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A Simplified Approach to Understanding the Kalman Filter Technique 
 

 The Kalman Filter is a time series estimation algorithm that is applied extensively 
in the field of engineering and recently (relative to engineering) in the field of finance 
and economics.  However, presentations of the technique are somewhat intimidating 
despite the relative ease of generating the algorithm.  This paper presents the Kalman 
Filter in a simplified manner and produces an example of an application of the algorithm 
in Excel.  This scaled down version of the Kalman filter can be introduced in the 
(advanced) undergraduate classroom as well as the graduate classroom. 
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INTRODUCTION: 
 

Many models in economics and finance depend on data that are not observable.  

These unobserved data are usually in a context in which it is desirable for a model to 

predict future events.  The Kalman Filter has been used to estimate an unobservable 

source of jumps in stock returns, unobservable noise in equity index levels, unobservable 

parameters and state variables in commodity futures prices, unobservable inflation 

expectations, unobservable stock betas, and unobservable hedge ratios across interest rate 

contracts1.  In the field of engineering a Kalman Filter (Kalman, 1960) is employed for 

similar problems involving physical phenomena.  The technique is appearing more 

frequently in the fields of finance and economics.  However, understanding the technique 

can be very difficult given the available resource material.   

When viewing chapter thirteen of Hamilton’s Times Series Analysis text (1994), 

one can understand why the topic of Kalman Filters is generally reserved for the graduate 

classroom.  However, as we will demonstrate, the technique is not quite as difficult as 

one may perceive initially and has similarities to standard linear regression analysis.  

Consequently, if placed in the correct context, it is accessible to the undergraduate 

student.  In order to make the Kalman Filter more accessible, an Excel application is 

developed in this paper to work the student through the mechanics of the process. 

In the first section, a derivation of the Kalman Filter algorithm is presented in a 

univariate context and a connection is made between the algorithm and linear regression.  

In the second section, the Kalman Filter is combined with Maximum Likelihood 

Estimation (MLE) to create an iterative process for parameter estimation.  In the third 

                                                 
1 See Bertus, Beyer, Godbey and Hinkelmann (2006), Bertus, Denny, Godbey and Hinkelmann (2006), 
Burmeister and Wall (1982),  Burmeister, Wall, and Hamilton (1986), Faff, Hillier, and Hillier (2000), 
Fink, Fink, and Lange (2005), Godbey and Hilliard (forthcoming), and Schwartz (1997). 
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section, an Excel application/example of using the Kalman Filter/MLE iterative routine is 

performed. 

SECTION 1: DEVELOPING THE KALMAN FILTER ALGORITHM 

There are two basic building blocks of a Kalman Filter, the measurement equation 

and the transition equation.  The measurement equation relates an unobserved variable 

(Xt) to an observable variable (Yt).  In general, the measurement equation is of the form: 

ttttt bXmY ε++= *      (1)  

To simplify the exposition, assume the constant “bt” is zero and “mt” remains constant 

through time eliminating the need for a subscript.  Further, “εt” has a mean of zero and a 

variance of “rt”.  Equation (1) becomes: 

 ttt XmY ε+= *      (2)  

The transition equation is based on a model that allows the unobserved variable to 

change through time.  In general, the transition equation is of the form: 

ttttt gXaX θ++=+ *1      (3) 

Again, to simplify the exposition, assume the constant “gt” is zero and “at” remains 

constant through time eliminating the need for a subscript.  Further, “θt” has a mean of 

zero and a variance of “qt”.  Equation (3) becomes: 

ttt XaX θ+=+ *1       (4) 

 To begin deriving the Kalman Filter algorithm, insert an initial value, “X0” into 

equation (4) (the transition equation) for “Xt”.  “X0” has a mean of “μ0” and a standard 

deviation of “σ0”.  It should be noted: “εt”, “θt”, and “X0” are uncorrelated (Note: these 

variables are also uncorrelated relative to lagged variables).  Equation (4) becomes: 

001 * θ+= XaX P       (5) 
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where, “X1P” is the predicted value for “X1” 

“X1P” is inserted into equation (2) (the measurement equation) to get a predicted value for 

“Y1”, call it “Y1P”: 

[ ] 100111 *** εθε ++=+= XamXmY PP    (6)  

 When “Y1” actually occurs, the error, “Y1E”, is computed by subtracting “Y1P” 

from “Y1”: 

PE YYY 111 −=        (7) 

The error can now be incorporated into the prediction for “X1”.  To distinguish the 

adjusted predicted value of “X1” from the predicted value of “X1” in equation (5), the 

adjusted predicted value is called “X1P-ADJ”:   

   
[ ]
[ ]

[ ] 111111

11111

1111

1111

1 ε
ε

∗−∗+∗−=
−∗−+=

−+=
∗+=−

kYkkmX
XmYkX

YYkX
YkXX

P

PP

PP

EPADJP

    (8) 

where “k1” is the Kalman gain, which will be determined shortly 

 The Kalman gain variable is determined by taking the partial derivative of  the 

variance of “X1P-ADJ” relative to “k1” in order to minimize the variance based on “k1” (i.e. 

the partial derivative is set to zero and then one finds a solution for “k1”).  For ease of 

exposition, let “p1” be the variance of “X1P” (technically, “p1” equals: ( ) 0
2

0 qa +∗σ ).  

The solution for the Kalman gain is as follows (see Joseph (2007) for a numerical 

example): 

   ( ) [ ] 1
2

1
2

111 1 rkkmpXVar ADJP ∗+∗−∗=−    (9) 

   
( ) [ ] 0*212 1111

1

1 =∗+∗∗−∗−=
∂

∂ − rkpkmm
k

XVar ADJP  (10) 
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   ( )
( )
( )P

PP

YVar
YXCov

rmp
mpk

1

11

1
2

1

1
1

,
=

+∗
∗

=∴    (11) 

Notice, the Kalman gain is equivalent to a β-coefficient from a linear regression with 

“X1P” as the dependent variable and “Y1P” as the independent variable.  Not that one 

would have a sufficient set of data to perform such a regression, but the idea that a β-

coefficient is set to reduce error in a regression is equivalent to the idea of the Kalman 

gain being set to reduce variance in the adjusted predicted value for “X1”. 

 The next step is to use “X1P-ADJ” in the transition equation (equation (4)) for “Xt” 

and start the process over again to find equivalent values when t = 2.  However, before 

ending this section, it is important to note the advantages of “X1P-ADJ” over “X1P”.  Recall, 

the variance for “X1P” is “p1”.  Substituting equation (11) into equation (9), the variance 

of “X1P-ADJ” is: 

  ( ) 1
2

1

2

2
1

1
11

1

11 rk

mp
r

pXVar ADJP ∗+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗

+

−∗=−    (12) 

The portion of the equation that pertains to the variance of “X1P”, i.e. “p1”, has a 

bracketed term that is less than one (and is further reduced because the “less than one 

quantity” is squared).  This means the portion of the variance attributed to estimating 

“X1” has been reduced by using “X1P-ADJ” instead of “X1P”.  

For reference, the Kalman Filter algorithm is summarized in the table below: 

(INSERT TABLE 1 HERE)  

 



 6

In the next section, it will be necessary to use the mean and variance of “X1P-ADJ” 

and of “Y1P”.  Although, some of these quantities have already been calculated, all are 

presented below for reference purposes with the time index variable “t” incorporated (t = 

1 to T) and the adjusted predicted values for “Xt” incorporated into “YtP”: 

  [ ] [ ] [ ] [ ]( )tPtttPtEttPADJtP YEYkXEYkXEXE −∗+=+=− *   (13) 

  [ ] tt

t

t
tADJtP rk

mp
r

pXVar ∗+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗

+

−∗=−
2

2

21

11    (14) 

  [ ] ( )[ ] [ ]ADJtPtADJtPtP XEmXmEYE −− ∗=+∗= ε    (15) 

  [ ] [ ] tADJtPtP rmXVarYVar +∗= −
2      (16) 

Note: εt technically appears within equation (13) within the YtE term and within equation 
(15), however, these error terms are independent of each other.  In other words, equation 
(15) and (16) refer to an “updated” or “adjusted” version of the YtP term in equations 
(13) and (14).  Consequently, the error terms corresponding to YtP within the two sets of 
equations are uncorrelated.  
  

In the classroom setting, it is important to keep the application in a univariate 

setting initially to allow the student to follow the logic of the filter.  Further, it is 

suggested that the instructor reinforce the logic of the algorithm using Table 1 in 

conjunction with an assignment (such as the assignment developed in section three of this 

paper) or a quiz.  Because this presentation is not reliant on many expectation 

calculations and only one variance calculation, it is a more palatable introduction of the 

Kalman Filter than what many texts present.  Consequently, this presentation works best 

as an introduction to the technique which can eventually lead to the more sophisticated 

presentations available in many time series texts.  If the instructor only requires an 
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introduction to the Kalman Filter technique with the ability to create an assignment then 

this presentation of the algorithm will be sufficient without a text.    

 

 

SECTION 2: APPLYING MAXIMUM LIKELIHOOD ESTIMATION TO THE 

KALMAN FILTER 

The Kalman Filter provides output throughout the time series in the form of 

estimated values for an unobservable variable: “XtP-ADJ” with a mean and a variance 

defined in equations (13) and (14).  Further, the observable variable has a time series of 

values and a distribution based on its predicted value, “YtP”, which has a mean and 

variance defined by equations (15) and (16).  What the Kalman Filter cannot determine 

are unknown model parameters in the measurement equation, “εt”, in equation (2) (note: 

“m” is a constant and assumed known) and unknown parameters in the transition 

equation, “a” and “θt”, in equation (4).  Consequently, it is necessary to have a means of 

estimating these parameters and when estimated, allow the Kalman Filter to generate the 

time series of the unobservable variable that is desired. 

If we assume that the distribution for each “YtP” is serially independent and 

normally distributed with a mean and variance as defined by equations (15) and (16); 

note: the mean and variance both incorporate the mean and variance of the unobservable 

variable “XtP-ADJ”, a joint likelihood function emerges: 

[ ]

[ ]( )

[ ]∏
=

=

∗

−

−

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧ ∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∗

=Tt

t

YVar

YEYT

tP

tP

T

t
tPt

e
YVar1

2
1

2

2
1

π
     (17) 
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The idea behind the likelihood function is that the observable data emerges from this 

jointly normal distribution.  Consequently, the parameters to be estimated within the 

distribution are chosen in a manner that maximizes the value of the likelihood function 

(i.e. provides the highest probability that the observed data actually occur).  To simplify 

calculations using the likelihood function, it is common to use the natural logarithm of 

the likelihood function (i.e. the log-likelihood function): 

( ) [ ][ ] [ ]( )
[ ]∑∑

==

−
−−−

T

t tP

tPt
tP

T

t YVar
YEY

YVarT
1

2

1 2
1ln

2
1

2
2ln* π    (18) 

 As mentioned previously, the parameters of interest are “εt”, “a”, and “θt” which 

may be constants or defined by a distribution (the parameters of the distribution that 

generates the variable then become the parameters of interest instead of the variable).  

Further simplifying assumptions may be employed, for example, the variance of “εt” and 

“θt” will be constant through time (i.e. “qt” = “q” and “rt” = “r”).  The partial derivative 

of the log-likelihood function with respect to each parameter is calculated and set to zero 

in order to maximize the log-likelihood function. 

 After a set of parameters is estimated (these are called maximum likelihood 

estimates or MLEs), the Kalman Filter algorithm is applied again which will produce new 

time series of “YtP” and “XtP-ADJ” with associated distributions.  The likelihood 

estimation is then performed again producing new MLEs which will again enter into the 

Kalman Filter.  This iterative process will continue until the value of equation (18) does 

not improve by a significant amount (say 0.0001).  In this context, equation (18) is often 

referred to as “the score”.  The use of maximum likelihood estimation in conjunction 

with the Kalman Filter in an iterative fashion is referred to as the Expectation 

Maximization (EM) algorithm (see Brockwell and Davis (2002)). 
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 Notice, the EM algorithm is critical in the final estimation of the unobserved data, 

however, it is not essential to understanding the Kalman Filter process.  Consequently, 

one can choose to treat the EM algorithm in a cursory fashion depending on the level of 

the class.  In the next section, the Kalman Filter with the EM algorithm are applied 

together in Excel.  The application allows the student to work through the Kalman Filter 

process, define the MLE equation, and then execute the entire system using Excel’s 

“Solver” function.  The “Solver” function performs the EM algorithm with minimal input 

from the student.  

 

SECTION 3: A NUMERICAL EXAMPLE IN EXCEL 

 The remaining portion of this presentation is a simple example of the EM 

algorithm.  This example presents an iterative computation of the Kalman Filter and the 

maximum likelihood estimation when the observations can be viewed as incomplete data. 

In particular, to illustrate the usefulness of the Kalman filter, we analyze its application in 

a pricing model framework for a commodity spot and futures market. 

3.1 Description of the Example 

Consider an agent who participates in the oil market. This market participant may 

buy and sell oil in two different markets; the spot market and the futures market. When 

buying (selling) oil in the spot market, the trader is looking to take (lose) immediate 

possession of oil. Alternatively, if the agent does not have an immediate need for oil, but 

does at sometime in the future, the trader may arrange today to take ownership of oil at 

the later date by purchasing a futures contract today. The value of this futures contract 

today of course will then depend on the current spot price of oil, the time period of the 



 10

agreement and some time value of money factor (we simplify the time value of money 

factor to only incorporate the risk-free rate). That is, the relationship between the spot 

price (St) and futures price (Ft) is given by 

( )τrSF tt exp= .    (19) 

where, “r” is the annual risk-free rate and “τ” is the time to maturity of the contract 
measured in years 
 

 Equation (19) has an important practical function for the crude oil market. Spot 

market crude oil does not have a single organized trading floor and therefore does not 

have an observable spot price. Crude oil futures, however, do actively trade on an 

organized exchange and are observable.  Given the relationship between the spot price 

and the futures price in equation (19), traders can use the Kalman Filter to accurately 

infer spot price levels of crude oil. To estimate these unobserved spot prices we need the 

pricing relation from equation (19) and the underlying dynamics of the spot prices.  

For simplicity, assume the spot price follows geometric Brownian motion: 

tt dZSdtSdS 00 σμ +=     (20) 

[ ]dtNdZt ,0~      (21) 

where, “dt” is an infinitesimally small step forward in time 

Because “dZt” is distributed normally with a zero mean and a variance of “dt”, “dSt” also 

follows a normal distribution: 

( )[ ]dtSdtSNdS t
2

00 ,~ σμ     (22) 

Although correct in its present form, it is much easier to utilize a linear form of 

the relationship by taking the natural logarithm of both sides of equation (19) and adding 
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an error term ( tε  is an error term with [ ] 0=tE ε  and [ ] tt qVar =ε ).  We now have the 

measurement equation for the Kalman Filter       

( ) ( ) ttt rSF ετ ++= lnln      (23)   

 For notational ease let )ln( tt SX ≡ and )ln( tt FY ≡  where “t” indicates a point in 

time.  The measurement equation is similar to equation (1) with “Yt” equal to “ln(Ft)”, 

“Xt” equal to “ln(St)”, “bt” equal to “rτ”, and a similarly defined error term.  By Ito’s 

lemma (if dX = a*dt + b*dZ and Q = f(X), then dQ = [a*QX + 0.5*b2*QXX + Qt]*dt + 

b*QX*dZ, subscripts indicate partial derivatives; see Arnold and Henry (2003) for a more 

expansive explanation of Ito’s lemma in the context of asset prices): 

( ) tt dZdtdX σσμ +−= 25.0     (24) 

Equation (24) implies that ( )
⎭
⎬
⎫

⎩
⎨
⎧

+−= ∫
t

tt dZSS
0

2
0 5.0exp στσμ  where 0−= tτ . By 

taking equation (24) and changing “dt” to discrete time, “Δt”, the transition equation for 

the Kalman Filter is defined. 

( ) ttt tXX θσμ +Δ−+= − **5.0 2
1        (25) 

where [ ] 0=tE θ  and [ ] tVar t Δ= 2σθ   

This is similar to equation (3) with “at” equal to one and “gt” equal to ( ) tΔ− **5.0 2σμ . 

To perform the Kalman Filter algorithm, we only need initial values for “X0”, “μ”, and 

“σ” within the transition equation along with a time series of the observable futures 

prices. 

3.2  Monte Carlo Simulation 
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 To illustrate the estimation ability of the Kalman filter, we conduct a Monte Carlo 

experiment. To begin, we will produce a spot price time series for crude oil using a 

random number generator, and parameter values for equation (25). Next, these spot prices 

will be used in equation (19), along with parameter values for the risk free rate and the 

time to maturity, to construct a time series of futures prices. Once these futures prices are 

obtained, we will use only these futures prices along with equations (19) and (25) to 

estimate the simulated spot prices using the Kalman filter. Lastly, we will compare the 

Kalman estimated spot prices with the simulated spot prices to show how accurate the 

Kalman filter estimates the unobservable (or latent) variable. 

To produce a numerical example in Excel, begin the  with an initial spot price of 

$50.00.  The price moves forward in time by the process:  

( ){ }ttt ZtSS Δ+Δ−= − σσμ 2
1 5.0exp .    (26) 

To generate a random number for St in Excel, use the following command: 

=NORMINV(RAND(), (µ-0.5*σ^2)*Δt, σ*SQRT(Δt)) with applicable values for “µ”, 

“σ”, and “Δt”.  Once these values are obtained, substitute these values into equation (26) 

to produce a time series for the spot price, St . After generating this series of prices, we 

may obtain the futures prices by multiplying each spot price by (e (r*τ)).    Figure 1 

illustrates the steps described above with µ = 10% annually, σ = 25% annually, Δt = 1/52, 

r = 4% annually, and τ = 1. 

 

(INSERT FIGURE 1 HERE) 

 
 To set up the Kalman Filter, it is necessary to understand what is actually known: 

ln(F0) = 3.9520, F0 = $52.04, r = 4%, Δt = 0.01923, and τ = 1.  Take the expectation of 
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the measurement equation, E[ln(Ft = 0)] = E[ln(St = 0)] + r*τ, and solve for E[ln(St = 0)] 

based on the known parameters (i.e. E[ln(S0)]  = 3.9520 – 4%*1 = 3.9120).   The variance 

of ln(S0) is assumed to be zero. 

It is helpful to rewrite the measurement and transition equations with known 

values to determine what parameters still need to be estimated.  

( ) ( ) ttt SF ε++= 00.1*%4lnln    where [ ] 0=tE ε  and [ ] tt qVar =ε    (27) 

Consequently, qt, needs to be estimated in the measurement equation. 

 ( ) ( ) ( ) ttt SS θσμ +−+= − 01923.0**5.0lnln 2
1    where [ ] 0=tE θ  and  (28) 

[ ] 01923.0*2σθ =tVar  

Consequently, µ and σ need to be estimated in the transition equation. 

 The selection of initial values for these parameters to be estimated can be 

performed somewhat strategically depending on one’s knowledge of the system.  In 

theory, the values can be any set of numbers consistent with the numerical attributes of 

the parameters (e.g. variance parameters should not be negative).  However, an extensive 

discussion of this issue is not presented here, but is certainly a worthy topic of discussion 

in the classroom.  To perform the Excel example, the initial parameter estimates are µ = 

15%, σ = 32%, and qt = 10%.  Figure 2 extends the spreadsheet in Figure 1 to 

demonstrate the Kalman Filter application. 

(INSERT FIGURE 2 HERE) 

 



 14

 With the Kalman Filter entered, the EM Algorithm for the maximum likelihood 

estimation requires two addition columns to calculate the equivalent of equation (18) (cell 

M1 of Figure 3).  Figure 3 illustrates the calculations assuming 100 observations. 

(INSERT FIGURE 3 HERE) 

 
 Next, the “Solver” function is implemented to maximize the log-likelihood 

function.  The “Solver” function is a selection within the Excel “Tools” menu.  Should 

“Solver” not be available, it can be loaded by selecting “Solver” under the “Add-In” 

menu which is within the “Tools” menu (Note: when loading “Solver”, the original Excel 

compact disk will be requested).  Within the “Solver” application, the goal is to maximize 

the log-likelihood function (cell M1) by adjusting the unknown parameters (cells G2, G5, 

and G6) while maintaining the constraint that any variance parameters remain positive 

(cells G2 and G6). 

 By implementing “Solver” with the above conditions, Excel will iterate between 

the Kalman Filter solutions and the maximization of the log-likelihood function (the EM 

Algorithm).  The solutions for the particular set of data generated for this paper are µ = 

8.9835%, σ = 24.1354%, and qt = 0.0002% with a log-likelihood function value of 

197.8224.  The parameter values are close to the actual parameter values used to generate 

the data: µ = 10.00%, σ = 25.00%, and qt = 0.00%.  One should be aware that different 

sets of randomly generated data produce different solutions.  The solutions can vary 

greatly and many times depend on how well the random number generator performs at a 

given time (this sentiment has been echoed by others who have used this example in a 

classroom setting). 
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Consequently, it is advisable for the instructor to test the randomly generated data 

prior to giving it to the student.  Because this is an exercise for the student to understand 

the Kalman Filter and not an exercise about data or modeling issues, it is best for the 

student’s estimated dataset of the unobserved variable (Column F) to match up well with 

the technically “unobserved” dataset (Column D).  There are two advantages to this: 1) 

the student can now judge via a benchmark how well their estimation of the unobserved 

time series performs (Column D can be made available to the student prior to or after the 

estimation of the Kalman Filter depending on the instructor’s objectives) and 2) the 

student gains confidence in executing the technique and gains confidence in the technique 

itself assuming a correct model.  In reality, one never actually compares the estimated 

“unobserved data” with actual “unobserved data”.  However, because the controlled 

environment developed here allows such a comparison, the instructor should take 

advantage of it. The exercise illustrated in Figures 1 through 3 is available from the 

authors upon request. 

 The Kalman Filter series in this exercise matched the actual generated series so 

well, that a graph comparing the two series is not very meaningful for the purposes of this 

paper as the two series simply overlay on top of each other.  However, when used in the 

classroom, students find a graph illustrating the near perfect overlay of predicted data 

over actual (technically unobserved) data very compelling.  The mean error between the 

two price series is $0.00005 with a standard deviation of $0.00341.  Further, the 

observable data, the futures prices, when compared to the Kalman Filter predicted futures 

price have an average error of -$0.00186 with a standard deviation of $1.91290. 
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 Although the topic of this paper is to only present the Kalman Filter technique, it 

is necessary to mention how the Kalman Filter is actually applied empirically.  The 

Kalman Filter provides a testing environment for different model specifications for the 

unobserved variables to be compared.  Some of the issues that emerge include: 

• testing whether model parameters remain constant throughout the time series 

• if the parameters do change throughout the time series, in what manner do the 

parameters change 

• does the model actually do an adequate job at forecasting 

• do particular time series elements emerge, such as, autocorrelation 

Ultimately, the best (and hopefully correct) model fits the observable data with the least 

amount of error.  The exercise presented in this paper can be as simple or complex as the 

instructor desires.  Although considered a time series technique which places the exercise 

in the realm of econometrics, the exercise is suitable for a course devoted to estimating 

asset pricing models in finance or simply as an exercise in an Excel modeling course. 

 

CONCLUSION:  

 The existing presentations of the Kalman Filter technique are daunting despite the 

relative ease in which the filter is implemented.  Part of the problem is the matrix 

notation (avoided in this presentation), but equally to blame, is that most of the “scaled 

down” examples are applied in engineering and not in terms of economic/financial 

analysis.  By providing an accessible example in Excel, the Kalman Filter becomes a 

powerful analytical tool. 



 17

The example in this paper has been presented successfully as a “stand alone” 

assignment in which the students follow the paper and produce their own Monte Carlo 

simulation to be estimated with a Kalman Filter.  The example in this paper has also been 

used in conjunction with other material to simply illustrate the Kalman Filter technique. 

Echoing some of the feedback received regarding this paper, to implement as a 

lecture, it is suggested that the instructor generate the Monte Carlo simulation prior to the 

lecture.  It is important, particularly for a student’s initial introduction to this material, 

that the technique perform well and not be subject to problems with the randomly 

generated set of data.  A comparison between the filter generated unobservable variables 

and the “actual” unobservable variables is instructive, but can be omitted at the 

instructor’s discretion. 

 Although this paper has been successfully assigned as a “stand-alone” 

assignment, when giving an assignment, we suggest providing the student with only the 

observable generated data (after it has been pre-tested to make certain the generated data 

leads to appropriate solutions).  If desired, multiple sets of the generated data with 

different parameter figures can be created to make individual assignments.  As part of the 

solutions to the assignment, the instructor can make the “actual” unobservable data 

available to the student to see how well the filter performed. 

 The programming for the filter is minimal, however, the ability to grasp the idea 

of a latent variable is the truly novel part of the classroom presentation.  Consequently, 

this material is best suited for advanced undergraduate (econometric or financial 

modeling) classes because of the introduction of a latent variable.  Alternatively, the 

material can simply be used as an Excel programming assignment by allowing the 
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student to program the filter in an effort to estimate the unobservable data (which the 

instructor can provide in this instance) through the observable data.  The exercise allows 

the student to program the filter and provides a suitable context for using Excel’s 

“Solver” function. 

At the graduate level (drawing from feedback received from graduate students 

who downloaded earlier versions of the paper), the material is suitable for a course on 

time series analysis or advanced financial modeling.  In fact, the paper can be assigned as 

background reading in a doctoral course for understanding the Kalman Filter prior to 

reading empirical research based on the Kalman Filter.  In this context, the paper is not 

very extensive because it does not address many of the econometric issues associated 

with time series analysis.  Yet, it is still a useful resource particularly for students who are 

unfamiliar with the topic. 
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TABLE 1: The Kalman Filter Process 

 
Predict future unobserved variable (Xt+1 ) 
based on the current estimate of the 
unobserved variable, call it X(t+1)P: 
 
Note: X0P-ADJ = X0 which is N(μ0, σ0

2)  

 
 
 

( ) ttADJtPtPt gXaX θ++= −+ *1  

 
Use the predicted unobserved variable to 
predict the future observable variable 
(Yt+1 ), call it Y(t+1)P: 

 
( ) ( ) 1111 * ++++ ++= ttPttPt bXmY ε   

 
When the future observable variable 
actually occurs, calculate the error in the 
prediction: 

 
( ) ( ) ( )PttEt YYY 111 +++ −=   

 

 
Generate a better estimate of the unobserved 
variable at time (t + 1) and start the process 
over for time (t + 2): 

 
( ) ( ) ( ) ( )EttPtADJPt YkXX 1111 +++−+ ∗+=  

 

 
Note: kt+1 is the “Kalman gain” and is set 
to minimize the variance of X(t+1)P-ADJ; pt+1 is 
the variance of X(t+1)P: 
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These equations are based on the more general measurement and transition equations, equations (1) and (3) 
respectively.  
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FIGURE 1: Monte Carlo Generation of the Observed and Unobserved Time Series 
in Excel 

 

 A B C D E 
1 Actual Parameters:     
2 Mean: 10% Annually   
3 Volatility: 25% Annually   
4 Risk-free rate: 4% Annually   
5 Maturity of Futures: 1.00 Years   
6 Time Increment 0.01923a Years   
7 Current Spot Price: $50.00    
8      
9 Time (in weeks): Security Price: Futures Price: Ln(Security): Ln(Futures): 

10 0 $50.00b $52.04c 3.9120d 3.9520e 

11 1 51.58f $   53.68 3.9431 3.9831 
12 2 52.97 $   55.13 3.9697 4.0097 
13 3 56.04 $   58.32 4.0260 4.0660 
14 4 55.25 $   57.50 4.0118 4.0518 

a Cell Formula: =1/52   b Cell Formula: =B7 
c Cell Formula: =B10*EXP($B$4*$B$5) d Cell Formula: =LN(B10) 
e Cell Formula: =LN(C10) 
f Cell Formula: =B10*EXP(NORMINV(RAND(),($B$2-0.5*$B$3^2)*$B$6,$B$3*SQRT($B$6))) 
Note: Column D contains the unobserved time series and Column E contains the observed time series.  
Further, it may be necessary to copy the Monte Carlo data in column B over itself.  Highlight the data, 
target the data over itself, and then use the menu sequence: Edit/Paste Special/Values.  This will save the 
Monte Carlo data without having the simulation update itself every time a new Excel command is executed 
(this is an Excel default setting).  
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FIGURE 2: Kalman Filter Application for the Monte Carlo Data 
 

 E F G H I J K 
1  Measure Eq      
2  h(t): 10%     
3        
4  Trans Eq      
5  Mu: 15%     
6  Sigma: 32%     
7        
8        
9 Ln(Futures): Pred. ln(S): Pred. ln(F): Error: P(t): K(t): Var(t):a 

10 3.9520 3.9120b     0.0000 

11 3.9831 3.9145c 3.9539d 0.0292e 0.0020f 0.0193g 0.0019h 

12 4.0097 3.9184 3.9564 0.0533 0.0039 0.0375 0.0038 
13 4.0660 3.9260 3.9603 0.1057 0.0057 0.0541 0.0054 
14 4.0518 3.9337 3.9679 0.0839 0.0074 0.0688 0.0069 

a This is the variance of the predicted natural logarithm of the spot price.  It is set at zero for t = 0. 
b Cell Formula: =E10 - $B$4*$B$5 
c Cell Formula: =F10 + ($G$5 – 0.5*$G$6^2)*$B$6 + J11*H11 
d Cell Formula: =F10 + ($G$5 – 0.5*$G$6^2)*$B$6 + $B$4*$B$5 
e Cell Formula: =E11 – G11  f Cell Formula =K10 + $G$6^2*$B$6 
g Cell Formula: =I11/(I11+$G$2)  h Cell Formula: =I11*(1-J11) 
Note: Cells B4, B5, and B6 refer to the spreadsheet in Figure 1. 
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 FIGURE 3: Applying Maximum Likelihood Estimation to the Kalman Filter 
 

 F G H I … L M 
1 Measure Eq     log-like: 15.4068a 
2 h(t): 10%      
3        
4 Trans Eq       
5 Mu: 15%      
6 Sigma: 32%      
7        
8        
9 Pred. ln(S): Pred. ln(F): Error: P(t): … MLE(1): MLE(2): 

10 3.9120       
11 3.9145 3.9539 0.0292 0.0020 … 1.1415b -0.0042c 

12 3.9184 3.9564 0.0533 0.0039 … 1.1322 -0.0137 
13 3.9260 3.9603 0.1057 0.0057 … 1.1235 -0.0529 
14 3.9337 3.9679 0.0839 0.0074 … 1.1157 -0.0328 

a Cell Formula: = -100*LN(2*PI())/2 + SUM(L11:L110) + SUM(M11:M110) 
b Cell Formula: = -LN(I11 + $G$2)/2  c Cell Formula: = -(H11^2/(I11 + $G$2))/2 
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