
University of Richmond
UR Scholarship Repository

Math and Computer Science Technical Report
Series Math and Computer Science

11-2002

Design and Implementation of Interactive Tutorials
for Data Structures
Ross Gore

Lewis Barnett III
University of Richmond, lbarnett@richmond.edu

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-reports

Part of the Computer Sciences Commons

This Technical Report is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Technical Report Series by an authorized administrator of UR Scholarship Repository. For more
information, please contact scholarshiprepository@richmond.edu.

Recommended Citation
Ross Gore and Lewis Barnett. Design and Implementation of Interactive Tutorials for Data Structures. Technical paper (TR-02-01). Math
and Computer Science Technical Report Series. Richmond, Virginia: Department of Mathematics and Computer Science, University of
Richmond, November, 2002.

http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

1

Abstract— The Tutorial Generation Toolkit
(TGT) is a set of Java classes that supports
authoring of interactive tutorial applications. This
paper describes extensions to the capabilities of
the TGT and several new tutorials aimed at the
Data Structures course which were built using the
toolkit.

I. INTRODUCTION

The Tutorial Generation Toolkit is a set of Java
classes that implements a framework for
developing interactive tutorial applications in
Java. The basic form of a tutorial is an interactive
slide show combining explanatory material and
exercises that provide students with immediate
feedback. The toolkit provides facilities for
flexible sequencing of “slides,” use of Java GUI
components to compose slide appearance, simple
animation of fixed images, voice-overs, and
multiple choice self-tests with results logged to a
database if desired. A tutorial author creates a
tutorial by writing a set of Java classes that
subclass the TGT_Slide class, which is itself a
subclass of java.awt.Panel. Each of these classes
can use any of the Java GUI components to
present information or solicit user interaction.
The original distribution contained a fairly
complete set of tutorials on CS 1 topics. The TGT
is described more completely in [1].

The work described in this paper represents a
progress report on an effort to develop tutorial
materials to support teaching of the Data
Structures course. It was clear that the
capabilities of the existing toolkit, particularly the
support for only simple image-based animation,

1 This work was supported by a Collaborative

Research Grant from the University of Richmond and by
NSF Grant DUE-9652982.

would not be sufficient to support the new
tutorials. The focus on data structures thus led
to the following design goals:

• the tutorials should utilize and extend the
already established TGT framework;

• the TGT framework should be modified to
make it easier to add new tutorials; and

• the new tutorials should provide graphic
visualizations based on user input.

In trying to meet these goals we decided to break
away from the original packaging strategy for the
tutorials. After creating a more flexible way to
add new tutorials, we designed and implemented
four tutorials that present topics to users in an
interactive and visual environment. While the
TGT framework had already established a basis
for the creations of the tutorials, the more
advanced topics we were trying to present
required both extending and modifying parts of
the framework. These changes created a more
flexible environment that allowed us to give users
more control over actions within the tutorials.
This paper describes the design decisions that
governed the extensions and modifications of the
framework, as well as design of the tutorials
themselves. The overall design of our project fell
into three categories: reorganizing the packaging
of tutorials, extending the capabilities of the
toolkit and determining the content and
organization of individual tutorial units. The next
three sections of the paper address these areas.
Information about obtaining the tutorials and the
TGT package is included in the last section.

II. MODIFICATION OF TUTORIAL PACKAGING

The original distribution consisted of a set of
tutorials for CS 1 bundled as a single application
with a beautiful “menu screen” that allowed the
user to select which of the tutorials they wanted
to work through. The resulting application thus
consisted of the classes that implemented all of
the individual tutorials and the shared toolkit

Design and Implementation of Interactive
Tutorials for Data Structures1

Ross Gore and Lewis Barnett

2

classes, plus additional data files (for voice-
overs, etc).

 This presented two significant problems. First,
it did not allow for any additional units to be
added to the bundle without the significant
overhead of redesigning the menu screen, which
was essentially an image map with interactive
highlighting. This was inconvenient, and the
problem would only become larger and more time
consuming with every additional unit. Second,
the packaging did not have the flexibility of
allowing tutorial units to be distributed
individually. If a user were only interested in one
tutorial unit, they would still have to download
the entire bundle. Again, this was undesirable,
as the size of the bundle would only grow with
continued additions. To solve both of these
problems, we decided to “break out” each tutorial
from the bundle, into its own separate package.
While this required that each tutorial have its
own copies of the files shared by all of the
tutorials, it made the addition of tutorial units and
individual tutorial unit distribution extremely
simple.

III. TGT FRAMEWORK MODIFICATIONS AND
EXTENSIONS

The major change we decided to make was in the
design of the animation system structure of the
class TGT_AnimatorBox. This class originally
provided a framework for a user to create
animation sequences from previously created
images, referred to as “sprites.” However, this
approach came with quite a few serious
limitations. The type of animation supported was
that of moving previously created images around
the screen according to commands in a
configuration file for the TGT_AnimatorBox
instance. This approach works reasonably well
for planned animation sequences such as
algorithm animation for fixed inputs, but was
simply not capable of the kind of animation
controlled by user interaction that we had in
mind for the new tutorial units. The focus of our
enhancements to the animation facility fell into
three areas. First, we needed sprites that could
draw themselves rather than relying upon an
image file for their appearance, thus allowing the
appearance of a sprite to change over the course
of an animation if necessary. Second, we needed
to be able to change the set of sprites that an
animation was using on the fly. Finally, we
needed to be able to adjust the movements of the
sprites as the animation progressed in response

to user input, rather than simply following a fixed
script read from a configuration file.

A. Self Drawable Sprites

The typical way of illustrating many data
structures is the “box and arrow diagram,” where
nodes in the structure are indicated by a box, and
links between nodes are shown as arrows.
Consider the task of deleting a node from a linked
list from the point of view of animating the steps
required. We start with three nodes and some
connections among them. During the course of
the deletions, the links from the two adjacent
nodes may be changed, and one of the nodes is
“moved out” of the list. In order to support this
type of animation without having to produce a
huge number of image files for nodes with
different data member values and pointers of
various lengths and in various orientations, we
needed for our sprites to support the notion of
connections that could automatically redraw
themselves when the sprites they were
connected to moved. We also needed to be able
to change which sprites connections were
attached to during the animation, and to change
the “contents” (i.e. the values stored in a node,
or the addresses corresponding to links, etc.) of
the nodes on the fly.

We began by redesigning the TGT_Sprite class
to fit into an inheritance hierarchy of sprite types
which would include a new type of sprite called a
“drawable sprite.” These new sprites would
create their own appearance using the drawing
primitives from the Java Graphics classes rather
than displaying an existing image. Special
purpose classes were derived from the basic
drawable sprite class for linked list nodes and
“connectors” (used for pointers between nodes),
along with a helper class that acted as an
attachment point in the nodes for the pointers.
Drawable sprites can still be moved around, and
when they are, any connectors attached to them
redraw themselves in specific ways. We did not
include a general edge routing algorithm for
redrawing connections between sprites, but
instead subclassed the connector sprite for
straight connections, connections with right
angles, and so forth. This approach was less
complex and in addition gives the slide
programmer an added measure of control over
the appearance of the animation.

With this arrangement, we were able to proceed
with development of tutorials involving linked
list data structures, and we had also left the door

3

open for the development of other node-like
sprites such as binary tree nodes. Figures 1 and 2
show the organization and use of some of the
new sprite classes. The current sprite hierarchy is
shown in Figure 1. All of the classes implement
the TGT_AbstractSprite interface, which dictates
a draw method as well as accessors and mutators
for properties that all implementing sprites are
expected to provide. The TGT_Sprite class is
now an abstract class that contains definitions of
many of the common methods, such as accessors
and mutators for the properties that all sprites
must support. The draw method remains abstract
in this class. The old TGT_Sprite class which
supports animation of images from files is now
called TGT_ImageSprite.

An example of special-purpose sprites for
displaying linked lists is shown in Figure 2. To
facilitate making the cognitive connection
between the diagram and the allocation of
dynamic structures in main memory, the node
sprites can display their pointer values both
visually as arrows from the source of the pointer
to the referenced object and as the memory

address (shown in parentheses) actually stored
in the “next” or “head” field of a node. Display of
the addresses can be turned off. The
TGT_HeaderNodeSprite represents the head of a
linked list maintaining head and tail pointers to
nodes within the list. The TGT_NodeSprite has a
data field and a “next” field, which is null in the
example shown here. Two of the “connector”
sprites are shown, a straight arrow and an arrow
with a right-angle bend, which can be oriented in
any of the eight possible directions (think of the
knight’s moves in chess). Not shown are the
TGT_ConnectionPoint instances contained
within each of the node classes. These objects
serve as anchors for the connectors. The
connection points have positions relative to the
position of the sprite they belong to, and
connectors anchored to them take their endpoint
positions from the connection point objects.
When a sprite with connection points is moved,
the connectors attached to the connection points
are automatically redrawn to reflect the
movement.

B. Run-time Sprite Additions

We felt one to the most important aspects our
tutorial on data structures should provide
students is the ability to visually represent the
actions of their structures. We decided we
wanted to create a “workshop” where students
could perform different actions, for example,
operations on a linked list, and then see the
individual results of each of their actions, step-
by-step. What we envisioned was a way to allow
students to piece together code snippets into an
algorithm, and to then animate the outcome of
their work, whether correct or not. Originally,
TGT_AnimatorBox did not provide any
capabilities to modify an animation sequence
once the configuration file for that sequence had
been read. We wanted to be able to create an
environment where we could display unique
animation sequences based on user input. To do
this using the old framework, we would have had
to create an animation configuration file for every
possible combination of user choices, and then
pick the correct one to display. We wanted to
allow users many different choices, the results of
which often depended upon the previous
choices. For any reasonably complex task, such
as adding a node to a linked list, the number of
possible combinations, and thus the number of
“canned” animation sequences required, is
unworkable. To avoid this problem, we

head

tail

(100)
(204)

(204)

5 (0)

(204)

Address of
header

TGT_BasicConnectorSprite

Field
names

TGT_HeaderNodeSprite

Numeric and
visual values
of pointers

TGT_RtAngleConnector

TGT_NodeSprite

Address of
node

Figure 2: Sprites for constructing linked
lists.

TGT_AbstractSprite TGT_Sprite

TGT_DrawableSprite TGT_ImageSprite

TGT_NodeSprite TGT_ConnectionPoint TGT_BasicConnector

TGT_HeaderNodeSprite TGT_RefNodeSprite TGT_ListNodeSprite

TGT_RtAngleConnector

TGT_UTurnConnector

Interface
Abstract class
Concrete class

Implements

Extends

Figure 1: TGT_Sprite Hierarchy.

4

subclassed the TGT_AnimatorBox to support
runtime additions of sprites based upon user
input. This allowed us to create an environment
for individual TGT_Slides where we could add or
remove sprites as the user made their choices.
The subclass can accept animation data in the
form of vectors of sprites rather than as
descriptive information from an existing file.
When the user was done, we could create the
vectors to for the animation from their choices.

C. Dynamic Animation Sequences

While the previous extension allowed to us to
create a unique animation sequence on the fly
based upon user input, once the sequence was
created it was still static. The remaining
requirement was the ability to let a student
single-step through the sequence of actions they
had constructed, animating each step based on
the state of the previous step. The dynamic
animations in the Linked List tutorial described
below also take advantage of the fact that the
TGT_Slide class supports the notion of “sub-
slides,” which are basically a set of panels that
can be successively displayed within a single
TGT_Slide instance. So, each step through a
student’s constructed algorithm involved
creating the vectors for an animation that was
displayed on a subslide. Even with these
enhancements, the kind of interaction present in
these tutorials requires painstaking work to set
up, and once an animation is in progress, there is
no real way to change its course. What we have
done is provided a way for an application to
construct and play a sequence of animations on
the fly.

IV. NEW TUTORIALS

The Data Structures course is typically where
students are introduced to dynamically allocated
linked data structures and some of the more
sophisticated and efficient sorting algorithms.
The current set of tutorials addresses these two
topics. We chose to break up the sorting subject
matter into three tutorials on different sorts.

A. Insertion Sort

We decided it was necessary to cover one basic
and fairly straightforward sorting algorithm. This
tutorial would not only cover the details of the
algorithm itself, but introduce students to
terminology and common themes shared by
sorting algorithms. This tutorial could be used

as background in a Data Structures course or to
introduce this algorithm in a CS 1 course.

B. Quicksort

We felt it was necessary to cover Quicksort,
because it is regarded as the one of the fastest
and most useful sorting algorithms. The tutorial
first traces through the top-level code for
Quicksort while showing its effects on a small
array, without going into the details of the
partitioning algorithm. The student can either
single-step through the code or let it run at a
fixed pace. Next, the partitioning algorithm is
demonstrated by providing an array and allowing
the student to interactively pick the pivot index.
The partition algorithm with the student’s
selected index is then simulated to show how
balanced the subarrays would be using the
student’s selected index. Finally, we wanted to
show students various Quicksort optimizations.

C. Heap sort

The last sort we chose to present was heap sort.
While heap sort is usually not thought of as the
fastest sorting algorithm, it is still very efficient,
and presented us with a great opportunity to
display animation and graphics to accompany
the source code. Without illustrations to
visually depict what the algorithm is doing, it is
very difficult to fully understand this sort. Also,
heap sort gave us an opportunity to familiarize
students with the “heap” data structure and
introduce them to trees. We felt this would be a
good stepping stone to build on for some of our
future data structures tutorials.

D. Linked Lists

The new tutorial on linked lists was the generator
for most of the new development in the tutorial
framework described earlier. Programming linked
structures for the first time is often difficult for
students, and much of the difficulty arises from
confusion about how pointers (or references,
depending on what your language chooses to
call the construct) work, what using them in
various ways means, and what the effects of
code that modifies pointers look like.

We wanted to address these problems by
providing an interactive workbench for playing
with code that operates on linked lists. By
allowing the student to “write the code” to add
or delete nodes and traverse lists, and then
animating their code for them, students could
“see” the results of common mistakes and

5

develop a deeper understanding of programming
dynamic structures. The tutorial first asks
students to choose the condition for a while loop
that traverses an existing linked list from a set of
candidate conditions. The candidates include
conditions that result in “off-by-one” errors in
both direction, causing both references through
null pointers and missing the last element of the
list. Subsequent exercises give students the
opportunity to build their own code fragments to
for the “insert at front” operation. The code is
constructed interactively from operations like
“create a new node reference,” “set the value of
the next field,” “change the value of the list’s
head reference,” and so forth, with dialog boxes
used to collect user input such as the name of
the node to modify or create. The student is then
allowed to step through the code on an example
list to see whether their code correctly performs
the insertion. It is actually incorrect solutions
that are most effectively demonstrated through
this exercise, as incorrectly initialized reference
variables, self-loops, and omitted operations like
resetting head or tail are clearly demonstrated. A
correct solution is available in case of mounting
frustration.

V. FUTURE WORK

While the packaging modifications simplified
extension and distribution of the tutorials, each
tutorial still consists of a Java application and a
large number of ancillary files including image
files and sound files. The ultimate goal is to come
up with a good Web-based distribution system
that will circumvent any installation issues that
users may experience. Java Web Start is an
obvious candidate, but there are difficulties. In
order to use Java Web Start, an application must
be completely packaged in a JAR file, and at
present, it is not possible to play sounds that are
stored in a JAR file directly.

We are also interested in developing tutorials on
other data structures, as well as tutorials for
topics from architecture and algorithms.

VI. CONCLUSIONS

Creating interactive tutorials with the toolkit
described in this paper is not for the faint of
heart; commercial packages such as Macromedia
Director allow many of the same effects. What
the TGT classes provide are a kind of complete
flexibility. If you can program your idea in Java,
the TGT classes provide a framework in which to

implement your idea. This paper documents
significant improvements in the packaging
strategy used by the toolkit and increased
flexibility and power in the TGT_AnimatorBox
and the corresponding TGT_Sprites it supports.
These improvements in the animation and
display capabilities leave us with a tool that will
allow development of further highly interactive
tutorials in the area of data structures and
algorithms.

The modifications to the tutorial framework can
also be construed as an object lesson for
software designers. All of the modifications
required for the current set of tutorials sprang
from a failure to pay appropriate attention to
potential changes in requirements over the life of
the software system during the original design
phase. A packaging strategy that was driven
more by esthetic concerns than by thoughts of
potential extensibility had to be replaced. An
animation facility with a configuration policy that
proved to be too restrictive was expanded to
allow a kind of dynamic creation of animation
instances. In terms of the sprites, the benefits of
using interfaces and abstract classes to separate
the construction of special purpose sprites from
the mechanism of displaying sprites is evident,
and has left us with a greatly improved
framework for the development of future sprite
subtypes.

VII. GETTING THE TGT PACKAGE AND
TUTORIAL UNITS

Information about downloading the TGT package
with documentation is available by following the
TGT links from (author’s web site).

REFERENCES

[1] L. Barnett, J. Casp, D. Green and J. Kent. Design
and Implementation of an Interactive
Tutorial Framework. Proceedings of the 29th
SIGCSE Technical Symposium, Atlanta,
Georgia, February 25 – March 1, 1998. Pages
87 – 91.

	University of Richmond
	UR Scholarship Repository
	11-2002

	Design and Implementation of Interactive Tutorials for Data Structures
	Ross Gore
	Lewis Barnett III
	Recommended Citation

	ds_tutorial_tr.PDF

