R

It is obvious, from the manner in which the coefficients of the
series in equation (2) were determined, that if the series is convergent
it is the unigue solution of equation (1). Therefore, the essentiai
point in the proof consists in demonstrating that the series thﬁS'ob-
tained conVBrgeS if x hés a sufficiently small value. This point es-
tablished, it 1s clear that the function y so determined satisfies the
diffefential_equation, since the functions of x

dy/dx and £{x,y)

have, from the way in which y has been obtaineé, the seme value for x=0,
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and so do their corresponding derivetives of every order; they are
equal then; that is, equation (1) is established.

By compsarison with another series we can prove the convergence of
series (2), and the idea of such a comparison forms what is really in-
teresting and fruitful in what Cauchy called the "@nlculus of Limits."

Now, let usk take the function

, M
F(x,y) - %
holomorphic within the sesme circles C and C* and whose partial deriva-
tives, all positive for x=0 and y-0, are such that »
2:54_) L =y l)
/ ax™ é’ (axﬂ«ag’t’ 5;; (p-‘ ?-,3,._,).

Let us next consider the auxiliary differential equation

v
N

daY/ax- F(x,Y),
snd supnhose, as we shall prove later, that there exists an integral Y
of this equation, holomorphic in the neighborhood of x =0 and vanishing

for x- 0. ¥e shall thaen have

@ Y- () (0%9 LS AXE ALY

The coefficients of 'the powers of x in this series are, for reasons men-
tioned above, positive, and from the inequalities (a) we shall obviously
have
o] < Ann
The series (2) will then certainly be convergent in the regions

in which the series {3) is convergent. 1Ilow, it is easy to show the -

lpjeard, "Traite D' Analyse,” Vol. II, p. 259.
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existence of the function Y. Let us write the equation

AY M
U

in the form M

-4k -t

PA

If the function Y emists, the two members are respectively the deriva-

tives of

Y-, . ek M‘*%““Wﬂf);

We will take the velue of the logarithm which vanishes for x= 0,
logll-x/a) = -x/a —x2/2a% — x3/3a% ....
Since Y vanishes for x=-0, we shzil then have
Y _ ‘ x
T° _Q—L-“ Mq’e"} (“ t‘w)/

and, conseguently,

Yo bt e (-%)

taking for the radiecal the value +1 for x=0.

The function Y, thus determined, satisfies the equation
ay/ax - F(x,Y).
It vanishes for x—=0, and it is holomorphic within é circle having as
center theborigin and a radius r which causes the quentity u'nder,tho '

radical to venish; that is, r is determined by the equation
2M A -}-) -
I+ <= = (-%)=0
.

/\_: éL(| __e‘Q.Mc\ > .

Yle are then certain that the sories (3) converges within the circle

which gives
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of radius r; it is likewise true then that series (2) converges in the
' same region, and consequently, we may state that enuation (1) hss an
'holomorghic integral in the circle of radius r having the o¥lgin as
center, that it venishes for x =0, and that it is unique.
It may be noticed that within the cirele of radius r we have’
[v] < v; |
and conseguently |
HES
within the s=me cirecle. '
348, Application to h"equétions. The preceding analysis covers
without modification the case of n equ&tions
dy1/ax = £1(x, ¥1» Fpseeer¥p),
dyo/dx= £5(X, ¥1, Ypsess,¥n),
s s s = + s. 8 s e a3
dyg/dx =fqlx, ¥q, Voreees¥y) -
We suppose thet the functions fl, fz,...,fn arg holomorphithith‘respect
to x and y in the circles of radius a and b, respectively, having the
orizin as center in the planes of x and y. Let ¥ denote the maximum
absoclute value of thé f's in the designated regions and let us compare
this system with ghe following
| dY3/dx = d¥,/dx = ... =AY, /8x =F(x, Yy, Yp,e..,¥p),

teking

| M
(1=x/a) (1Y1/b) .. - (1Y, /0) "

(a) P(x, Y3, Ypueee,Ty) =

Since the Y's rmust vanish for x=0 and the second member of the equstion

(a) 1s Symmetrical with respect to the Y's, the Y's are identical and we
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only have to consider the single egustion

ay/ax

- M
* (T=x/aj(I-Y/b]™ .
- The radius r of the circle in which the series are known to be convergent,

.will) in this case, be

Ta-a (l:— e; T‘/%ﬁi)

3¢5, Cauchy's second proof has also. Eeen modified in Germany by
' Vielerstrass (1815-1897)1.‘
Following is the essence of ?ﬁeiérstrass‘ éxposition.

Suppose that the differential equation Fly',v,x) =0 (where y'
stends for dy/dx) is put in the form | |
(1) Syt =tix,y)
which is always possible. The proof is limited to the case where
f(x,y) is a function which can be represented by & power series

8o +810% + Bo1Y-+8n0X2 + 811 XY +A02Y 4 «e-
in which the a's are all known, since f£{x,y) is known, and which con-
verges for |X| Z no ) | 3] Z t , say. Without any loss of generallty
v =0 when x <=0 is taken for the initial condition.

It is to be proved {a) that there is one and only one series

(2) y=b1x +ngz-\—'°333-+ ves
which idertically satisfies

(3) g ‘= 850 +810% + 851 +811XY fﬁzoxz-f 202y” e +8,mfnyn+ caey

~ and "(h) that within certsin limits for x this series is convergent.

L¥eierstrass, "Mathematical Verke," Vol. I, pp.67-75, (1842).
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On transforming the series in (3) which has been supposed con- |
vergent for l)‘\\én, ’a) £ t , by putiing x - rx;, y=-ty;, equation (3)
takes the form

/ ' ' ‘ ’ ’ ’

¥ f(rxl/-tyl) =8y, 48, %, +a°1yl+a2°x§+ a;,%1v1 J-aozy?_.; ces

The second member of this eéuation is a convergent series, and con-
verges when Xj =y;= 1; and, therefore, ao:., +8i§+ aér(.' .se CONVOTZOs.
This shows that the absolute value of each a' is not larger than a
certsin finite quantity, say A, The substitution just made for x and
v does not make any essential change in the problem, and hence, it
might have been assumed at first that t:e a's of (3) were each not
greater than A. In what follows, therefore, the a's are regarded as
not greater than A.

If (25 satisfies (3), the value of y end y' derived from (2), when
substituted in (3), must make the latter an identity; =nd, therefore,

b; + 2b2xl+ Sbsxg—\- 4b4x3+ cos

= 8y, +8y X+ 84 (b3x —f-b2X2+ S BN 82°I2+ a31x(b;x +box? 4 baX i aes)
+8gg(byx+ b212+b313 o)
is an identical squation. IHence,
b Tay; 2‘b2 =8y, +aolb1’

that is

) - Qo .
417 é(a"‘f‘abr&’o)/‘ /L3 ZQza + ';(D‘ro + q°la°")+4,,4,°)

and likewise for b4, bs;... « It is évident that all the b's can be

determined as rational integral functions of the a's; and also that all
" the numerical coofficicnts in the expressions for the b's are positive;
and, consequently, the b's will not be diminished if each of the a’s is

replaced by A.
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From the method of derivestion,it is evident that (2), with the bd's
determined as above, ideatically satisfies (3) and that it is unique.
It must now be determined whether this series is convergent.

On replacing each of the a's in (3) by A, a quantity not leéé than

any of the a's, there results

2rxy +y2t x3+x2y+ .ol

() y5A(1ax+yrx |

The integral of this équstion is found by replaciﬁg each of thé
a's that occur in the expressions for the b's of {2) by A. None of
these latter coefficients is diminished by changing each of the a's to
A, as pointed out sbove, conéequently, if the 1nteg£al of (4) is con=-
vergent, the integral of (3} is also. |

Now, lst us solve (4) directly. On factoring the second mamber,

the equation becomes
L. L.
I~x Ifa

y/:A(l-rx +x2_ ee){lt+y +i2+Y3+.‘.);’A
‘I'heref‘ore/
(1-vlay = A % )
and upon integrating we get y-iy? = - A L’}I('— X)*C-
¥e take for the logt#rithm that branch whiéh vanishes for x =0, and -
from the initial conditio:; that yiO when x =0 we see that ¢ =0. 7
Consequently 43 - )-[3,4 %(F)&) i) ‘/L

Since y =0 when x -0 we must take for
L
[2A %(:-7&) ,'H.] T
that branch which, for x =0, has the value +1.

Then _
w3
(s) gfl—[HiAﬂ_vall—%)}:l—[/~2/\(x+%+253—+-~)]

- P\‘
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The series

converges when the absolute value of x is less than 1; consequently
the value of y in (5) is finite, and, thersfore, the value of ¥ in
(2) is finite for x wthin certain limits. The proof for n equntions

can bo carried out in muech the same way.

Note: In Sec, 5+3 are listed the names and works of other
nathematicians who have given good treatments of the Calculus of Limits

or some of its phases,
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CHAPTER IV

"THE YETHOD OF SUCCESSIVE AP ROXIMATIONS®

4-1, DEVELOPED BY PICARD,--The method of successive approximétiona
‘was probably known to Ceuchy but-appaéfs to have‘been first published
by Liouville, "Journal ds Hathematics"f(i) 2 (1837}, p. 19; (1) 3 (1838),
p. 565, who‘applied it to the cnse of fhé homogeneous linear egustion .
of the second order. ZExtensions to the linear equation of drder n are
given by J. Caque, "Journal of ﬁatnemties" (2) 9 (1864), p. 185;

L. Fuchs, 5Aanali di ¥ath." (2) 4 (1870), p. 36 (Ges. Werke, I. p.295) ;
and G. Pesno, "fath. Ann." 32 (1888), p. 450,1 |

In its ﬁosﬁ generél form, however, it has been developed by«

Charles Emile Picard (1856; ) of France.l |

Picard was born in Paiis and was educated at The Eéole Normale
Superieure ﬁhere he was 1nsp1r§d by J.G. Darboux. In 1877 hevwas
lecturer on mathematics in Paris. From 1879 to 1881 he was lecturer
on the same subject at Toulouss. He married a daughter of Hermite in
1881, and that same yvear returned to Paris.and becams Professor of
ﬁathemétics at The Eéole Hormale énd the So:bcnne.

His most famous vork is his "Traite d4' Analyse" (3 Vols., 1891-96;
2nd Ed. 1901-8) which is still a standard textbook. His other works
include “"Theorie des Fonctions Algébraques de deux Variasbles Independantes"”
(1897-1906), with G, Simart; and "Sur le Developé@ent de 1' Analyses et

Ses Rapport Avec Diverse Sciences" (1905), lectures delivored in America.

lIﬁce, %Qrdinary Differential Equ-tions" (1927) p. 63.
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Picard's demonstrstion of the existence theorem is remarkable for
its simplicity end brevity, and requires no suxiliary propositions. ‘It
is so simpie and complete that no other mathematieian has been able to
1mpro§evit. Picard's proof wés\first given té the public in 1890, while
he was lecturing in Paris, in hié memoir published in "Journal de Mathe-
motlrng " in the following yeaf it was,published in éhe gBulletid de
ia Societe Hatheuatique de France" for March, and was reproduced, on
account of its striking character, in the "Houvelles Annales des Mothe-
matiques"'for May. A translation of Picard;s proof by T. S. Fi;ke was
pﬁblisheﬁ in "Bulletin of the New York Matﬁematical Society” ﬁbl. I, |
PP- iz-ls (1891-925; The most complete'form’of Picard's proof may be r‘
found in his "Traite d' Analyse."™ The translation by Fiske was made
during the early stages of Picard's work dn this_tgeorem and. therefore,
it is not the most genersl form of the proof. Forvthat reason we are
presenting in the following section a ﬁranslatidn of the demonstration
as it 1s stated in "Traite d' Analyse™ (2nd Ed.) Vol, II pp.34o;a44.

4+2. A TRANSLATIOHN OF PIGARD'S DEMONSTRATION.-~Consider the

sjstem.of n equations of the first ordeg,

/(%w, ),

é—éfw—':/m(x/ulvl B W)
in which the functions (fl,fz,fs,...,f ) are continuous real fnnotions of

the real guantities x, u, v,..., w in the neighborhood of x,, “o""* o

and have determinate values as long as x, u, Vyesa,W remain within



Page 61

the respective intervals

(xo—a, xo+8a),

(ug—1b, uy+b),

{vg-1, vd4-b),

(wy -1, w°+b).
a and b denoting two positive magnitudes.

Suppose that n péaitive quantities

A, Byeeo, L
can be determined in such a manner that , _
]f(x, u: v’,...,wl) -?f(x, v, u,...,w)l< Alu’—u)-%B \v/— v} _,....A-Llwf- w-,)
in which 4| denotes as usual the absolute value of A and X, ¥, Q,e.s,W
are contained in the indicated intervals. This will evidently be the
case when the functions have finite partial derivatives with respect to
Uy, Viyeee,We

Starting with these very general hypotheses we will demonstrate

that there exist functions u, v,...,w of x, continuous in the neighbor-

hood of x,, satisfving the civen differential equations, and reducing,

for x Xq, ragpectively 46 U, ., Vaseea Wae

We proceed by successive approximations. Taking first the system

Ml
—&;; :{, (X, Uo Vo, - -, WO)/

v, :
'-0’(—;-(/)(":{1()(/ ‘,“(a/ uo, Ty w°)’

L |
W:‘ m(x/ “a, Uo’ Cey Wo))
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we obtain by quadratures vthe functions
Uyy VyreessWy,

determining them in such a mannsr thst they take for X, the values
U, vo,...',w v

Forming then the equations
A wn

7/7:{. ()x,,u,} V. o, )

R [ (% &, Yy yw)
7};‘—{( ) ),

% ~—/M (X4, V- oy w,)'
we determine ug, v2,..v.,w2, by the conditioﬁa that they take for x, the
valueé Uy, /vc',,;...,wc,‘respeotIVely. 41’19 continue this process indefinitely, ’
the functions nm. Vo oo ea¥y being connectod with the preceding

Wy 1e Vipolseees Vg by the relations

A . :‘%(x 'um,,/.v,,“_.}!‘ .~., LU/\-—"-..)

-~

aéU/fm-z L (X Uanc, (S I ,w'w‘"')
2 / (’, ) Yrm-t) s o)

and, for x =x_., satisfying the cguations

(+]

%'Z-uo’ ‘m-—— vo,ttt’ wm‘ Wo.

¥e will now prove that when m increases indefinitely, w,, ¥, ,«..,%,

tend toward 1limits which represent the integrals sought provided X remains

sufficiently near Xge

Let ¥ be the maximum absoclute value of the functions fi (i=1,2,3,
.es,n) when the variables upon which they depend rem=in between the

indicated limits., Denote dy r a quantity at most equal to a. If now x



Page 63

remains in the interval
(xg -1), (x°+r)'
we have
‘ul-u‘)}é ﬁ/x -xo\ veses \vgl- wol < \x—xo\.

Hence, provided M‘r(b, the qua'nﬂties ui, Visesss Wy remain within
the desired limits, and it is evident that the same is true of all the
other sets of values of"dm,‘ vm,...., LA Denoting by 4 a guantity at
most equal to r, suppose that x remains in the interval

| (xo— 4, x,+4d},
and write

.%-uﬂlal‘:‘-%,oot,w —w 1 -
Ve have, placingm 2, 3,000, that

%CX Unany) Vom-ty ) Wnes )= /(){’ ey ”"‘)Ju

&eWm‘ % (Y "L/‘M—‘ ey WM—|)‘”/M (X,MM--\.)- *7) w’[““""‘)'

Since -

[ULZMIxxd, o I wal 2 ) x-xolm,

the preceding ecustions show, by means of the Lipschitz condition, that

= ANVl B Vool - o L Won-),
%l“ A)U ‘+|3\Vm e oo L‘Wm*‘l)

Al - OV oot L W],
il A)UM,\ Bl\/ I \ .l
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In particular, whenm 2 we get, by using
[ULZMbexd, /W,\ Zx- x|,

the following:

}-Oml Mkt L),

/CQWA’/ MA+R+- L)fl X- x,,v), B

By integrating we get

/U] | x~ Xo]/\A(A$8+ . L)M’ |

)

WLl S| MO B oty

VLM (AsBr - - L) D™

12
and the same limit holds for
} \/‘1}). . } ‘W‘LI,'

And in like menner we get, form-=3,

AR
| Us| 2 UM(A+B+ L LILLM M(A+B¢- +1~)I§‘—;§

And the same limit holds for

Al ., Twi]

Continuing step by step, it mey de shoﬁn that

Unel, . V) A 3B - L) oel”
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Therefore, each of the series
u =ug+ (0 =ug) feeeflup=—uy 4) +.o
vav_+lv; -v,) FevetlVy Vo) Feee
w :{v°+(wi ~Wp) » ...-r(wn' "n-lj .
is uniformly convergent in the 1ntervgl
(xo—4, xofd’;
d being the smaller of the two quantities a, b/M.
Y¥oreover, we have ,
Lc4li£;ffg{% Uney) Vo) + ) wn, ) Ax+He,
and, since “n? Vprsees Wp uniformly approach the limits u, f,..., w,
we have in the %3m1t
wz({){(x) Uy W)o(’/)(-f* “oj
hence A
iﬁ%ﬁL - AZ ( Py g Yye oy "U)'
Similar results held for the other functions.

The functions U, Vyees, W, are‘therefore the inte;rals sought. They
are defined in the interval (x5-4, x°1~d);

Note: No important contributions to the method of successive §p~ ‘
proximations have besen made since it was developed by Picard. Some obe~
servations and refersnces on the veriation and necessity of the conditions
involved ﬁill be found in the first part of’Chapter V. Ince, "Ordinary
Differential Equations® (1926) pp. 63-66 and Goursat-Hedrick-Dunkel,
"Mathematical Analyéis,"'pp. 61~68, are among the modern wri&ers who have

given good treatments of this method.
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CHAPTER V
GEVERAL OBSERVATIONS

5+1. OBSERVATIONS ON THE METHOD OF SUCCESSIVE APPROXTMATIONS.—-
Ernst Lindelotl has demonstrated that, in a great many cases, there
exists an interval more extended than (xo—a, x,t a) in whi'cfx the in-
tegrals are continuous. If the functions (£}, Lo, f3seee,fp) ave
continuous for all the values of x in the interval (x,-a, x,+a) and
for all velues of u, V,..., W, then it is unnecessary to make the re-
quirement that M-a <b in the proof of Picard. In order to prove the
~convergence of the series expressing the values of the integrals
(4, ¥,.e0., W), 1t is sufficient that there exists positive quantities
(A, B,ces, L) such that the Lipschitz condition remains true for all
values u, V,... W when x iemains in the interval (x,-a, x,+a). 2pc-
cording to the law of the mean, these conditions ars saﬁisfied if the
functions (f,, foreee, fn) have partial derivatives with respect to
the variables u, v,..., w which remain finite for all values of
u, V,..., W when x remains in the interval (x5-a, x,+a).

Ince® has also made some interesting observations on the method of
successive app‘roximations of which a brief sumuary is here given. He
notes thst the continuity of the functions (f,, fz‘,...k, £,) is not

necessary for the existence of continuous solutions. They may admit

1g, Lindelof, "Journal de Mathematiques,” (4) 10 (1894), p.117;
"G, R. Acad. Se. Paris,” 118 (1894) p. 454.
 2Goursat-Hendrick-Dunkel, "Mathematical Analysis®™ Vol.lI, Part II
p. 65, ' :
SInce, "Ordinary Differential Equations™ (1927) pp. 66-68.
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of a limited number of finite discontinuities, conéisting of discrete
Qoints or lines parallel to the axes of the devendent variasbles. Any
othier lines of discontinuity imply‘a violation of the Lipschitz
condition. Mie; *Mathematical Annals" 43 (1893) p. 553, has shown
thﬁt solutions exist whenever the functions are continuous in the
dependent varisbles and discontinuous but 1nfagrable {in Riemann's
seﬁse) with respect to the independent Variable.1

If the functions (£, Tosecis fn) are continuous but do not
satiasfy the Lipschitz condition, I.‘Bendixson2 has demonstrated
that if ihe appioximation geries of Picerd converge, the limits of
their éonvergence will be solutions of the glven equations.

The Lipschitz conditioh; or a condition of similar character,

3 and

is necessary fo insure the uniqueness of the solutions. Peano
0330064 have proved tha;, 1 £(x,y) be continuous in-the neighborhood
of (xo, ¥o), and thbkLipSchitz condition, or é similar one, is not
imposed, there exists in general a one-fold 1lnfinity of solutions

_ satisfying the initial conditions. However, the uniqueness of the

solution is not ﬁestroyéd if the Lipschitz condition is replaced by

l7ne differential equations are transformed into integral equa-
tions. See Bocher, "Intro. to the Theory of Integral Equstions;™
Whittaker and Watson, "Modern Apalysis," Chap. XI.

Z2Bendixson, "Ofversigt Vetenmsk. Akad. forhandl." {Stockholm)
54 {1897) p. 617.

Speano, "™Math. Ann." 37 {1890) p. 182; "Atti. Accad. Torino,"

26 (1890-91), p. 677.

4053006, Mionatsh., Math. Phys." 9 (1898), p. 331.



Page 68

one or snother of ths less restrictive oonditions

- f(w‘r) {(W )] <K \Y- }Z«ra -
. ,d{” 5(6;} }<l< \Yalﬁ*’an{ ) ﬂ’al?w_a\

in which Ki, ng..., K are constants.' The value of the constants oc-

curing in the Lipschitz c@ndifion determinea‘;he utility of the ap-
pfoximation series in determining the value &f thekintegrais. Practi-
cal methods of approximate computation based ﬁpon the ﬁethod of suge~
cessive aporoximations have been>deviéed by Sévérini, "Rend. ist.
Lombard." (2) 31 (1898), pp. 657, 950; Cotton, "c; R. Acad. Sc. Paris,"
v140 (1905), p. 494; 141_(1905). p. 177; 146 (1909). ﬁp- 274, 510;
"ath. Aun.," 31 (1908), p. 107.

' 2. >OBSERVATIONS ON THZ ¥ETHOD OF DIFFERENCE ﬁQﬂATiOHS.-—AmOng
 the French mathematicians the most noted treatment of the method of
' difference equations was given by Louis Philippe Gilvert, "Cours de
mecanique Analytique," (1877).

V. Volterral has given 8 new demgnetiation of this method, which
enlarges & litile the condition 6f‘Lipschitz. The method of V. Volterra
has been interpreted graphically by G, Picciatiz

Painleve5 has proved that the 1nterva1 of conVergence in the
Cauchy-Lipschitz method 1s greéater than the interval )x-—xcl 4 )1n

which ) is the minimum of a and b/¥. FHe found thet L cen be replaced

lyoiterra, "Giorn. mat." (1) 19 {1881), p. 333.
2pjeciati, "I1 Politecnico" 41 (1893), p. 493, 537.
ainleve, "Bull. Soc. math. France™ 27 {1899}, p. 149.
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by the numbex’ )\ egqual the minimum of the two quantities
(1) = agd 1/k1-kf-...‘..+kn*log&-} blk; ¢+ “""‘*kn)/}k‘a ,
where Mo designates the maximum of the absdlute values of the n functions
£ T veers Tplaeoos (X0 Fyaenes 7p)
for }x —xol z a; :
In a great number of cases >\7 l . Ir, for instance, the functions
1‘1 (11, 2,..., n) are continuous and-the;r derivatives are also
continuous functions for \x —xJ { a, whatever the values of Vyseeer ¥p
may be, and if 'their.derivativea 5;’: remain absolutely less than
a fixed quantity A, the sécond of the two quantities (1) will become
infinite with b, and the solution corresponding to the initial condi-’
tions 1s continuous and unique in the whole intervel {x —-xo} (a,l
Theoretically, the method of difference equations is superior to
the method of succassifs approxinations because it not only gives the
interval in which the integral certainiy exists, but also. leads to a
solution which converges uniformly ¢hroughout any greater interval
{zo, xosl- k) in which the solution, defined by the assigned initial
conditions, is continuous. The proof of this poinf may be found in
Ince, "Ordinary Differential Equations” (1927) p». 80, 81, or in
Goursat-Hedrick-Dunkel, "Mathematicsal Analysis”™ Vol. II, Part II;
{1917) pp. 73, 74, in which works are found two of the best mo&ém

treatments of the method of difference equations.

lBendixson, "Ibid" 54(1897), p. 617.
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This method slso applies. to complex valri.ah.'!.eaf The investigations
of E. Picard and of Painigve/ have shown that it leads to developments
of the 1ntegra.ls in conve:rgeht seriea in the whole r_egion of their ex-
istonce if tfh_e: right-han@ sides_ of the given eﬁuations remaiﬁ analytic
in this region.l o

SyZ, OBSWRVATIGNS OQ THE MXTHOD GALﬁED "THE CALCULUS OF LIMITS."e-
Some aut‘horg' use the terms "holomprphie®” and"analytie” interchangeably
and others make a distinction. In this thesis they are used inter-
changeably and according to Cauchy's definition. That is, f£{z,w) is
an snelytic function of z and w in a domsin D if (1) f(z,w) is a con~
$inuous function af z and w in D; and (2) 1f‘§‘é . ’3‘5 both have a
finite existence at every point of D.2 The investigations of Goursatd
have shown that, when the funcitions are assumed to be analytic s the
method of successive approximstions can be applied to the complex
domein with merely verbal alterations. The development in power series
of the integral is identical with that furnished by the cslculus of
limits, but the 1limit obtained fo;" the radius of convergence is greater.?
As stated above, (5°+2), tr}a methbd §f difference equations can slso be

applied to the complex domain. However, the method of limits is the

one that is perhaps most appropriate in this case.5‘ The condition of

lGoursat-Heﬂrick-Dunkel, "Mathematical Analysis™ (1917) Vol. II,
Paert II, p. 74; Painleve, "C. R. Acad. Sc. Paris,” 128 (1899}, p. 1505,
Picard, "Traite d' Analyse,™ 2, p. 1363' ®Ann, Ec. Norm." (3), 21 {(1904),

. 56.
P 28, Picard, "Traite 4' Analyee,“ 2, Chap. IX.

Scoursat-ﬁeazick-nunkel,~"Ibid" pp. 66, 67.

4painleve, "Bull. Soc. Hath. France," 27 (1899) p. 152.

5Ince *‘Ibid" p. 281.
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analyticity when the vériables are complex, revlaces the condition that,
when the variables are real, f is a continuous funcfion and satisfies
the Lipschitz eondition.‘v The fact that, when‘ f(z;w) ‘19 anaiytic,’ g—f 18
" bounded takes the place of the Lipschitz condition in the préof of the
| exiéfence otla solutioﬁ.l | | |

" The fundamsntai idea of The Celculus of Limits consists iﬁ the

use of dominant runctions.2 Since every‘analytic funetion has an in-
finite number of dominent functions, we see that the method can be
varied iﬁ a ‘great many ways. The simplicity of the demonstrations
depends largely on the choice of the dominant functions, Since the
work of Cauchy, his proofs have been perfected and extended to more
general cases by Ch. A. A. Briot and 7. C. Bouquet {3-41), K. ¥elerstrass
(3-42), Koenigsberger,> Ch. Meray,% Riquier,® Madaze Kbvalevuky,
Jordan? and others. No improvement or chenge has been made in the
fundamental piinciple of the proof. ZEven today the seme method‘is.con-

stantly used to treat analoé@s questions relative to artiel differential

equations with various initial conditions.s Among the modern works on

lInce, "Ibid" p. 281.

2For a definition of dominant functions see Goursat-Hedrick, "Ibid"
Vol. I, p. 386,

e work of Welerstrass (3-42) wes simplified by Koenigsberger,

rr. fur Meth.,” 104 (1889), p. 174; "lehrbuch," p. 25,

4eray, "Lecons nouvslles sur 1'analyse 1nfinitasimale" 1, Paris,1894,

Snpiquier, "Sur les systemes d'equntions aux derivees bartielles"

5Kovalevsky, %J. de Crelle™ Vol. LXXX.

?Jordan, "Cours d'Analyse de l1'Ecole Polytechnique” Vol. I-III,
(1882-87) .
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the subject, two of the best treatments of The Galqulus of Limits thét
we eanbfind are Ince, "Ordinery Differential Equations,” (1927)
pp. 281-284; and Gours‘at-Ke'driek-Dunkel,ﬂ "Mathematical Anslysis,®
Vol. II, Part II, pp. 45-61.
5.4 APPLICA.’I‘I&N‘ OF THE EﬁISI‘EE*IGE THEOREM TO AN FQUATION NOT OF
THE FIRST DEGREEMA--Consider the differenmtial equation of the form
F(x,y; dy/ax) = o | |
in which F is a polynomial in dy/dx, and ise single-valued in x =nd y.
Let {x5,¥0) be any initial pair of values of {x,y). Then, if the
equtioﬁ
F{x,y,p) -0
has a non-repeated root p=p, when X=X,, ¥=¥o, it will have one and
only one root |
p =f{x,y),
which reduces to p, vhen x=x,, ¥ =¥,, and £{x,y) will bve single-vaelued
in the neighborhood of (x5,¥,) .
Now, if f(x,y) is continuous and satisfies a Lipschitz condition
throughout & rectangle surrounding the point (x,,y,) , the equrtion
| dy/ax :r(x?y)
mill'possess a unique \solt‘xtion, continuous for values of x sufficiently
neai to xé, and setisfying the assigned initial condi‘tions.‘ This
solution clearly satisfiea the original equation for the ssme range of

values of x, and thus in this case thve problem presents no new fesatures.

lince, "Ordinary Differential Equations™ (1927) pp. 82,83.
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On the other hand, when the glven equation
F(x,y,p) -~ 0

has s multiple root p=p, fOT X= X,, ¥ Yo, then p is a non-uniform
funetion of (x,y) in eny domein including the point (x,,y,) and,
therefdre, the existence theorem 1s not applicable.

5+5. DIFFERENTIAL EGUATIONS OF ORDER HIGHER THAN THE FIRST.--A
single differmntial equation of order n, with one dependent variable,
is reducible to a system of n eqpations of first order. Likewise, a‘
system of n equations of any order inn depeudeﬁt variables may be re-~
placed by a system of equations of the first order by letting each of
the derivatives of the dependent variables except thq highest orderad;
in the case of each variable, be a new variable.l Therefore, the
existence theorem is spplicabls to brdinary differential equations of

any order.

lcohen, "Diffarential Ecuations" (1906) Pp. 160, 161,

THE END
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