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An Examination of Codewords with Optimal Merit
Factor

Michael W. Cammarano and Anthony G. Kirilusha∗

April 6, 1999

Abstract

We examine the codewords with best possible merit factor (minimum sum of squares
of periodic autocorrelations) for a variety of lengths. Many different approaches were
tried in an attempt to find construction methods for such codewords, or for codewords
with good but non-optimal merit factors.

∗The authors thank Hew lett-Packard for their generous support during the summer of 1998, and
Dr. James Davis, University of Richmond, for his extensive support and assistance.

1



Introduction1
1.1 Periodic Autocorrelations and Merit Factors for Binary Sequences

Our general objective this summer was to find construction methods for binary
codewords with low autocorrelations. Specifically, we wanted to choose the code-
words with the best merit factors for a variety of sequence lengths without resorting
to exhaustive search. Initially, we thought that previous work [Bernasconi] would
allow for an interesting avenue for investigation, but after acquiring a copy of the
paper we decided that further examination of the simulated annealing method
would be inappropriate for our circumstances. However, we hoped that an unex-
pectedly elegant construction might exist, given the encouraging recent discovery
relating Golay pairs to Reed-Muller codes [Davis/Jedwab].

At first, our work was equally concerned with minimizing periodic and aperiodic
autocorrelations. Both represent measures of the self-similarity of a binary se-
quence. For a binary sequence d of length N comprised of ±1, these measures can
be simply represented by:

Aperiodic Autocorrelation Xg(d) =
N−1−g∑

m=0

dmdm+g

Periodic Autocorrelation Cg(d) =
N−g∑
m=0

dmdm+g, indices taken modulo N .

The parameter g represents the period or offset at which the sequence is compared
against itself. The crucial difference between the measures is that the periodic
autocorrelation treats the sequence as if it were circular, whereas the aperiodic
does not. Note that in the trivial case of g = 0, X0(d) = C0(d) = N . We will
only be concerned with 1 ≤ g ≤ N − 1. Sequences with low autocorrelations have
been sought for some time, and traditionally the problem is stated in terms of
maximizing the merit factor F of a sequence, where:

F =
N2

2
∑N−1

k=1 Ck(d)2

Put simply, we wish to find sequences of a particular length with the minimal sum
of squares of autocorrelations. For periodic autocorrelations, optimal sequences
can be found for a number of lengths thanks to the close relationship between
circular sequences and cyclic difference sets [Mertens/Bessenrodt]. For many N ,
constructions methods are known that yield difference sets of order N . These meth-
ods can be directly adapted to form binary sequences of length N with minimal
periodic autocorrelations, termed perfect sequences by Mertens and Bessenrodt.
However, cyclic difference sets (and hence perfect sequences) exist only for certain
values of N , and different approaches are required to handle other values of N .
The concept can be extended to so-called almost-perfect seqences, which relate in
turn to almost-difference sets [Mertens/Bessenrodt]. However, almost difference
sets are quite outside the realm of the established field of difference sets. Without
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that broad base of theoretical ! support, almost perfect sequences aren’t as readily
useful. However, Mertens and Bessenrodt do provide an effective construction for
N = pq where p and q are primes.

These difference and almost-difference set techniques still leave many cases un-
accounted for, notably N = 2m. Much of our effort was directed at this case,
which we hoped might be subject to a radically different approach via a recursive
construction. We focused primarily on periodic autocorrelations because of the
significant symmetry inherent.

Finally, we should note that the autocorrelation of a sequence is a generalization
of the cross-correlation of two sequences. We will write the periodic correlation of
two codewords d and e as:

Cg(d, e) =
N∑

m=1

dmem+u, indices taken modulo N + 1.
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Linear Codes2
Let us consider all the ideal sequences of length N = 2m for m = 3, 4, and 5. It is
fairly obvious that the all-0 and the all-1 sequences will not be included among the
ideal sequences, since their periodic autocorrelations would be equal to N − 1 for
every period, thus producing the largest possible sum of squares. This, however,
does not necessarily exclude a possibility of linear realtionship between the ideal
sequences, which is the question we will examine in this section of the report.

To begin with, let us consider all 32 ideal sequencef for N = 8 (m = 3). To begin
with, we must find an appropriate offset, such that the all-0 and the all-1 sequences
will be included in the set of sequences we are dealing with. For the purpose of
this explanation we will choose the sequence corresponding to 11 (00001011) to
be the offset, which we will subtract from every ideal sequence of length 8. Thus,
the set of offsets will include the 00000000 and the 11111111 sequences, which
will be obtained by subtracting 11 from itself and from it’s inverse. Thus, we
can now check and see if there is a linear code underlying the 32 offsets we have
obtained. We can see that sequences 11111111 (255), 00010001 (17), 01010101
(85), and 00100111 (39) make up a generator matrix that accounts for half of the
offset sequences. However, no linear code underlies the other 16 sequences, and as
far as we know there is no sequence which added to the above four will provide a
generator matrix that can account for all 32 sequences.

Furthermore, as we went to examine the ideal sequences for N = 16 (m = 4),
it became evident that ideal sequences have virtually no linear relationship to
one another. While it was possible to find triplets of offset ideal sequences that
would in linear combinations with one another produce 8 offset ideal sequences,
no such qudruples (or higher) were found. Although an exhaustive search was not
performed, it is clear that no linear code exists that would account for all 256 ideal
sequences (see figure blah). Similarly, ideal sequnces do not seem to be cosets of
first or second order Reed-Muller code in higher order Reed-Muller. In light of our
findings for m = 3 and 4, length 32 sequences were not investigated for linearity.
Although the number of ideal sequences of length 2m seems to always be a power of
two (which initially suggested a possible linear relationship), this can be explained
by the concept of equivalence classes discussed earlier.
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Recursive Constructions3
In working with sequences of length 2m, it is natural to look for a construction
that builds a set of sequences by combining two sequences of length 2m−1. The
most simple example is the concatenation of two length-N sequences, a and b, to
form a length-2N sequence that we will write a | b. Thus, concatenating 0011 with
0101 yields 00110101. For any recursive construction to be helpful in approaching
autocorrelation problems, we need to know how the correlations of the component
sequences interact to yield the autocorrelations of the resulting sequence.

3.1 Simple Concatenation and the Plotkin Construction

Note that the middle autocorrelation of a | b is twice the cross-correlation of a and
b – that is, Ca | b(N) = 2Ca,b(0). This is a straightforward result: Since subscripts
in the periodic autocorrelation are taken modulo 2N :

Ca | b(N) =
2N−1∑
m=0

ammodNbmmodN = 2
N−1∑
m=0

ambm

Unfortunately, none of the other autocorrelations of a | b can be expressed simply
in terms of the autocorrelations and cross-correlations of a and b. For that reason,
this construction provides little help in generating low autocorrelation sequences.

Closely related is the Plotkin construction, a | a+b. By logic similar to that above,
Ca | a+b(N) = N − 2w(b). This is slightly more useful than simple concatenation
since it depends only on the weight of b rather than on the cross-correlation of
a and b. One apparent pattern for lengths 8, 16, and 32 was that the middle
autocorrelation for all optimal sequences of a given length is constant - 4 for
lengths 8 and 16, and -4 for length 32. By the above formula, therefore, the
choices for b are constrained to sequences of a particular weight. This reduces
the search space significantly, but not nearly enough to make searching longer
sequences feasible. If it were possible to place additional constraints on either a
or b, this could potentially be useful. We broke all the optimal codewords for all
lengths into their Plotkin components a and b in the hope that additional limiting
conditions might emerge, but we weren’t able to recognize any further patt! erns
in the components.

3.2 Interleave Construction

Interleaving sequences, or alternating the bits of a and b to yield a0b0a1b1 . . . aN−1bN−1,
is a potentially much more useful method in that every autocorrelation of the re-
sulting sequence, aSb, can be expressed as a simple combination of the correlations
of the components. Note that (aSb)2j = aj, and (aSb)2j+1 = bj. From that obser-
vation, two simple formulas follow that suffice to describe all autocorrelations of
aSb, one for g-even and one for g-odd.

g-even: CaSb(2j) = Ca(j) + Cb(j)
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g-odd: CaSb(2j + 1) = Ca,b(j) + Cb,a(j + 1) = Ca,b(j) + Ca,b(N − j − 1)

One use of this construction that might seem promising would be to interleave
sequences a and a′ that are Golay pairs, yielding a sequence where all the autocor-
relations for even values of g would be zero. Of course, for all odd values of g, the
autocorrelations of aSa′ would depend on the cross-correlations of a and a′. For
example, we might interleave z = 00010010 with z′ = 00011101 (two sequences
that comprise a golay pair). The resulting sequence, (zSz′) = 0000001101011001,
is not optimal. It is, however, a Golay sequence of the next higher length. This
may or may not seem surprising, but it can be explained by an examination of
the effect of the interleaving operation on Reed-Muller codes. Sequences that are
Golay pairs with respect to aperiodic autocorrelation seem to also be pairs with
respect to periodic autocorrelation, and thus are produced by the same pattern
of second order Reed-Muller terms. A series of lemmas exist describing the con-
catena! tion of two RM codewords in terms of RM of the next higher length. A
similar description is possible for the effect of interleaving two RM codewords. For
any codeword a ∈ RM(2, m), (aS0) = (axm +a) ∈ RM(2, m+1). As an example,
consider a = x1 ∈ RM(2, 2):

(x1 ∈ RM(2, 2)S0) = (0011S0000) = 00001010 = x1x3 + x1 ∈ RM(2, 3)

Similarly, for any b ∈ RM(2,m), (0Sb) = bxm ∈ RM(2, m + 1). In the above ex-
ample, 00010010 is the stereotypical Golay coset leader, x1x2 +x2x3, and 00011101
is its pair, x1x2 + x2x3 + x1. By using the above interleaving properties of RM ,
we find that:

(zSz′) = x1x2x4 + x2x3x4 + x1x2 + x2x3 + x1x2x4 + x2x3x4 + x1x4

= x1x2 + x2x3 + x1x4, which is itself a Golay coset leader in RM(2, 4).

The Golay cosets for aperiodic seem to be a subset of those for periodic. Compa-
rable Reed-Muller patterns should exist for the periodic case, although we did not
pursue this area of investigation.

We did proceed to break all optimal sequences of lengths 8, 16, and 32 into their
interleaved components. The results for length 32 were quite striking: all opti-
mal sequences were composed by interleaving two sequences that we shall call an
almost-Golay pair. All but one of the autocorrelations for each pair of compo-
nent sequences were complementary. The same was true of the components of
the length 8 optimal sequences, although not for the length 16, suggesting that
almost-Golay pairs might be involved in lengths 2m for odd m. Consider one of
the optimal length-32 sequences:

00100101001000110000010001011111

It is composed by interleaving the following two sequences, which are given together
with their autocorrelations:
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0100010100000011: 0 4 0 0 -4 4 4 4 4 4 -4 0 0 4 0 (144)
0011000100101111: 0 -4 0 0 4 -4 -4 0 -4 -4 4 0 0 -4 0 (128)

As stated above, the autocorrelations are complementary in all but the middle
position. This is true for the components of all the optimal length 32 sequences.
Note that not every almost-Golay pair can be interleaved to form an optimal se-
quence. For any given almost-Golay pair, either of the components can be rotated
to form N different sequences, all of which have the same autocorrelations and
hence still form a Golay pair with the other component. Only a small number of
these almost-Golay pairs result in an optimal sequence when interleaved, however.
Nevertheless, even though only a small fraction of almost-Golay pairs produce
an optimal codeword when interleaved, this would still be an overwhelming im-
provement over exhaustive search, provided that a technique existed for generating
almost-Golay pairs as easily as the technique for generating true Golay pairs. Un-
fortunately, appealing to Reed-Muller representations of almost-Golay sequences
did not reveal anything like the! simple patterns tha t exist for typical Golay se-
quences. If a construction for almost-Golay pairs existed that was as powerful as
the construction for Golay pairs, and if this pattern holds, then optimal sequences
could be found for higher lengths 2m, m odd.
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Individual Investigations4
4.1 Sequences Corresponding to Prime Numbers

Let us consider all the seuences for which N = 2m. By reviewing the formula for
periodic autocorrelation presented above, we can convince ourselves that a cyclic
shift of a codeword will not alter the values of its periodic autocorrelations. Same
holds true if we were to invert the sequence (flip every bit) and then perform cyclic
shifts on the inverse. Finally, taking a mirror image of the sequence will also leave
the values of periodic autocorelations unchanged. We define taking mirror image
as rewriting the sequence from right to left, making the last bit first and first bit
last. Thus, a mirror image of 0001011 would be 1101000. Therefore, we can split
the codespace into equivalence classes of 4N and 2N (if mirror image is equivalent
to one of the cyclic rotations) sequences which all have the same values for periodic
autocorrelations of periods 1 to N − 1.

Let us remind ourselves that the purpose of this project was to investigate binary
sequences which yield the smallest sum of squares of autocorrelations compared
to other sequences of the same length. For m = 3, there are 32 sequences which
achieve the minimum value of 16 (to which we will refer as ideal sequences), while
for m = 4 there are 256 sequences which yield the value of 48, and for m = 5
(maximum value of m we investigated) there are 2048 sequences which give the
value of 80. If we assume that the mirror image of an ideal sequence is never
equivalent to a cyclic rotation of the original sequence, we may now split all ideal
sequences into equivalence classes of 4N sequences. This suggests 1 equivalence
class for m = 3, 4 equivalence classes for m = 4, and 16 equivalence classes for
m = 5. We have performed exhaustive searches on sequences of lenght 8 and
16 and were able to confirm the existence of exactly 1 and 4 equivalence classes
respectively, ! while a partial search of length 32 sequences has yielded 16 ”class
representatives”, from which we were able to generate and confirm all 2048 pos-
sible ideal sequences. If we consider the ideal sequences for N = 8 (m = 3), they
can all be generated from sequence 0001011, which is equivalent to 11 (prime num-
ber). Furthermore, if we consider the four equivalence classes of ideal sequences
for N = 16 (m = 4), every equivalence class has at least one prime number rep-
resentative - i.e. at least one sequence in each of the four classes is equivalent
to a prime number. Thus, one can generate all the ideal sequences for N = 16
by finding all the sequences equivalent to 0000110010111001, 0000111011101101,
0001001111101011, or 0010100111110011 by using the algorithm of cyclic shifting,
inverting, and ”mirroring” the sequence.

This data led us to believe that there may be a connection between prime numbers
and ideal sequences - since periodic autocorrelation tends to measure periodicity
of the sequence, one might have concluded that prime numbers above a certain
value (depending on the value of N) will be equivalent to binary sequences with
lowest possible periodicity. With that in mind we have investigated the ideal
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sequences of length 32 (m = 5), and through partial computerized search were
able to generate all 2048 ideal sequences of the appropriate length. Unfortuantely,
NO ideal sequence of length 32 were prime. Since no conclusive data is available
on length 64 sequences (m = 6).

4.2 Pursuing an Algebraic Structure for Periodic Sequences

Taking note of the observations regarding sequences whose decimal representations
were prime, it seemed interesting to consider the effect of conventional multiplica-
tion on binary sequences and their autocorrelations. Customary arithmetic mul-
tiplication of binary sequences of length N is easiest to think of as the sum of a
series of shifts of one of the codewords, as in the following example:

0001001 = 18 = 20 + 23

×0001010 = 10
−−−−−−−

00001010 = 10× 20 = 10
+00001010000 = 10× 23 = 80
−−−−−−−
= 00001011010 = 90

To see how this is of interest in regard to autocorrelations, consider C3(0001011).
This autocorrelation can be thought of as the weight of the (bitwise) sum of d and
d rotated by g bits, as shown here:

0001010
+1010000
−−−−−−
= 1011010

Note the similarity to the result of arithmetic multiplication! The point is, there is
a strong similarity between the operation performed by arithmetic multiplication
of binary sequences and that performed in computing certain autocorrelations. To
make the analogy even stronger, we could depart from using arithmetic multiplica-
tion and instead use a variety of multiplication chosen to mimic the autocorrelation
operation as closely as possible. Arithmetic multiplication differs from Autocor-
relation computing in that it uses shifts of a codeword rather than rotations, and
that it performs arithmetic addition rather than bitwise addition. If these two as-
pects are changed, we are left with what we shall call cyclic multiplication. Recall
that cyclic codes can be thought of as polynomials modulo xN − 1. The behavior
of the cyclic multiplication we wish to consider is equivalent to the multiplication
of polynomials modulo xN − 1. The following example may clarify the process:

00101001 = 20 + 23 + 25

∗01011010 = a
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−−−−−−
01011010 = a rotated 0 bits
11010010 = a rotated 3 bits
+01001011 = a rotated 5 bits
−−−−−−
= 11000011 bitwise (not arithmetic) sum of the rotations.

The cyclic multiplication operation can be described by the following formula:

(a ∗ b)n =
N−1∑
i=0

aN−1−ibn+i

Having defined this operation, we can observe that it is indifferent to rotation –
any rotation of a cyclicly multiplied by any rotation of b will produce a rotation
of a ∗ b. Similarly, the converse of a cyclicly multiplied by b yields the converse of
a∗b, and vice versa. Since all rotations and converses of a sequence have equivalent
autocorrelations, we will simply lump all rotations of a sequence and its converse
into an equivalence class and treat that class as a single entity. We can then
find that the set of all equivalence classes for a given length of sequence comprise
an algebraic structure with respect to cyclic multiplication. Because of the close
relationship between the operation of cyclic multiplication and the computation
of autocorrelations, it seemed possible that study of this structure might provide
insight into the autocorrelation problem. As noted earlier in section 5.1, prime
numbers (with respect to conventional multiplication) seemed to be ! involved
in optimal autocorrelation sequences. It seems possible that this is not purely
coincidental, and that there might be a concep t of primacy within the algebra of
cyclic multiplication that would be helpful. However, we were unable to pursue
this area any further.
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Conclusions5
Overall, our attempts to better understand optimal sequences met with little suc-
cess. Nevertheless, we hope that the observations presented about almost-Golay
pairs and cyclic multiplication might hold promise for future advances. With fur-
ther study, these ideas might pan out, despite our lack of immediate success.
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