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ABSTRACT

Gamma-ray bursts (GRBs), which have been observed up to redshifts z ≈ 9.5, can be good probes of the early
universe and have the potential to test cosmological models. Dainotti’s analysis of GRB Swift afterglow light curves
with known redshifts and a definite X-ray plateau shows an anti-correlation between the rest-frame time when the
plateau ends (the plateau end time) and the calculated luminosity at that time (or approximately an anti-correlation
between plateau duration and luminosity). Here, we present an update of this correlation with a larger data sample
of 101 GRBs with good light curves. Since some of this correlation could result from the redshift dependences of
these intrinsic parameters, namely, their cosmological evolution, we use the Efron–Petrosian method to reveal the
intrinsic nature of this correlation. We find that a substantial part of the correlation is intrinsic and describe how we
recover it and how this can be used to constrain physical models of the plateau emission, the origin of which is still
unknown. The present result could help to clarify the debated nature of the plateau emission.
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1. INTRODUCTION

Gamma-ray bursts (GRBs) are the farthest sources, seen up
to redshift z = 9.46 (Cucchiara et al. 2011), and if emitting
isotropically they are also the most powerful (with Eiso �
1054 erg s−1) objects in the universe. In spite of the great diversity
of their prompt emission light curves and their broad range
spanning over seven orders of magnitude of Eiso, some common
features have been identified from the investigation of their
afterglow light curves. A crucial breakthrough in this field was
the observation of GRBs by the Swift satellite, which provides
a rapid follow-up of the afterglows in several wavelengths,
revealing a more complex behavior of the X-ray light curves than
the broken power law generally observed before (O’Brien et al.
2006; Sakamoto et al. 2007). The Swift afterglow light curves
manifest several segments. The second segment, when it is flat,
is called the plateau emission. A significant step forward in
determining common features in the afterglow light curves was
made by fitting them with an analytical expression (Willingale
et al. 2007, hereafter W07).

This provides the opportunity to look for universal fea-
tures that could provide a redshift-independent measure of
the distance, as in studies of correlations between the GRB
isotropic energy and the peak photon energy of the νFν spec-
trum Eiso–Epeak (Lloyd & Petrosian 1999; Amati et al. 2009),
the beamed total energy Eγ –Epeak (Ghirlanda et al. 2004,
2006), L–V luminosity–variability (Norris et al. 2000; Fenimore
& Ramirez-Ruiz 2000), L–Epeak (Yonekotu 2004), and possi-
bly others (Schaefer 2003). The impact of detector thresholds
on cosmological standard candles has also been considered
(Shahmoradi & Nemiroff 2009; Petrosian 1998, 1999, 2002;
Cabrera et al. 2007). Unfortunately, because of the large dis-
persion (Butler et al. 2009; Yu et al. 2009) and the absence of
good calibration, none of these correlations allow the use of
GRBs as “standard candles” as has been done, e.g., with Type
Ia supernovae.

Dainotti et al. (2008, 2010), using the W07 phenomenological
law for the light curves of long GRBs, discovered a formal
anti-correlation between the X-ray luminosity at the end of
the plateau, LX , and the rest-frame plateau end time, T ∗

a =
T obs

a /(1 + z) (hereafter LT), described as

log LX = log a + b log T ∗
a , (1)

where T ∗
a is in seconds and LX is in erg s−1. The normalization

and the slope parameters a and b are constants obtained using
the D’Agostini fitting method (D’Agostini 2005). Dainotti et al.
(2011a) attempted to use the LT correlation as a possible redshift
estimator, but the paucity of the data and the scatter prevents
a definite conclusion, at least for a sample of 62 GRBs. In
addition, a further step toward better understanding the role
of the plateau emission was made with the discovery of new
significant correlations between LX and the mean luminosities
of the prompt emission, 〈Lγ,prompt〉 (Dainotti et al. 2011b).

The LT anti-correlation is also a useful test for theoretical
models such as the accretion models (Cannizzo & Gehrels 2009;
Cannizzo et al. 2011), the magnetar models (Dall’Osso 2010;
Bernardini et al. 2012a, 2012b; Rowlinson et al. 2013; O’Brien
& Rowlinson 2012), the prior emission model (Yamazaki
2009), the unified GRB and active galactic nucleus model
(Nemmen et al. 2012), and the fireshell model (Izzo et al.
2013). Furthermore, it has also been recovered within other
observational correlations (Ghisellini 2008; Sultana et al. 2012;
Qi & Lu 2012). Finally, it has been applied as a cosmological
tool (Cardone et al. 2009, 2010; Postnikov et al. 2013). Here, we
study an updated sample of 101 GRBs and investigate whether
the LT correlation is intrinsic or induced by the cosmological
evolution of LX and T ∗

a , and/or observational biases due to the
instrumental threshold. This step is necessary to cast light on the
nature of the plateau emission, to provide further constraints on
the theoretical models, and possibly to assess the use of the LT
correlation as a model discriminator. In Section 2, we describe
the data and the results from a correlation test carried out using
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the raw data. In Section 3, we use the EP method to determine
the intrinsic correlation between LX and T ∗

a . In Section 4, the
cumulative density and luminosity are defined and derived. This
is followed by a discussion section.

2. LIGHT CURVE DATA AND RAW CORRELATIONS

We have analyzed the sample of all GRB X-ray afterglows
with known redshifts detected by Swift from 2005 January up
to 2011 May for which the light curves include early X-ray
data and therefore can be fitted by the W07 model. Willingale
proposed a functional form for f (t):

f (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fi exp

(
αi

(
1 − t

Ti

))
exp

(
− ti

t

)
for t < Ti

Fi

(
t

Ti

)−αi

exp

(
− ti

t

)
for t � Ti

(2)

for both the prompt (the index “i = p”) γ -ray and initial
X-ray decay and for the afterglow(“i = a”), modeled so that
the complete light curve ftot(t) = fp(t) + fa(t) contains two
sets of four parameters (Ti, Fi, αi, ti). The transition from the
exponential to the power law occurs at the point (Ti, Fie

−ti /Ti )
where the two functional sections have the same value and
gradient. The parameter αi is the temporal power-law decay
index and the time ti is the initial rise timescale.

In previous papers, W07 and Dainotti et al. (2008, 2010) fit-
ted the Swift Burst Alert Telescope (BAT)+ X-Ray Telescope
(XRT) light curves of GRBs to Equation (2), assuming that the
rise time of the afterglow started at the beginning of the decay
phase of the prompt emission, Tp, namely ta = Tp. In this pa-
per, we search for an independent measure of the parameters
of the afterglow, and thus we leave ta as a free parameter. In
the majority of the cases, we have ta � 0. We use the red-
shifts available in the literature (Xiao & Schaefer 2009), on the
Greiner Web page http://www.mpe.mpg.de/∼jcg/grbgen.html,
and in the Circulars Notice arXiv (GCN). (We exclude GRBs
with uncertain redshift measurements.) The complete set of
GRBs with a definite known redshift until 2011 May is
>120, but not all GRBs show a well-defined plateau emis-
sion. The fitting procedure fails either when it gives unreason-
able values or when the determination of the confidence in-
terval in 1σ does not fulfill the Avni (1976) prescriptions; for
more details, see http://heasarc.nasa.gov/xanadu/xspec/manual/
XspecSpectralFitting.html. For a proper evaluation of the error
bars the latter prescriptions require the computation in the 1σ
confidence interval for every parameter, varying the parameter
value until the χ2 increases by 3.5 above the minimum (or the
best-fit) value because we are in a tree-parameter space. These
rules define the amount that the χ2 is allowed to increase, which
depends on the confidence level one requires and on the number
of parameters whose confidence space is being calculated.

The source rest-frame luminosity in the Swift XRT bandpass,
(Emin, Emax) = (0.3, 10) keV at time Ta, is computed from the
equation

LX(Emin, Emax, Ta) = 4πD2
L(z) FX(Emin, Emax, Ta) × K, (3)

where DL(z) is the GRB luminosity distance,4 FX is the
measured X-ray energy flux, and K = (1 + z)−1+βa is the

4 We assume a ΛCDM flat cosmological model with ΩM = 0.291 and
H0 = 71 km s−1 Mpc−1.

so-called K correction for the X-ray power-law index βa (Evans
et al. 2009; Dainotti et al. 2010). The error bars on the nor-
malization parameter and the slope quoted for LX and T ∗

a are
computed using the method of D’Agostini (2005), which is a
suitable method where the errors on both variables are compara-
ble (which is the case here) and it is not possible to decide which
one is the independent variable to be used in the χ2 fitting anal-
ysis. Moreover, the relation LX = aT b

a may be affected by an
intrinsic scatter σint of unknown nature that has to be taken into
account. Thus, to determine the parameters (a, b, σint), we fol-
low the D’Agostini (2005) Bayesian approach and maximize
the likelihood function L(a, b, σint) = exp [−L(a, b, σint)],
where

L(a, b, σint) = 1

2

∑
ln

(
σ 2

int + σ 2
yi

+ b2σ 2
xi

)
+

1

2

∑ (yi − a − bxi)2

σ 2
int + σ 2

yi
+ b2σ 2

xi

, (4)

(xi, yi) = (log LX, log Ta), and the sum is over the N objects in
the sample. Note that this maximization is actually performed
in the two-parameter space (b, σint) since a may be estimated
analytically as

a =
[∑ yi − bxi

σ 2
int + σ 2

yi
+ b2σ 2

xi

] [∑ 1

σ 2
int + σ 2

yi
+ b2σ 2

xi

]−1

(5)

so that we will not consider it anymore as a fit parameter.
Initially, we had a sample of 116 GRBs with firm redshift,

including 11 intermediate class (IC), and with the evaluation of
the observables Ta, Fa, and αa . For some, but not for all of them,
we were able to fulfill the Avni prescriptions mentioned above.5

Among the 116 GRBs, 104 had the proper evaluation of the error
measurements, but 3 of them had an error energy parameter
σE ≡

√
σ 2

L∗
X

+ σ 2
T ∗

a
> 1 (for the definition about this parameter

and its use, see Dainotti et al. 2011a), and therefore were
discarded because such values of the errors have no physical
meaning. We thus have a sample of 101 GRBs. To ensure that the
inclusion of the IC does not introduce biases into the evaluation
of the power slope for the LX–T ∗

a correlation for long GRBs,
we checked the slopes of the sample with and without the 8
IC bursts. The two power slopes are compatible within 1σ . We
pointed out that in a previous paper (Dainotti et al. 2010) we did
not introduce the IC bursts because these represented more than
14% of the sample, while in the current sample they represent
only 8%. For the whole sample without the IC, we found a
power-law slope of b = −1.27±+0.18

−0.26, while for the whole
sample we found b = −1.32±+0.18

−0.17. The Spearman correlation
coefficient for the larger sample (ρ = −0.74) is higher than
ρ = −0.68 obtained for a subsample of 66 long-duration
GRBs analyzed in Dainotti et al. (2010). The probability of the
correlation (of the 101 long GRBs) occurring by chance within
an uncorrelated sample is P ≈ 10−18 (Bevington & Robinson
2003).

Figure 1 (left panel) shows the LX–T ∗
a distribution of 101

GRBs with 0.08 � z � 9.4 and includes afterglows of 93 long
and 8 short bursts with extended emission (Norris et al. 2010),
called the intermediate class (IC); see Table 1.6

5 We pointed out here that since this method takes into account the hidden
errors, it thus gives greater error estimates than those obtained with the
Marquardt–Levenberg algorithm (Marquardt 1963).
6 For a complete table of the fitting parameters, see
http://www.oa.uj.edu.pl/M.Dainotti
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Figure 1. Left panel: LX vs. T ∗
a distribution for the sample of 101 GRB afterglows with the fitted correlation shown by the dashed line. The red points are the IC

bursts. Central panel: the same distribution divided into five equipopulated redshift bins shown by different colors—black for z < 0.89, magenta for 0.89 � z � 1.68,
blue for 1.68 < z � 2.45, green for 2.45 < z � 3.45, and red for z � 1.76. The solid lines show the fitted correlations. Right panel: the variation of the power-law
slope (and its error range) with the mean value of the redshift bins.

(A color version of this figure is available in the online journal.)
Table 1

Fitting Parameters

GRB z FX dFX βa dβa log T ∗
a d log Ta log LX d log LX Class

50315 1.949 1.16e−11 1.56e−12 1.47 1.23 3.97 0.09 47.49 0.56 Long
50318 1.44 1.0e−8 1.41e−9 0.93 0.18 1.62 0.59 50.09 0.62 Long
50401 2.9 5.41e−11 1.41e−11 0.87 0.23 3.19 0.04 48.58 0.12 Long
050416A 0.6535 2.82e−11 3.82e−12 1.16 0.32 2.86 0.09 46.70 0.11 Long
050505 4.27 4.93e−12 3.84e−12 1.09 0.04 3.67 0.09 48.02 0.34 Long
050525A 0.606 2.92e−9 6.81e−10 1.04 0.15 2.29 0.10 48.84 0.11 Long
050603 2.82 1.10e−12 6.64e−13 0.91 0.10 4.25 0.25 46.82 0.27 IC
50730 3.97 2.58e−11 1.55e−12 0.54 0.05 3.46 0.01 48.58 0.04 Long
50802 1.71 2.20e−11 1.49e−12 0.82 0.08 3.39 0.02 47.63 0.04 Long
050820A 2.612 6.28e−11 5.12e−12 0.91 0.10 3.40 0.03 48.53 0.06 Long
50824 0.83 5.37e−13 1.10e−13 0.95 0.14 4.91 0.15 45.24 0.10 Long
050904 6.29 5.79e−12 6.16e−13 0.61 0.02 3.15 0.40 48.09 0.46 Long
050922C 2.198 8.54e−12 2.29e−12 0.92 0.24 3.38 0.09 47.48 0.16 Long
051016B 0.9364 3.22e−12 5.60e−13 0.83 0.15 3.83 0.11 46.14 0.09 Long
051109A 2.35 2.51e−11 7.74e−12 0.93 0.02 3.40 0.11 48.01 0.13 Long
051221A 0.5465 7.91e−13 1.06e−13 0.95 0.18 4.47 0.07 44.96 0.08 IC
60108 2.03 1.69e−12 2.99e−13 1.00 0.24 3.80 0.09 47.17 0.14 Long
60115 3.53 3.51e−12 6.62e−13 0.96 0.21 3.06 0.11 47.59 0.14 Long
60124 2.297 4.02e−11 3.25e−12 0.97 0.14 3.75 0.03 48.20 0.07 Long
60206 4.05 5.69e−11 1.61e−11 1.29 0.59 3.12 0.08 48.95 0.35 Long
060210 3.91 4.84e−12 2.65e−12 1.05 0.04 3.77 0.22 47.90 0.24 Long
60218 0.0331 1.32e−12 5.34e−13 3.51 0.45 5.29 0.13 42.52 0.18 Long
060223A 4.41 1.14e−11 5.98e−12 1.02 0.12 1.99 0.22 48.37 0.24 Long
60418 1.49 1.47e−10 2.17e−11 1.04 0.22 2.68 0.07 48.30 0.11 Long
060502A 1.51 5.79e−12 5.86e−13 1.04 0.11 3.94 0.08 46.91 0.06 IC
060510B 4.9 3.51e−13 3.96e−14 1.57 0.12 3.78 0.48 47.39 0.5 Long
60512 2.1 1.60e−12 5.69e−13 1.08 0.28 3.31 0.21 46.75 0.20 Long
60522 5.11 1.88e−12 5.80e−13 1.14 0.28 3.17 0.14 47.70 0.21 Long
60526 3.21 4.21e−12 7.22e−13 0.95 0.11 3.27 0.10 47.57 0.09 Long
60604 2.68 2.31e−12 2.92e−13 1.08 0.10 3.87 0.06 47.13 0.07 Long
60605 3.8 6.48e−12 1.03e−13 1.03 0.11 3.32 0.05 47.94 0.09 Long
060607A 3.082 4.17e−12 5.29e−13 0.57 0.06 3.77 0.02 47.53 0.06 Long
60614 0.125 1.54e−12 2.05e−13 0.88 0.05 5.01 0.04 43.79 0.06 IC
60707 3.43 3.74e−12 1.40e−13 1.34 0.18 3.81 0.16 47.59 0.19 Long
60714 2.71 1.71e−11 1.52e−12 0.90 0.15 3.07 0.05 48.01 0.09 Long
60729 0.54 7.97e−12 2.58e−13 1.03 0.04 4.88 0.02 46.95 0.02 Long
60814 0.84 2.75e−11 2.92e−12 1.10 0.11 3.71 0.04 46.96 0.06 Long

Notes. The first column is the GRB identification number; the second, z, the redshift; the third, FX , the X-ray-observed flux; the fourth, dFX , the error on the
X-ray-observed flux; the fifth, βa , the spectral index; the sixth, dβa , the error on the spectral index; the seventh, log T ∗

a , the logarithm of the characteristic rest-frame
time; the eighth, d log Ta, the error on log Ta ; the ninth, log LX , the logarithm of the X-ray source luminosity at Ta; the tenth, d log LX , the error on log LX ; the last
column is the class, namely, indication of the GRB type, long or IC (intermediate class).

(This table is also available in a machine-readable form in the online journal.)

However, as mentioned above, since both LX and T ∗
a depend

on redshift (LX increasing and T ∗
a decreasing with z) and

the sample covers a broad redshift range, all or part of the
anti-correlation might be induced by these dependencies. It
is therefore important to determine the extent of this effect

and determine the true or intrinsic correlation. In addition, any
cosmological evolution in LX and/or T ∗

a will affect the degree
of the observed anti-correlation. Figure 1 (central panel) shows
the color-coded fitted lines. The distribution of the subsamples
presents different power-law slopes when we divide the whole

3
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sample into five redshift bins (see Dainotti et al. 2011a for
a comparison with a smaller sample) with 20 GRBs in each
subsample. The objects in the different bins exhibit some
separation into different regions of the LX–T ∗

a plane. The results
are shown in Figure 1 (central panel) with the fitted lines. In the
right panel of Figure 1, we show the power slope of the redshift
bins with the mean values of the redshift bins.

As is evident for each bin, we again found an anti-correlation
similar to the whole sample, but the mean values of the slopes are
larger (smaller in absolute values), indicating flatter relations,
except for the first redshift bin, than for the whole sample.
As shown in the right panel of Figure 1 (left), there is some
indication that the slope steepens for higher redshifts. This
is the first indication that some of the anti-correlation may
be induced by the above-mentioned effects.7 However, in all
cases, these differences are all less than 3σ . We expect the
correlation slope to be closer to that of the subsamples than the
whole sample because each subsample has a smaller redshift
range δz, which decreases the effect of the redshift dependence
and/or redshift evolution. In addition, this test disfavors a strong
redshift evolution in the correlation. In the next section, we give
a more quantitative analysis of these results using the Efron
& Petrosian (EP) method (Efron & Petrosian 1992), which is
able to determine the intrinsic correlation among variables in a
truncated bivariate distribution.

3. DETERMINATION OF INTRINSIC CORRELATIONS

The first important step for determining the distribution of
true correlations among the variables is quantification of the
biases introduced by the observational and sample selection ef-
fects. In the case under study, the selection effects or biases that
distort the statistical correlations are the flux limit and the tem-
poral resolution of the instrument. To account for these effects,
we apply the EP technique, which was already successfully ap-
plied for GRBs (Petrosian et al. 2009; Lloyd & Petrosian 2000;
Kocevski & Liang 2006). Other methodologies for treating se-
lection biases have also been investigated (Collazzi & Schaefer
2008).

The EP method reveals the intrinsic correlation because
the method is specifically designed to overcome the biases
resulting from incomplete data. Moreover, it also identifies and
removes the redshift evolution present in both variables, time
and luminosity.

The EP method uses a modified version of the Kendall τ
statistic to test the independence of variables in truncated data.
Instead of calculating the ranks Ri of all data points among all
observed objects, which is normally done for untruncated data,
the rank of each data point is determined among its “associated
sets,” which include all objects that could have been observed
given the observational limits. A full discussion of the method
is provided in the literature (Singal et al. 2011 and references
therein).

Here, we give a brief summary of the algebra involved in the
EP method. This method uses the Kendall rank test to determine
the best-fit values of the parameters describing the correlation
functions, using the test statistic

τ =
∑

i (Ri − Ei)√∑
i Vi

(6)

7 Note also that as a result, the intercept or normalization parameters a for the
individual bins are smaller than the sample as a whole.

to determine the independence of two variables in a data set, say
(xi, yi) for i = 1, . . . , n. Here, Ri is the rank of variable y for
the data point i in its associated set. For untruncated data (i.e.,
data truncated parallel to the axes), the associated set for point
i includes all of the data with xj < xi . If the data are truncated,
then the associated set must consist only of those points with
a lower value of x that would have been observed if they were
at the x value of point i given the truncation (see the definition
below).

If (xi, yi) were independent, then the rank Ri should be
distributed continuously between 0 and 1 with the expectation
value Ei = (1/2)(i + 1) and variance Vi = (1/12)(i2 + 1).
Independence is rejected at the nσ level if | τ | > n. Here, the
mean and variance are calculated separately for each associated
set and summed accordingly to produce a single value for τ .
This parameter represents the degree of correlation for the entire
sample when the data truncation is properly accounted for.

Using this statistic, we find the parameterization that best
describes the luminosity and time evolution. This means that
we have to determine the limiting flux, Flim, which gives the
minimum observed luminosity for a given redshift, Lx =
4πD2

L(z) FXK as shown in Figure 2. The nominal limiting
sensitivity of XRT, Flim = 10−14 erg cm−2 s−1, is too low
to describe the truncation of our sample (the dashed line).
This is because there is a limit in the plateau end times,
T ∗

a,lim = 242/(1 + z) s, see the right panel of Figure 2.
Therefore, as pointed out by Cannizzo et al. (2011), this
restriction increases the flux threshold to 10−12 erg cm−2.
Therefore, taking into account the above minimum plateau end
time, we have investigated several limiting fluxes to determine
a good representative value while keeping an adequate size
of the sample. We have chosen the limiting flux Flim =
1.5×10−12 erg cm−2, shown by the red solid line, which allows
90 GRBs in the sample.

3.1. Cosmological Evolutions

The first step required for this kind of investigation is to
determine whether the variables LX and T ∗

a are correlated with
redshift or are statistically independent of it. For example, the
correlation between LX and the redshift, z, is what we call
luminosity evolution, and the independence of these variables
would imply the absence of such evolution. The EP method
prescribed how to remove the correlation by defining new and
independent variables.

Following the approach used for quasars and blazars (Singal
et al. 2011, 2013, 2012), we determine the correlation functions
g(z) and f (z) when determining the evolution of LX and T ∗

a so
that the de-evolved variables L′

X ≡ LX/g(z) and T ′
a ≡ T ∗

a /f (z)
are not correlated with z. The evolutionary functions are
parameterized by the simple correlation functions

g(z) = (1 + z)kLx , f (z) = (1 + z)kT ∗
a (7)

so that L′
X = LX/g(z) refer to the local (z = 0) luminosities.

This is an arbitrary choice. One can choose any other fiducial
redshift by defining g(z) = [(1 + z)/(1 + zfid)]kLx . We have
also tried this approach, obtaining results that are compatible
with those presented. For the source i to obtain the luminosity
evolution, the associated set is

Ji ≡ {j : zj < zmax(Li)} ∨ {j : Lj > Li}, (8)

where zmax(Li) is the maximum redshift at which object i with
Lj could be placed and still be included in the survey. All of the
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Figure 2. Left panel: the bivariate distribution of LX and redshift with two different flux limits. The instrumental XRT flux limit 1.0 × 10−14 erg cm−2 (dashed green
line) is too low to be representative of the flux limit, while 1.5 × 10−12 erg cm−2 (solid red line) better represents the limit of the sample. Right panel: the bivariate
distribution of the rest-frame time T ∗

a and the redshift. The chosen limiting value of the observed end time of the plateau in the sample is Ta,lim = 242 s. The red line
is the limiting rest-frame time, Ta,lim/(1 + z).

(A color version of this figure is available in the online journal.)

objects in the sample are indicated with i, while the objects in
the associated sets are denoted with j. The symbol ∨ is intended
to represent the union of the sets.

Analogously, to obtain the plateau end-time evolution factor,
the associated set for a given object i is

Ji ≡ {j : zj > zmin,i} ∨ {j : Tj > Ti}, (9)

where zmin(Tai
) is the minimum redshift at which object i could

be placed and still be included in the survey given its plateau
duration and the limiting time of the observation.

Using the specialized version of Kendell’s τ statistic, the
values of kLx

and kT ∗
a

for which τLx
= 0 and τT ∗

a
= 0 are

those that best fit the luminosity and plateau end-time evolution,
respectively, with the 1σ range of uncertainty given by |τx | � 1.
Plots of τLx

and τT ∗
a

versus kLx
and τT ∗

a
are shown in Figure 4.

With kLx
and kT ∗

a
, we are able to determine the de-evolved

observables T ′
a and L′

X.
We evidence that there is no discernable luminosity evolution,

kLx
= −0.05+0.35

−0.55, but there is a significant evolution in T ∗
a ,

kT ∗
a

= −0.85+0.30
−0.30.

3.2. Intrinsic LT Correlation

This is the first time the EP method has been applied in
a parameter space for a bivariate correlation that involves a
luminosity and a time, while previously the EP applications
have been done in a luminosity–luminosity space (Singal et al.
2012). Therefore, we stress that this means different trends in the
data truncation, as we have shown in Figure 2. In the [LX −T ∗

a ]
variable space, we apply the EP method to define the associated
sets as

Ji ≡ {j : L′
min(zj ) < L′(zi)} ∨ {j : L′

j > L′
i} ∨ {j : T ′

amin
(zj )

< T ′
a(zi)}, (10)

where L′
min(zj ) and T ′

amin
(zj ) are, respectively, the de-evolved

minimum luminosity and de-evolved plateau time at redshift zj

that object j could have and still be included in the survey
given the flux limits, its redshift, and the limiting time of
the observation: Lmin(zj ) = 4πD2

L(zj ) FlimK and T ∗
amin

(zj ) =
Ta,lim/(1 + zj ). Using the Kendall τ rank test, we determine

whether LX and T ∗
a are independent or not. The test shows

some dependence, so we apply a coordinate transformation by
defining a new luminosity L′

X as

log10 L′
X = log Lx + α log T ∗

a . (11)

We then vary α and determine the value of τ (the correlation
between L′

X and T ′
a) as a function of α. The value of α which

gives τα = 0 determines the correlation between LX and T ∗
a with

the 1σ range of uncertainty given by |τα| � 1.
Figure 3 shows the variation of τalpha with α. As can be seen,

independence is achieved (τ = 0) for α = 1.07 with a 1σ range
of α = (−1.21,−0.98), therefore α = −1.07+0.09

−0.14. This means
that LX and T ∗

a are correlated with an intrinsic slope of 1.07 and
that the significance of this correlation is at the 12σ level. The α
value is flatter than that obtained from the raw data of the whole
sample (parameter b) and it is compatible with the average value
of the slopes of the subsamples shown in Table 1.

With the EP method, we are able to both overcome the
problem of selection effects and determine the intrinsic value of
the slope because we removed the induced correlation from the
observables due to the time evolution and luminosity evolution
dividing the respective time and luminosity for the respective
evolution functions, as is explained above. Any differences
between the correlation obtained from our methods and the
present one in the raw data are assumed to arise from selection
effects and partly to time evolution. The evolution seen in
Figure 1 (central panel) is due to observational biases and partly
to time evolution. In fact, we have determined that there is
no cosmological evolution of LX , and that the evolution of T ∗

a

becomes significant at high redshift only.
We also present results for a sample of 53 GRBs that are in

common between a previous sample of 77 GRBs (Dainotti et al.
2010) and the present one (see the green line of Figures 3 and 4).
For the sample of 53 GRBs, we have adopted as a limiting flux
1.8 × 10−12 erg cm−2 s−1, adopting the same criterion as for
the larger sample. In this case, we have 47 GRBs remaining
above the adopted flux limit, again resulting in 90% of the
sample being retained. We note that there is compatibility
within the 1σ range among the power-law slopes (α) of the
two samples. The two samples are fitted with different fitting
procedures, one procedure leaves ta free to vary (101 sample)
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Figure 3. Left panel: test statistic τ vs. α, the slope of the LT correlation. Right panel: test statistic τ vs. α∗ = 1/α, the power slope of the reciprocal of the LT
correlation defined by Equation (12). The vertical lines show the best value τ = 0, and the 1σ range for |τ | � 1 for α and α∗. Note that we expect α = 1/α∗, which
is the case within 1σ , showing the consistency of our results. The τ values for the earlier sample of 53 GRBs are also shown by (green) dotted lines. This is also
consistent with the result from the current sample of 101 GRBs.

(A color version of this figure is available in the online journal.)

Figure 4. Left panel: test statistic τ vs. kLx , the luminosity evolution defined by Equation (8). Right panel: test statistic τ vs. kT ∗
a

, the time evolution defined by
Equation (9). The red line represents the full sample of 101 GRBs, while the green line represents the small sample of 47 GRBs in common with the previous sample
of 77 GRBs.

(A color version of this figure is available in the online journal.)

and the other fixes ta = Tp, where Tp is the beginning of
the decay phase of the prompt emission; therefore, we here
stress that we still find compatible results proving that the
LT correlation intrinsic slope is independent of the particular
procedure adopted.

In addition, for a consistency check we have used an inverted
transformation

log10(T ′
a) = log T ∗

a + α∗ log LX (12)

and followed the same procedure to determine τ as a function
of α∗. We expect α∗ = 1/α. The result is shown in the
lower right panel of Figure 7. Values of α∗ = −0.71−0.10

+0.12 are
compatible within 2σ with 1/α = −0.93 ± 0.09 obtained from
the previous transformation. This further demonstrates that the
method is well built and the results are robust. However, for
an exact compatibility we would expect α∗ = 1/α (see also
the Appendix).

4. THE CUMULATIVE LOCAL LUMINOSITY
AND DENSITY FUNCTIONS

Since we found no luminosity evolution, the cumulative
distribution of Φ(>L) = ∫ ∞

L
Ψ(L′)dL′ according to our method

(Petrosian 1992) is given as

Φi(Li) =
∏
k

(
1 +

1

n(k)

)
. (13)

Here, n(k) is the number of objects in the associated sets of
object k, namely, those with L > Lk and z < zmax.

The density rate evolution ρ(z)′ and the luminosity function
(with ′ we indicate the differential symbol), which give the num-
ber of objects per unit comoving volume V per unit source lumi-
nosity, can be computed using the EP method. The method gives
the cumulative functions σ (< z)′ = ∫ z

0 ρ(z′) [dV (z′)/dz′] dz′

and φ(>L′) = ∫ ∞
L′ ψ(L′′) dL′′. The differential functions ρ ′

and ψ are obtained by differentiation.
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(red points) and described in Section 4. Right panel: the cumulative local luminosity distribution of the raw data (black point) and corrected by the EP method (red
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(A color version of this figure is available in the online journal.)
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Figure 6. Left panel: the cumulative intrinsic luminosity function determined by the EP method along with a fitted function as discussed in Section 4. Right panel: the
cumulative intrinsic density distribution with two fitted function lines as discussed in Section 4. The blue line is until z = 1, while the green line is for z > 1.

(A color version of this figure is available in the online journal.)

One can define the cumulative density function as follows:

σ(zj ) =
∏

i

(
1 +

1

m(i)

)
, (14)

where i runs over all objects with a redshift lower than or equal
to z, and m(i) is the number of objects with a redshift lower
than the redshift of object i which is in object j’s associated
set. In this case, the associated set is again those objects with
an X-ray luminosity that would be seen if they were at object
i’s redshift. The use of only the associated set for each object
removes the biases introduced by the data truncation. We show
the distribution of the corrected cumulative density distribution
in the right panel of Figure 5 (red points), which is contrasted
with the raw distribution (black points).

As is evident, the correction for the cumulative density starts
to apply for z = 1, namely, we have a higher density of GRBs
than that observed for z > 1. In Figure 5 (left panel), the
corrected cumulative luminosity function agrees with the raw
observed luminosity distribution until LX = 1048 erg s−1, while
for higher values of the luminosity the two distributions separate.

To obtain the differential distribution ψ(L) and ρ ′(z), we
fitted the cumulative luminosity function with a polynomial of

the order of seven, while for the cumulative density we divide
the distribution into two parts, one with z � 1, as we can see
from Figure 6, (blue line) and the other part for z � 1 (green
line). The two fitting lines are both a polynomial of the order
of five.

5. DISCUSSION

The obtained τα versus α plot (right panel of Figure 3) clearly
demonstrates the existence of a significant LT correlation at the
12σ level, characterized by the value found for the power-law
slope relating the luminosity and the plateau end times.

Therefore, the analysis presented, with the intrinsic value of
the power-law slope of the LT correlation, provides new con-
straints for physical models of GRB explosion mechanisms.
With this new determination of the correlation power-law slope,
we discuss the consequences of these findings for GRB physical
models. The LT relation is predicted by several theoretical mod-
els (Cannizzo & Gehrels 2009; Cannizzo et al. 2011; Dall’Osso
2010; Yamazaki 2009; O’Brien & Rowlinson 2012; Bernardini
et al. 2012a) and in other observational ones (Ghisellini et al.
2009; Qi & Lu 2012), proposed for the physical GRB evolution
in the time Ta. Recently, Oates et al. (2012) pointed out the

7
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Figure 7. Upper panels: the distribution of the redshift (left), the time T ∗
a (middle), and the spectral index (right) for the sample of 101 GRBs used in the analysis.

Lower panels: the LX–T ∗
a distribution for a set of 101 simulated GRBs discussed in the Appendix (left); test statistic τ vs. the LT correlation power slope parameter

α (center); and the reciprocal of it α∗ (right), for the simulated set. The 1σ range of best-fit values is where |τ | � 1, shown by the vertical dotted lines.

(A color version of this figure is available in the online journal.)

existence of an anti-correlation between the luminosity at 200 s
and the decay slope of the optical light curve. This correlation is
related to the LT one considered here. Racusin & Oates (2013)
recover the Oates et al. correlation in the X-ray band. Therefore,
it is now even more challenging to understand the meaning of
the LX and T ∗

a correlation, which becomes the principal X-ray
afterglow correlation from which further correlations in other
wavelengths can be derived. From a theoretical point of view, the
Cannizzo model predicts a correlation slope (3/2) that is only in
agreement with our intrinsic correlation power law within 3σ ,
while the model of Yamazaki predicts a less steep decay that is
in agreement within 1σ with the presented results. The LT corre-
lation is also recovered for short GRBs (O’Brien & Rowlinson
2012) within the magnetar scenario. Any physical interpreta-
tion of the LT correlation should be based on the intrinsic power
slope and not that obtained from the raw observed quantities.
In fact, assuming the observed power law as a key feature to
discriminate among physical models could lead to misleading
results based either on data truncation or on redshift evolution.
We conclude that determining the intrinsic correlations among,
and distributions of, the observables is a necessary step be-
fore any possible and plausible use of the LT correlation as a
theoretical model discriminator, distance estimator, and useful
cosmological tool. Therefore, this paper opens a new perspec-
tive not only on the interpretation of the LT correlation, but also
on the other existing GRB correlations and prepares for a new
possible future approach for the use of GRBs in cosmology.
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Data Centre at the University of Leicester. M.D. is grateful to
Richard Willingale and Paul Obrien for comments on the paper
and Qin Rong Chen for fruitful discussions. M.D. is also grateful
to the Polish MNiSW through grant No. N203 579840, the
Fulbright Scholarship, and the Ludovisi-Blanceflor Foundation.

M.O. is grateful to the Polish National Science Centre through
grant DEC-2012/04/A/ST9/00083.

APPENDIX

As a further test of the robustness of the main conclusion
of this work, we have applied the analysis methods discussed
here to a simulated observational data set with a known intrinsic
LT correlation. As is clear from the upper panels of Figure 7,
the distributions of the three observables in the real data, the
time, T ∗

a , the spectral index, βa , and the redshift, z, can be
approximated with normal distributions with mean values of
〈βa〉 = 1.05, 〈T ∗

a 〉 = 3.5, and 〈z〉 = 2.09. Therefore, we have
created a Monte Carlo population with these distributions. The
luminosities are determined by applying an LT correlation with
log LX ≈ −1.9 log T ∗

a , where −1.9 in this case is the imposed α
slope of the LT correlation (see the lower left panel of Figure 7).
We then compute the simulated fluxes from the simulated β, z,
and LX . We have imposed the same limiting flux used for the
real observational data to form an “observed” simulated data
set to which we then apply the analysis method discussed in
this work. Application of the method successfully recovers the
known intrinsic power-law slope of the LT correlation and its
inverse as is shown in the lower central and right panels of
Figure 7.
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