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Cosmic microwave background constraints on cosmological
models with large-scale isotropy breaking

Haoxuan Zheng and Emory F. Bunn*

Physics Department, University of Richmond, Richmond, Virginia 23173, USA
(Received 30 March 2010; published 30 September 2010)

Several anomalies appear to be present in the large-angle cosmic microwave background anisotropy

maps of the Wilkinson Microwave Anisotropy Probe, including the alignment of large-scale multipoles.

Models in which isotropy is spontaneously broken (e.g., by a scalar field) have been proposed as

explanations for these anomalies, as have models in which a preferred direction is imposed during

inflation. We examine models inspired by these, in which isotropy is broken by a multiplicative factor with

dipole and/or quadrupole terms. We evaluate the evidence provided by the multipole alignment using a

Bayesian framework, finding that the evidence in favor of the model is generally weak. We also compute

approximate changes in estimated cosmological parameters in the broken-isotropy models. Only the

overall normalization of the power spectrum is modified significantly.

DOI: 10.1103/PhysRevD.82.063533 PACS numbers: 98.80.�k, 95.85.Bh, 98.70.Vc, 98.80.Es

I. INTRODUCTION

Our understanding of cosmology has advanced ex-
tremely rapidly in the past decade. These advances are
due in large part to observations of cosmic microwave
background (CMB) anisotropy, particularly the data from
the Wilkinson Microwave Anisotropy Probe (WMAP)
[1–4]. As a result of these and other observations, a ‘‘stan-
dard model’’ of cosmology has emerged, consisting of a
Universe dominated by dark energy and cold dark matter,
with a nearly scale-invariant spectrum of Gaussian adia-
batic perturbations [5,6] of the sort that would naturally be
produced in an inflationary epoch.

The overall consistency of the CMB data with this model
is quite remarkable. In particular, the CMB observations
are very nearly Gaussian, and the angular power spectrum
matches theoretical models very well from scales of tens of
degrees down to arcminutes. However, several anomalies
have been noted on the largest angular scales, including a
lack of large-scale power [2,7,8], alignment of low-order
multipoles [8–11], and hemispheric asymmetries [12–14].
Some anomalies seem to be associated with the ecliptic
plane, suggesting the possibility of a systematic error
associated with the WMAP scan pattern, perhaps related
to coupling of the scan pattern with the asymmetric beam
[15]. If the anomalies have cosmological significance, then
naturally the correlation with the ecliptic plane must be a
coincidence.

The significance of and explanations for these puzzles
are hotly debated. In particular, it is difficult to know how
to interpret a posteriori statistical significances: when a
statistic is invented to quantify an anomaly that has already
been noticed, the low p values for that statistic cannot be
taken at face value.

One can (and from a formal statistical point of view,
arguably one must) dismiss this entire subject on the
ground that all such anomalies are characterized only by
invalid a posteriori statistics [16]. Nonetheless, the number
and nature of the anomalies (in particular, the fact that
several seem to pick out the same directions on the sky)
seem to suggest that there may be something to explain in
the data. Given the potential importance of new discoveries
about the Universe’s largest observable scales, and the
difficulty in obtaining a new data set that would allow for
a priori statistical analysis, we believe that the potential
anomalies are worth further examination. In this paper, we
will tentatively assume that there is a need for an explana-
tion and consider what that explanation might be.
One of the most robust of the large-scale anomalies

found in WMAP is a lack of large-scale power, as quanti-
fied either by the low quadrupole or the vanishing of the
two-point correlation function at large angles [2,7,8]. If
this anomaly is real, then it provides strong evidence
against a broad class of nonstandard models. To be spe-
cific, all models in which a statistically independent con-
taminant (whether due to a foreground, systematic error, or
exotic cosmology) is added to the data will necessarily fare
worse than the standard model in explaining this anomaly
[17,18]. There is a simple reason for this: a statistically
independent additive contaminant always increases the
root-mean-square power in any given mode, reducing the
probability of finding low power.
It is natural, therefore, to seek an explanation of the

anomalies among models that do not involve a mere addi-
tive contaminant. One simple phenomenological model is a
multiplicative contaminant, in which the original statisti-

cally isotropic CMB signal Tð0Þð�;�Þ is modulated by a
multiplicative factor, leading to an observed signal

Tð�;�Þ ¼ fð�;�ÞTð0Þð�;�Þ: (1)*ebunn@richmond.edu
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This model arises naturally in the framework of sponta-
neous isotropy breaking by a scalar field [17]. Moreover,
models based on the existence of a vector field specifying a
preferred direction during inflation [19,20] produce similar
modulation, but with f having specifically a quadrupolar
form. To be precise, the modulation in these models takes

place in the primordial power spectrum Pð ~kÞ, which ac-

quires a quadrupolar dependence on the direction of ~k. The
full effect on the CMB anisotropy is more complicated
than the above model, but the dominant effect on large
scales is, at least approximately, a quadrupolar modulation
of the above form.1

Since our goal is to explain the observed large-scale
anomalies while maintaining the success of the standard
model on smaller scales, it is natural to consider models in
which f has power only on large scales. We will consider
three classes of model: one in which f has only monopole
and dipole terms, one in which it has monopole and quad-
rupole, and one in which it has all three. We will refer to
these as the dipole-only, quadrupole-only, and dipole-
quadrupole models. The quadrupole-only model is inspired
by the theory of a preferred direction during inflation,
while the others are inspired by the general isotropy-
breaking framework.

This paper addresses the following central question. Do
the broken-isotropy models provide an explanation for one
of the main observed anomalies, namely, the surprising
alignment between the quadrupole and octupole (multi-
poles l ¼ 2, 3)? To examine this question, we choose
statistics to quantify the anomaly and use these statistics
to assess goodness of fit of the data to the different models.
Several different statistics are chosen in order to assess the
robustness of the results.

Because the statistics are most naturally computed in
spherical harmonic space, we use the all-sky internal linear
combination (ILC) maps from the five-year WMAP data
release [22]. There is bound to be residual foreground
contamination in the ILC maps [23,24]. Section VI con-
tains a brief discussion of the effects of this contamination.

Naturally, because the anisotropic models have more
free parameters than the standard model (and indeed in-
clude the standard model as a special case), there will
generically be parameter choices that make the anisotropic
model fit the data better. We adopt the Bayesian evidence
criterion to assess whether this improved fit is sufficient to
justify the additional complexity of the anisotropic model.
Bayesian evidence has been used in addressing this sort of
question in the past [25–27]. Although some controversy
has arisen over its use in cosmology (e.g., [28–31]), in
this context it is both a simple and a natural criterion to
adopt.

In some cases, the Bayesian evidence ratios are greater
than one, meaning that one’s assessment of the probability
that the broken-isotropy models are true should rise as a
result of the CMB anomalies. However, in all cases, the
improvement is modest, providing at most weak support
for the adoption of the anisotropic models.
We also consider the changes in parameter estimates that

would arise if the anisotropic models are correct. To be
specific, because we assume that the modulation is a
perturbation to the standard model, we assume that the

unmodulated temperature map Tð0Þ is derived from the
cosmological parameters in the usual way—i.e., its power
spectrum is given by CMBFAST [32]. If there is a non-
constant modulation function f, then parameter estimates
from based on the observed data will naturally differ from
the true values. We estimate the resulting parameter shifts,
finding them to be minor.
The remainder of this paper is structured as follows.

Section II specifies precisely the anisotropic models under
consideration and describes how we simulate these models.
In Sec. III, we review the method for computing Bayesian
evidence ratios. Section IV contains our main results,
indicating the degree to which the multipole alignment,
quantified in several different ways, favors the broken-
isotropy models. In Sec. V we quantify the degree to which
best-fit cosmological parameters are modified by changing
from the standard model to the broken-isotropy models.
Section VI discusses some aspects of the issue of fore-
ground contamination. Finally, we provide a brief discus-
sion of our results in Sec. VII.

II. SIMULATING ANISOTROPIC MODELS

The statistical properties of a CMB map are most easily
expressed in terms of the spherical harmonic expansion,

Tð�;�Þ ¼ X1
l¼0

Xl
m¼�l

almYlmð�;�Þ: (2)

The monopole (l ¼ 0) term in the sum is simply the
average temperature over the sky, and the dipole (l ¼ 1)
terms cannot be separated from the kinematic dipole due to
our motion with respect to the CMB ‘‘rest’’ frame. These
terms are typically removed from the data, so that in
practice the sum starts at l ¼ 2. For compactness, we
will generally abbreviate such double sums as

P
l;m, not

writing the limits explicitly unless confusion may arise.

In the standard model, the CMB map Tð0Þð�;�Þ is a
realization of a statistically isotropic Gaussian random
process. This means that the spherical harmonic coeffi-

cients að0Þlm of this map are independent Gaussian random

variables with mean zero and variances that depend only
on l:

hjað0Þlm j2i ¼ Cð0Þ
l ; (3)

1The stability of the specific model of Ref. [19] has been
questioned [21]; nonetheless, we believe it is worthwhile to
consider models of this general class.
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where h�i denotes an ensemble average and Cð0Þ
l is the

power spectrum.
In broken-isotropy models, on the other hand, we as-

sume that the observed field is related to the above statis-
tically isotropic expression according to Eq. (1). We
expand the modulation function in spherical harmonics,

fð�;�Þ ¼ 1þX
l;m

flmYlmð�;�Þ: (4)

We assume that the modulation function is normalized to
have mean one, so that the above sum starts at l ¼ 1.
(Equivalently, we could omit the 1þ in the above expres-

sion and start the sum at l ¼ 0 with f00 ¼
ffiffiffiffiffiffiffi
4�

p
.) We will

assume that the coefficients flm are independent Gaussian
random variables with a power spectrum

CðfÞ
l � hjflmj2i: (5)

As noted in the Introduction, we consider models in which
f has only dipole and/or quadrupole terms. We parameter-
ize these terms with parameters �1, �2, giving the rms
values of flm relative to a scale-invariant spectrum

CðfÞ
l / ½lðlþ 1Þ��1:

�2
1 ¼ 2CðfÞ

1 ; �2
2 ¼ 6CðfÞ

1 : (6)

Because the spherical harmonics have rms value ð4�Þ�1=2,

these modulations have rms amplitudes ð8�Þ�1=2�1 ¼
0:20�1 and ð24�Þ�1=2�2 ¼ 0:12�2, respectively.

The spherical harmonic coefficients of the observed sky
are found as usual by spherical harmonic orthonormality:

alm ¼
Z

d�Tð�;�ÞY�
lmð�;�Þ; (7)

¼
Z

d�fð�;�ÞTð0Þð�;�ÞY�
lmð�;�Þ: (8)

Expanding the functions Tð0Þ and f in spherical harmonics,
we find that

alm ¼ X
l1;m1

X
l2;m2

að0Þl1m1
fl2m2

Il1m1l2m2lm; (9)

where Il1m1l2m2lm represents an integral over three spherical

harmonics, which can be expressed in terms of Wigner 3-j
symbols [33]:

Il1m1l2m2lm �
Z

Yl1m1
Yl2m2

Y�
lmd�; (10)

¼
�ð2lþ1Þð2l1þ1Þð2l2þ1Þ

4�

�
1=2

� l l1 l2

0 0 0

 !
l l1 l2

�m m1 m2

 !
: (11)

The quadruple sum in Eq. (9) has very few nonzero
terms and hence can be quickly evaluated. Because our

model includes only low-l power in f, the sum over l2
ranges from 0 to at most 2. Moreover, the Wigner 3-j
symbols vanish unless certain conditions are satisfied.
First, ðl; l1; l2Þ must satisfy a triangle inequality, so that
the sum over l1 ranges from l� 2 (or zero, whichever is
greater) to lþ 2. Second, the first of the two 3-j symbols
vanishes unless lþ l1 þ l2 is even. Finally, the constraint
m ¼ m1 þm2 must be satisfied.

III. BAYESIAN EVIDENCE

Our goal in this paper will be to compare the standard
model (the null hypothesis) with the class of broken-
isotropy models. Naturally, because the latter class is
broader, and indeed includes the null hypothesis as a
limiting case, there will generically be members of the
class that fit the data better than the standard model. The
Bayesian evidence provides a framework for assessing
whether the better fit found in the more complicated model
is worth the Occam’s-razor ‘‘cost.’’ We now briefly review
this approach to model comparison.
Suppose that we have a modelM that depends on a set of

parameters �. Given a data setD, we define the evidence of
the model to be the probability density of D, given the
model M:

EðMÞ ¼
Z

d�PðDjM;�Þ�ð�jMÞ: (12)

In this expression, P is the likelihood function—that is, the
probability density for the data given the choice of model
and parameters—and � is the prior probability density of
the model parameters. It may be helpful to keep track of
dimensions in these expressions. The prior � has dimen-
sions of probability per unit volume in parameter space,
while P and E have dimensions of probability per unit
volume in data space.
Bayes’s theorem says that the posterior probability of

the model is proportional to the product of the model’s
prior probability and the evidence. Suppose now that we
have two modelsM1,M2 in mind, and imagine that, before
looking at the data set D, we regarded these models as
equally probable. Then the evidence ratio

� � EðM1Þ
EðM2Þ (13)

is equal to the ratio of posterior probabilities.
In the case we consider in this paper, the two models are

the standard model and the broken-isotropy model. The
reader (like the writers) probably does not assign equal
prior probabilities to these two models: in the absence of
theWMAP anomalies, most of us probably thought that the
broken-isotropy model was less likely. Even in this case,
the evidence ratio still tells us by what factor the broken-
isotropy model goes up in our estimation (relative to the
isotropic model) as a result of the data.
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The Bayesian evidence automatically accounts for the
degree of complexity of the model, in the sense that models
with a large parameter space will be automatically down-
weighted compared to those with a small parameter space.
To see this heuristically, suppose that the prior probability
� is approximately flat over some volume Vp in parameter

space that is much larger than the range over which the
likelihood function is large. Then since the probability
distribution is normalized,

Z
d��ð�jMÞ ¼ 1; (14)

we can estimate �� V�1
p over the range where the inte-

grand is significant. Thus, we can crudely estimate

EðMÞ � V�1
p

Z
d�PðDjM;�Þ � PmaxVL

Vp

; (15)

where Pmax is the peak of the likelihood function and VL is
an estimate of the volume in parameter space over which
the likelihood differs significantly from zero. If we con-
sider two models with similarly good fits to the data (i.e.,
similar values of Pmax), the one with a higher value of the
ratio Vp=VL will have the higher value of the evidence. In

other words, the Bayesian evidence disfavors models with
a large volume of ‘‘wasted’’ parameter space. When com-
paring models with parameter spaces of different dimen-
sions, the one with a higher-dimensional parameter space
will typically be disfavored, unless it provides a much
better fit to the data (i.e., has a large Pmax) or it provides
a reasonably good fit to the data over most of the parameter
space.

Below, we will use Bayesian evidence ratios to assess
whether the multipole alignment anomaly significantly
favors the adoption of the more complicated broken-
isotropy models, using the following procedure. We define
a statistic s that describes the anomaly. Since the null
(statistically isotropic) hypothesis M0 has no free parame-
ters, the evidence for it is simply the probability density of
the statistic under that hypothesis:

E0 ¼ PðsjM0Þ: (16)

For some choices of statistic, this probability density can
be computed analytically, but in general it must be esti-
mated from simulations.

We now consider the evidence E1 � EðM1Þ for the
broken-isotropy model. Let us first examine the models
in which f has only power in one multipole (i.e., the
dipole-only and quadrupole-only models). The parameter
space � for this model consists of the single parameter �j,

where j ¼ 1 for the dipole-only model and 2 for the
quadrupole-only model. To compute the evidence for this
model, we must choose a prior �ð�jÞ. We adopt a uniform

prior on some range �j 2 ½0; �max�:

�ð�jÞ ¼
�
��1

max 0<�j < �max;
0 otherwise:

(17)

For the dipole-quadrupole model, we follow a similar
procedure, adopting a prior on � ¼ ð�1; �2Þ of

�ð�1; �2Þ ¼
�
��2

max 0<�1; �2 <�max;
0 otherwise:

(18)

Since it is not obvious what cutoff �max to choose, we
plot the evidence ratio E1=E0 as a function of this parame-
ter. We regard the maximum value of the evidence ratio as
an upper bound on the true evidence ratio. From the
heuristic argument above we expect the evidence ratio to
decline for very large values of �max, since these models
presumably have wasted parameter space.

IV. RESULTS

Various statistics have been used in the past to character-
ize the observed alignment of the l ¼ 2 and l ¼ 3 multi-
poles in the WMAP data. We focus on two categories of
statistic: one based on finding the directions that maximize
the angular momentum [8] for each multipole (Sec. IVA),
and one based on multipole vectors [9,10] (Sec. IVB).

A. Angular momentum

For any given multipole l, consider the map obtained by
keeping just the corresponding coefficients in the spherical
harmonic expansion,

Tlð�;�Þ ¼ Xl
m¼�l

almYlmð�;�Þ: (19)

The maps T2 and T3 are each observed to have fluctuations
that lie predominantly in a single plane, and moreover the
planes associated with these two multipoles seem to be
aligned [8–11]. The idea of the maximum-angular-
momentum statistic is to quantify that alignment by defin-
ing for each l an axis perpendicular to the plane picked put
by the map Tl.
Consider a particular map Tl. For any given direction,

specified by a unit vector n̂, we imagine rotating the map to
bring n̂ to the z axis. Let aRlm represent the spherical

harmonics in the rotated coordinate system, which can be
efficiently computed by applying an appropriate Wigner D
matrix to the unrotated alm’s [33]. We compute the ‘‘an-
gular momentum’’ of the rotated map about the z axis:

L2
zðn̂Þ ¼

Xl
m¼�l

m2jaRlmj2: (20)

The direction n̂ that maximizes L2
z is taken to be the axis n̂l

for the given multipole. Note that because L2
zðn̂Þ ¼

L2
zð�n̂Þ, the vector n̂l is only defined up to an overall sign.
We use the statistic � ¼ jn̂2 � n̂3j to assess the degree to

which the fluctuations in the quadrupole and octupole are
aligned. In any statistically isotropic model, we expect the
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directions n̂l to be independent and uniformly distributed
over the unit sphere, which implies that � is uniformly
distributed on the interval ½0; 1�. The value in the actual
WMAP data is surprisingly large at �WMAP ¼ 0:985.

For any given choice of parameters ð�1; �2Þ, we can
simulate a large number of maps and determine the proba-
bility density function (pdf) of the statistic �. Specifically,
we can estimate the average pdf in an interval of with ��
around the value �WMAP simply by finding the fraction of
all simulations yielding values in the range ½�WMAP �
1
2��; �WMAP þ 1

2���. Figure 1(a) shows the resulting

pdfs, based on 104 simulations for each point in parameter
space, with �� ¼ 0:02. The Poisson noise in this estima-
tion process is visible as �7% scatter in the points in this
plot. Histograms of the simulation results confirm that the
pdfs are smooth over scales much larger than ��, so
interpreting the average pdf as the pdf at the given point
is reasonable.

Since the pdf under the null hypothesis is equal to 1, this
quantity can be interpreted as a Bayesian evidence ratio
comparing the model with the given values of ð�1; �2Þ to
the null hypothesis.

As Fig. 1a shows, for some choices of parameter, the
evidence ratio exceeds 3. However, this overstates the
evidence in favor of the broken-isotropy model. As de-
scribed in Sec. III, the correct procedure is to treat �1, �2

as unknown parameters with a given prior distribution, and
integrate over that prior to get the evidence. The integration
is performed numerically, after interpolating between the
likelihood estimates found for the various values of
ð�1; �2Þ.

Figure 1(b) shows the result of this calculation. The
quantity on the horizontal axis is the prior cutoff �max of
Eq. (17) or (18). Because each Bayesian evidence ratio is
an integral over the likelihood function, the effect of
Poisson noise due to the finite number of simulations is
greatly reduced.

In the dipole-quadrupole case (where both �1, �2 are
free parameters), the Bayesian evidence ratio has a maxi-
mum value of �2:4 at �max � 1. (Recall that, as noted in
Sec. II, � ¼ 1 corresponds to only 10–20% modulation.)
The dipole-only model (in which only�1 varies) fares a bit
better, with evidence ratio peaking at�2:7. Even if we take
this maximum value as the true evidence ratio, it is still
only modest support for the broken-isotropy model. The
quadrupole-only model shows no significant improvement
at all over the standard model (as we could have predicted
from Fig. 1(a), in which all curves approach the standard-
model value of 1 for low �1).

B. Multipole vectors

To test the robustness of this result, we can use a differ-
ent approach to quantify the multipole alignment. For each
multipole l, the map Tl can be used to define l unit vectors,
generally called ‘‘multipole vectors’’ [9]. The multipole
vectors for each l can be used to characterize the orienta-
tion of that multipole, and thus to characterize the
quadrupole-octupole alignment.
There are multiple different ways of using the multipole

vectors to define an alignment statistic. The original work
on the subject [9] used an elaborate procedure involving
the assessment of several different combinations of dot and
cross products of the multipole vectors. Subsequent work
by members of the same group [10] focused on a smaller
subset of these possibilities. We have chosen to implement
the ‘‘robust and more conservative’’ statistic used in the
latter work. We now describe this statistic.

Let v̂ðl;jÞ (1 � j � l) represent the jth multipole vector
for multipole l. For any given l, we consider all lðl� 1Þ=2
distinct cross products of multipole vectors ~wðl;i;jÞ �
v̂ðl;iÞ � v̂ðl;jÞ (1 � i < j � l). Alignment of the quadrupole
and octupole planes can be characterized by the absolute
values of the dot product of the one quadrupole cross

product, ŵð2;1;2Þ, with each of the three octupole cross

products ŵð3;i;jÞ. (The absolute value is necessary because
the multipole vectors, and hence the cross products, are
specified only up to an overall sign.) Following Ref. [10],
we therefore define a statistic

S ¼ j ~wð2;1;2Þ � ~wð3;1;2Þj þ j ~wð2;1;2Þ � ~wð3;1;3Þj
þ j ~wð2;1;2Þ � ~wð3;2;3Þj: (21)

The value of this statistic for the WMAP data is SWMAP ¼
2:233. Based on Monte Carlo simulations, we find this to
be inconsistent with the standard isotropic model at
99.3% confidence. These values differ only slightly from
those found in Ref. [10] (SWMAP ¼ 2:396, ruled out at
99.87 confidence), which used an earlier data release and
a different foreground removal process [34].
Figure 2 shows the result of Bayesian evidence calcu-

lations based on this statistic. At each point ð�1; �2Þ in
parameter space, the pdf (i.e., the likelihood function) was

(a) (b)
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FIG. 1 (color online). (a) Values of the probability density
function (pdf) for the multipole alignment statistic �, evaluated
in an interval of width �� ¼ 0:02 about � ¼ 0:985, from 104

simulations for each choice of parameter values. The
different curves correspond to �2 ¼ ð0; e�1; 1; e; e2; e3Þ ¼
ð0; 0:37; 1; 2:7; 7:4; 20Þ (from highest to lowest pdf at the right
of the plot). (b) The Bayesian evidence for the anisotropic
models. The solid curve is for the dipole-only model, the dashed
curve is for the dipole-quadrupole model, and the dotted curve is
for the quadrupole-only model.

COSMIC MICROWAVE BACKGROUND CONSTRAINTS ON . . . PHYSICAL REVIEW D 82, 063533 (2010)

063533-5



evaluated from 104 simulations, by counting the number of
times the statistic was found in an interval of width �S ¼
0:15 about the value found in the WMAP data. The results
are qualitatively consistent with those based on the angular
momentum statistic, although with slightly higher evi-
dence ratios (i.e., slightly more favorable to the broken-
isotropy models).

There is of course some arbitrariness in the choice of the
statistic S. In addition to S, we devised an alternative set of
statistics based on the multipole vectors. The results based
on these statistics can be viewed as a test of the robustness
of the results above.

In defining our statistics we were guided by a desire to
characterize the observed dipole-quadrupole alignment
and the fact that the octupole has been characterized as
unusually planar. Since we were guided by these already-
observed facts, of course, our choices are subject to the
same a posteriori statistics criticism as most other work in
this area. We did, however, attempt to avoid exacerbating
this problem with further a posteriori choices: we devised
our statistics blindly and used only one statistic to charac-
terize each of these two phenomena.

The two multipole vectors at l ¼ 2 define a plane, and
we let n̂2 be the unit vector perpendicular to that plane. To
assess the multipole alignment, we need to define a similar
unit vector based on the three l ¼ 3 vectors. We define n̂3
to be the unit vector that is as nearly as possible perpen-
dicular to these vectors by minimizing the quantity

p ¼ X
1�i<j�3

ðn̂3 � v̂ð3;i;jÞÞ2: (22)

As in the angular momentum case, we define an align-
ment statistic to be the absolute value of the dot product of
these vectors:

A ¼ jn̂2 � n̂3j: (23)

In addition, the statistic p can be thought of as character-
izing the octupole planarity, with low values of p corre-
sponding to more planar octupole patterns.

The value of A for the real data is 0.97, which is some-
what anomalously high since a uniform distribution on

[0, 1] is expected in the standard model. The statistic p,
on the other hand, does not show anomalous planarity: its
value in the real data is 0.31, lying near the middle of the
distribution in simulations based on the standard model.
Since p is quite consistent with the standard model, we

would not expect its inclusion in our analysis to improve
the evidence for any nonstandard models. For complete-
ness, we performed the Bayesian evidence calculations
using the joint probability density on A and p as our input
likelihood function, and also using the probability densities
on A and p separately.
The probability densities for each parameter were calcu-

lated as with the previous statistics, by counting the num-
ber of simulations yielding values in a small interval about
the value in the true data. In this case, we used 105

simulations at each data point, with �A ¼ �p ¼ 0:005.
The joint probability density was estimated as the product
of the individual pdfs. In principle, the two statistics could
be correlated, in which case this would not be correct. In
practice, however, correlations were found to be negligible
for the models under consideration; in spot checks this
approximation was found to be quite good.
Figure 3 shows the result of Bayesian evidence compu-

tations based on this statistic. As expected, the results vary
only slightly depending on whether the planarity statistic is
included. In either case, the strongest evidence ratio comes
at �max 	 1 in the dipole-only model, but as before the
evidence ratios are modest, peaking at�2:7 including both
statistics and �2:5 using only the alignment statistic.
Results showing the planarity-only statistic are not shown
but yield no significant enhancement in the evidence
ratio.
The strong similarity in all of the evidence ratio plots

suggests that our results are insensitive to the precise way
that the multipole alignment is characterized.

V. CORRECTIONS TO COSMOLOGICAL
PARAMETERS IN ANISOTROPIC MODELS

In the anisotropic models under consideration, the power
spectrum Cl is modified by the modulation function f. We
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FIG. 2 (color online). (a) Probability density for the Schwarz
et al. [10] multipole vector statistic S, evaluated at the value
found in the WMAP data. From top to bottom at log10�1 ¼ 0,
the curves correspond to �2 ¼ ð0; 0:25; 0:50; 1:; 2:0; 4:0; 16Þ.
(b) Bayesian evidence for anisotropic models. Results are plotted
for the dipole-quadrupole (solid), dipole-only (dashed), and
quadrupole-only (dotted) models.
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FIG. 3 (color online). Bayesian evidence ratios calculated us-
ing multipole vectors. In (a), the joint probability density for
ðA; pÞ, the alignment and planarity statistics was used. In (b),
only the statistic A was used. Results are plotted for the dipole-
quadrupole (solid), dipole-only (dashed), and quadrupole-only
(dotted) models.
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assume that the original, unmodulated power spectrum

Cð0Þ
l , as opposed to the measured power spectrum Cl, is

produced by the usual standard-model mechanism. In the
anisotropic models, therefore, the cosmological parameters
estimated from the power spectrum will differ from those
in the standard model. In this section we estimate the
changes in parameters as functions of �1 and �2. To be
specific, we will assume that Cl has been estimated from
the data and used to derive power spectrum estimates under
the standard assumptions of isotropy and Gaussianity. We
will compute the corrections that must be applied to these
parameter estimates for nonzero �1, �2. We find that for
reasonable values of �1, �2, all parameters except the
overall normalization undergo very small changes.

The changes in parameter values we compute depend on
the assumption that the modulation is the same across all
angular scales. If the modulation exists only on large
scales, with smaller scales described by the unmodulated
standard model, then the changes in parameter estimates
will be even smaller than those found here.

To estimate the changes in parameter values, we assume
that the unmodulated CMB power spectrum is given by the
standard model and can be calculated from, e.g., CMBFAST

[32]. We begin by deriving the relationship between the
modulated (i.e., observed) power spectrum Cl, the un-

modulated power spectrum Cð0Þ
l , and the power spectrum

CðfÞ
l of the modulating function. We begin from Eq. (9):

alm ¼ X
l1;m1

X
l2;m2

að0Þl1m1
fl2m2

Ill1l2mm1m2
; (24)

where Ill1l2mm1m2
is defined in Eq. (11).

In an isotropic model, the power spectrum is given
by Cl ¼ hjalmj2i, which is independent of m. In an aniso-
tropic model, this quantity is not necessarily independent
of m, so we define the power spectrum to be the average
over m:

Cl ¼ 1

2lþ 1

X
m

hjalmj2i: (25)

We substitute Eq. (24) into this expression. We then make

use of the fact that both the að0Þlm and flm coefficients are

drawn from isotropic Gaussian random processes, which
implies that different coefficients are uncorrelated:

hað0Þlma
ð0Þ�
l0m0 i ¼ Cð0Þ

l �ll0�mm0 ; (26)

hflmf�l0m0 i ¼ CðfÞ
l �ll0�mm0 ; (27)

hað0Þlmf
�
l0m0 i ¼ 0: (28)

The result is

Cl ¼
X
l1;l2

Cð0Þ
l1
CðfÞ
l2

�
1

2lþ 1

X
m1;m2;m

I2l1l2lm1m2m

�
; (29)

� X
l1;l2

Cð0Þ
l1
CðfÞ
l2
I2l1l2l: (30)

The sum inside the parentheses is over allm,m1, andm2

values that make the Wigner 3-j symbols physical. We

assume that CðfÞ
l2

¼ 0 for l2 > 2, so that the double sum

above becomes three single sums:

Cl ¼
X
l1

Cð0Þ
l1
CðfÞ
0 I2l10l þ

X
l1

Cð0Þ
l1
CðfÞ
1 I2l11l

þX
l1

Cð0Þ
l1
CðfÞ
2 I2l12l: (31)

Because of the triangle inequality on the 3-j symbols, the
first sum contains only one nonzero term (l1 ¼ l), and not

surprisingly this term reduces to Cð0Þ
l . The second and third

sums similarly have only a few nonzero terms.

Substituting CðfÞ
1 ¼ �2

1=2 and CðfÞ
2 ¼ �2

2=6, we find that
the difference between modulated and unmodulated power
spectra is

�Cl ¼ Cl � Cð0Þ
l

¼ �2
1

2

X
l1

Cð0Þ
l1
I2l11l þ

�2
2

6

X1
l1¼2

Cð0Þ
l1
�I2l12lI

2
l12l: (32)

We see that �Cl is a linear function of �2
1 and �2

2. For
any given model, we can calculate the �Cl contributions
from �2

1 and �2
2 independently.

Assuming that the perturbation from the applied field is
small, we expect the change in the power spectrum, and
hence the change in the inferred parameter values, to be
small. In the standard �CDM paradigm, the observed
power spectrum depends on six parameters: �b (baryon
density), �cdm (dark matter density), �� (vacuum energy
density), n (spectral index), H0 (Hubble constant, h ¼
H0=ð100 km s�1 MpcÞ), and A (normalization constant
for all Cl, relative to the current best-fit values from
WMAP). Calling these parameters g1; . . . ; g6, we have to
a good approximation

�Cl 	
X6
i¼1

�gi
@Cl

@gi
: (33)

Setting Eqs. (32) and (33) equal, and splitting the pa-
rameter variations into terms that depend on �1 and �2, we
can write

X6
i¼1

�gi;�2
1

@Cl

@gi
	 �2

1

2

X1
l1¼2

Cð0Þ
l1
I2l11l; (34)
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X6
i¼1

�gi;�2
2

@Cl

@gi
	 �2

2

6

X1
l1¼2

Cð0Þ
l1
I2l12l (35)

�gi ¼ �gi;�2
1
þ �gi;�2

2
: (36)

We use Euler’s method to approximate @Cl

@gi
, starting from

the current best-fit values ~gð0Þ ¼ ð�ð0Þ
b ;�ð0Þ

cdm;�
ð0Þ
� ; nð0Þ;

hð0Þ0 ; Að0ÞÞ ¼ ð0:046; 0:224; 0:73; 0:99; 0:72; 1Þ. We vary

each parameter gi independently by about 2% of the origi-
nal value, calculate the resulting Cl’s with CMBFAST, and
obtain @Cl by calculating difference between the new Cl’s

and the standard Cl’s. We thus obtain @Cl

@gi
. Using Eq. (32)

and starting with the standard-model parameter values, we
compute the �2

1 and �2
2 contributions to �Cl.

We can then find best-fit values of �gi;�2
j
. We perform a

least-squares fit over the range 2 � l � 600, with weights
given by the combination of cosmic variance and noise
errors for WMAP. To test the validity of this procedure, we
compute a new set of Cl’s using CMBFAST with parameters

given by ~gð0Þ þ � ~g. Figure 4 shows that the fitting works
very well, and that the linearity of the Cl’s in the specific
direction of � ~g validates the approximation in Eq. (33). For
�1, �2 of order 1, linearity starts to break down, but such
large values are probably unphysical in any case.

Numerically, in the linear regime the changes in parame-
ters can be calculated by

� ~g ¼

��b

��cdm

���

�n
�h
�A

0
BBBBBBBB@

1
CCCCCCCCA

	

3:86� 10�4 0:963� 10�4

�6:33� 10�3 �5:78� 10�3

5:24� 10�3 4:26� 10�3

�8:39� 10�3 �7:88� 10�3

4:74� 10�3 6:55� 10�3

�0:285 �0:753

0
BBBBBBBB@

1
CCCCCCCCA

�2
1

�2
2

� �
: (37)

In all cases except for the overall normalization A, the
parameter changes are small even for relatively large �2

1,
�2

2 � 1. Moreover, as can be seen in Fig. 4, the residuals
�Cl have similar shape to the input power spectrum Cl

(although with a negative prefactor for �2), indicating that
the chief error in the linear approximations in this section
applies to the normalization. We conclude that, in a model
of the form considered here, one should take care to
recompute the overall normalization, which affects the
normalization of the matter power spectrum, but that other
parameters are likely to remain approximately unchanged.

VI. FOREGROUNDS

The significance of the observed anomalies depends on
the choice of data set (e.g., [25]). We chose to work in
spherical harmonic space, leading to the requirement of an
all-sky data set. We thus worked with theWMAP ILC data.
With this choice of data set, one must wonder about the
effect of residual foreground contamination on our results.
We can begin to assess these effects using a set of 10 000

publicly available ILC simulations [24]. For each simula-
tion, both the foreground-free input map and the ILC
reconstructions, with residual foreground contamination,
are provided. In each case, we computed the four statistics
discussed in this paper, namely, the angular-momentum
statistic �, the Schwarz et al. multipole vector statistic
S, the multipole vector alignment statistic A, and the
planarity statistic p. Figure 5 shows a comparison of the
input and ILC maps for each statistic. In each case, there is
a strong correlation, but the scatter is considerable.
The probability density for each of the four statistics

undergoes no significant change between the input and ILC
ensembles. (In other words, in each of the four plots on the
top row of Fig. 5, histograms of the x and y values look
essentially identical.) This can be quantified in a variety of
ways. Since we are most interested in the probability
distribution near the upper tail of the distribution of each
statistic (except for p, which has negligible effect on any of
our conclusions anyway), we look at the behavior of the
distributions near the 99th percentile. For each statistic, we
find the 99th-percentile value in the 10 000 ILC maps, and
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FIG. 4 (color online). Power spectrum changes. The solid
curves are the �Cl’s resulting from nonzero �1 or �2 as
described in Eq. (32). The dot-dashed curves are the results of
the linear approximation (33), with best-fit �gi. The dashed
curves are the �Cl’s resulting from recomputing the power
spectrum with the modified parameter values. Power spectra
are computed in dimensionless ð�T=TÞ2 form. In these units,
the CMB power is of order 1010lðlþ 1ÞCl=2�� 1:5–8 over the
multipole range of interest; thus in the top panels, the deviations
in the power spectrum are all quite small. The different approx-
imations agree reasonably well, showing that the approximations
in this section are adequate.
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count the number of input maps lying above that value.
(The results are essentially identical if the two roles are
reversed.) If the input and ILC probability densities are the
same, we expect to find 100 in each case. The actual values
found deviate from this expected value by 1, 1, 5,�6 for �,
S, A, p respectively. All are well within the 10% fluctuation
level expected due to Poisson noise.

From this test, we can conclude that foregrounds do not
significantly alter the statistical significance of anomalies
based on these statistics. Because of the problem of
a posteriori statistics, reasonable people can disagree
about whether to take the ILC multipole alignment seri-
ously, but one’s opinion on this question need not be
altered by consideration of foreground contamination.

In this paper we do not chiefly address the question of
whether the multipole alignment is statistically significant;
on the contrary, we provisionally adopt the stance that it is
and ask what form an explanation of it might take. For this
sort of question, we need to go beyond the simple consid-
erations above and consider the correlations between input
and ILC maps. After all, nonstandard cosmological models
such as the broken-isotropy models we consider affect the
probability of seeing multipole alignments in the
foreground-free (‘‘input’’) maps, whereas the likelihoods
that form the basis of our evidence calculations are based
on the ILC map.

Once again, for the three statistics �, S, A that primarily
affect our results, we are interested in the relation between
input and ILC values near the upper end of the statistics’
ranges. Specifically, we want to know whether the ob-
served large ILC value implies a large input value in the
foreground-free CMB. The bottom row of plots in Fig. 5
provides one qualitative way of addressing this question.
For each statistic, we show a scatter plot comparing input
and ILC values as in the upper row, but showing only
points corresponding to the top 1% of ILC values. Many

points cluster near the right, indicating that a high ILC
value is likely, but by no means certain, to have come from
a high input value.
Let us be slightly more quantitative. For any given

statistic, say �, we extract the realizations for which the
ILC maps are anomalously high, lying in the top 1% of the
distribution. For these 100 realizations, we find the value of
the statistic in the input map, ��

Input, and look at its ranking

in the full set of 10 000 input realizations. This gives the
cumulative probability Pinput � Pr½�Input < ��

Input� for each
of the 100 input maps. If foreground contamination were
negligible, then these 100 maps would lie in the top per-
centile of the input distribution, i.e., all 100 Pinput values

would be above 0.99.
Figure 6 shows the result of this exercise for each of the

three statistics �, S, A. In each case, the results are sorted
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FIG. 5 (color online). Effect of foreground contamination. The top row shows scatter plots indicating the relation between statistics
derived from simulated [24] input (foreground-free) maps and ILC reconstructions that include residual foreground contamination.
The bottom row shows only those simulations for which the ILC statistics lie in the top 1% of their distributions. (The planarity statistic
p is not shown in the bottom row, as it does not yield an anomalously high value in the actual data.)
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FIG. 6 (color online). For the three statistics � (solid), S
(dashed), A (dotted), we select the top 1% of ILC simulations,
and determine the cumulative probability PInput of the statistic in

the input map. The values are sorted and plotted. In the absence
of any effect from foregrounds, ILC and input maps would be
identical, and the result would be a straight line extending from
0.99 to 1 (dot-dashed line).
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by the value of the statistic in the input data. The results
show that the statistic S is least affected by foreground
contamination: if a realization lies in the top 1% of the ILC
maps, there is a high probability that it also lies near the top
of the probability distribution of the input maps as well.
For the three statistics �, S, A, the median values of PInput

for the ILC top 1% maps are 93.2%, 98.5%, 89.0%, as
compared to the value 99.5% that would occur if there were
no foregrounds.

Generically, if the correlation between input and ILC
maps is weak, then we would expect the enhanced like-
lihood and Bayesian evidence results of Sec. IV to be
overestimates of the correct results. Intuitively, this seems
clear: if the connection between the true CMB and the
observed ILC data is weak, then so is our ability to draw
cosmological conclusions from the ILC data. We can ex-
press this idea more formally as follows. Our theoretical
models allow us to calculate probability distributions for
the input data (i.e., the pure CMB), while our observations
are of the ILC data. The correct procedure, therefore, is to
convert the input probability distributions into ILC proba-
bility distributions by convolution with a conditional
probability function PðILCjInputÞ. Such a convolution
would smooth out variations in likelihood.

We conclude, therefore, that because of foreground con-
tamination, the results shown in Sec. IV should be regarded
as upper limits. The effect of foregrounds on the results is
difficult to quantify, but based on Fig. 6 we expect it to
be smallest for the results based on the Schwarz et al.
statistic S.

VII. DISCUSSION

The various anomalies that have been noted in the large-
angle CMB may provide hints of departures from the
standard cosmological model, possibly including viola-
tions of statistical isotropy. Although the statistical signifi-
cance of these anomalies is difficult or even impossible to
quantify a posteriori, these possibilities are exciting
enough to warrant closer examination.

We have considered several classes of physically moti-
vated models that might explain the anomalies. We have
calculated Bayesian evidence ratios to assess the degree to
which the purported anomalies in the multipoles l ¼ 2, 3
favor the anisotropic models over the standard model.

According to the pioneering work of Jeffreys [35], a
Bayesian evidence ratio constitutes ‘‘substantial’’ evidence
if ln�> 1 and ‘‘strong’’ evidence if ln�> 2:5. As the
results in the Sec. IV make clear (note that what is plotted
in each case is �, not ln�), only for the most judicious
choice of prior do the tests performed here reach the
substantial level, and they never come close to being
‘‘strong.’’

Of course, Jeffreys’s criteria are somewhat arbitrary, but
in this case they seem to describe the situation fairly well.
Recall that the evidence ratio � is simply the factor by

which the ratio of prior probabilities must be adjusted, in
the light of the observations, in order to get the posterior
probability ratio. Presumably, the prior probability distri-
bution assigns very low weight to the less natural aniso-
tropic models, so even after applying an evidence ratio
�� 3, the anisotropic models are still considered unlikely.
One would require an exponentially large evidence ratio
before assigning significant probability to the anisotropic
models.
We used several different statistical approaches to char-

acterize the observed multipole alignment. Some ð�; SÞ are
adopted from previous work, while others ðA; pÞ are of our
own devising. In the latter case, we attempted to minimize
(although not eliminate) the problem of a posteriori statis-
tics by choosing a method blindly that seemed to us to
naturally encapsulate the observed phenomena with mini-
mal arbitrary choices. In any case, the general consistency
of the results based on the different statistics indicates that
the approach we have followed is robust.
We have estimated the changes in cosmological parame-

ter estimates that would arise if the anisotropic models
were shown to be correct. The chief effect of the modula-
tion is on the estimate of the overall power spectrum
normalization, which would of course have consequences
for studies of large-scale structure. Our calculations are
valid only if the modulation is applied to the CMB at all l
values measured by WMAP. If a more complicated model
is correct (e.g., [36]), in which only some scales are

modulated, then the parameter changes would presumably
be smaller.
We have used simulations of the ILC mapmaking pro-

cess to evaluate the degree to which foreground contami-
nation might affect our results. The statistic S appears
least affected by this problem: ILC maps with high
values of S are very likely to correspond to high values
of S in the intrinsic CMB. A thorough treatment of fore-
grounds in our analysis would generically reduce the (al-
ready modest) enhancements in the evidence ratio, so due
to the effects of foregrounds our results can be regarded as
upper limits.
In this paper, we have tentatively adopted the point of

view that there are anomalies to be explained. Of course,
onewould greatly prefer to settle this question in a way that
was not plagued by the problem of a posteriori statistics.
To do this, we would require a new data set that probes
similar scales to the large-angle CMB. All-sky polarization
maps may provide some insight into these issues [37,38].
Another possibility is to survey the ‘‘remote quadrupole’’
signal found in the polarization of CMB photons scattered
in distant clusters [39], which can be used to reconstruct
information on gigaparsec-scale perturbations [40,41].
Although gathering data on these scales is a difficult
task, the potential for learning about the structure of the
Universe on the largest observable scales makes it worth
pursuing.
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