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Abstract

High-end parallel systems present a tremendous research challenge on how to best allo-
cate their resources to match dynamic workload characteristics and user habits that are often
unique to each system. Although thoroughly investigated, job scheduling for production sys-
tems remains an inexact science, requiring significant experience and intuition from system
administrators to properly configure batch schedulers. State-of-the-art schedulers provide many
parameters for their configuration, but tuning these to optimize performance and to appropri-
ately respond to the continuously varying characteristics of the workloads can be very difficult
— the effects of different parameters and their interactions are often unintuitive.

In this paper, we introduce a new and general methodology for automating the difficult
process of job scheduler parameterization. Our proposed methodology is based on online sim-
ulations of a model of the actual system to provide on-the-fly suggestions to the scheduler for
automated parameter adjustment. Detailed performance comparisons via simulation using ac-
tual supercomputing traces from the Parallel Workloads Archive indicate that this self-adaptive
parameterization via online simulation consistently outperforms other workload-aware methods
for scheduler parameterization. This methodology is unique, flexible, and practical in that it
requires no a priori knowledge of the workload, it works well even in the presence of poor user
runtime estimates, and it can be used to address any system statistic of interest.

Keywords: batch scheduler parameterization, high-end parallel systems, self-adaptive sched-
ulers, backfilling, performance analysis, online simulation.

1 Introduction

Large-scale clusters of multiprocessors have emerged as the dominant platform for high-end com-
puting, comprising almost 60% of the Top 500 list! as of June 2004. Traditional scheduling policies
for clusters and other high-end distributed memory systems consider scheduling a single resource,
i.e., CPU only, and focus on treating differently interactive versus batch jobs [1] with the goal
of maximizing system utilization. Industrial-strength schedulers that are widely accepted by the
supercomputing community, including the Maui scheduler [10], PBS [12], and IBM LoadLeveler [4],
offer a variety of configuration parameters that allow the system administrator to customize the

*This work was partially supported by the National Science Foundation under grants CCR-0098278, and ACI-
0090221.
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scheduling policy according to the site’s needs. The effectiveness of the scheduler is directly de-
termined by the administrator’s choices for the configuration parameters. However, tuning these
parameters to optimize performance is extremely challenging because it is difficult to predict the
outcome based on the interaction of many different changing parameters. Choosing appropriate
scheduling parameters in such complex environments requires not only awareness of the perfor-
mance effects of existing queuing in the system, but also requires a keen understanding of the
effects of transient behavior in the workload. Static definition of scheduling parameters is clearly
insufficient to cope with sudden changes in the workload intensities and demands.

In the literature, scheduling policies based on backfilling have been proposed as more efficient
alternatives to simple FCFS scheduling [11]. In backfilling, users are expected to provide nearly
accurate estimates of the job execution times. Using these estimates, the scheduler scans and
reorders the waiting queue, allowing certain short jobs to surpass long jobs in the queue provided
those short jobs do not delay certain previously submitted jobs. The goal of backfilling is to decrease
system fragmentation and increase system utilization [11, 14] by using otherwise idle processors for
immediate execution. Various versions of backfilling have been proposed [6, 11, 13|, including
algorithms for gang-scheduling [15], and backfilling can be found in most contemporary cluster
installation schedulers [2, 5]. For a recent survey of parallel job scheduling in general, including
backfilling in particular, we direct the interested reader to [2].

The two important external parameters that affect performance and scheduling decisions in a
parallel system are the arrival process and the service process. Variations in the intensities of
arrivals and service requirements are responsible for the growth of waiting queues to a certain point
beyond the “knee of the curve”, i.e., the point where the individual response times of the jobs
increase dramatically and the system operates in saturation. Dramatic changes in the resource
demands are consistent across actual workloads [7, 8], as evidenced by very skewed run times
within each workload, by significant variability in the average “width” of each job, i.e., the number
of per-job requested processors, and by very inconsistent job arrival rates across time.

Based on these observations, the authors in [7, 8] proposed a multiple-queue backfilling scheduling
policy for homogeneous systems that allows the scheduler to swiftly change certain configuration
parameters according to changes in the incoming workload. This multiple-queue policy splits the
system into multiple partitions (the number of partitions is fixed), with one queue per partition,
and separates short from long jobs by assigning incoming jobs to different queues based on user-
provided job runtime estimates. Initially, processors are distributed evenly among the partitions,
but as time evolves, processors may move from one partition to another so that processors currently
idle in one partition may be used for immediate backfilling in another. Hence, the system is able to
adjust on-the-fly according to changes in the incoming workload, and, in this manner, the average
job slowdown is reduced by diminishing the likelihood that a short job is delayed behind a long
job.

However, the solution presented in [8] suffers from two major drawbacks. First, the choice for
the fixed number of partitions is not obvious, and it must be determined a priori. Even when
given a number of partitions, the selection of static criteria for assigning jobs to partitions based
on runtime estimates is also not obvious and must be done a priori. The observed inconsistencies
across time for the arrival patterns and service demands in workloads imply that such a prior:
and static selection of the number of partitions and partitioning criteria cannot guarantee good
performance across the lifetime of the workload.

Second, prerequisite to the classification of jobs to partitions is the availability of accurate job
runtime estimates. User-provided runtime estimates are notoriously inaccurate [9, 11]. Users tend



to “overestimate” expected execution time of jobs to avoid having the job terminated by the sched-
uler due to a short estimate. Furthermore, if a job crashes (which often happens very early in its
execution), there will likely be a significant discrepancy in the estimated and actual execution time.
Such inaccurate estimates often cause jobs to be placed into inappropriate partitions, diminishing
system performance [8].

This paper addresses the above shortcomings of multiple-queue backfilling. The stated goals and
outline of this work are:

e To present a methodology for automatic recalculation of job partitioning criteria, given a
fixed number of queues (see Section 2). This methodology is based on observation of the past
workload behavior to predict future workload behavior.

e To present a general and practical methodology for automating scheduler parameterization.
The methodology uses online simulation to select the ideal number of queues on the fly (see
Section 3). We further show that online simulation allows the system to recover from incorrect
(and possibly unavoidable) decisions.

e To summarize our contributions and outline future work (see Section 4).

In this paper we make an important step toward the development of a robust, general, and prac-
tical methodology to automate the difficult process of job scheduler parameterization in high-end
parallel clusters. This methodology involves self-adaptive parameterization under conditions of
continuous change in the workload arrival intensities and service demands, and is based on the
timely execution of simple yet very effective simulation models. These efficient simulation models
can explore the performance implications of different scheduling parameters, i.e., they can suggest
the “best” parameters given the current state of the system. We therefore approach the problem
assuming no a priori knowledge about the workload — only that historical information about the
incoming workload can be recorded. Furthermore, we stress that although herein we consider this
methodology in a specific context, the methodology can be adapted to address any system and
specific statistics of interest. The proposed online simulation methodology proves very effective, as
evidenced by extensive experimentation using traces from the Parallel Workloads Archive [3].

2 Multiple-Queue Backfilling: Solutions and Shortcomings

In [7], workload analysis using actual runtimes from traces in the Parallel Workloads Archive showed
that using four queues provides the best separation of jobs to reduce the waiting time of jobs. The
motivation for using four queues was given after examining the statistical characteristics of workload
traces available in the Parallel Workloads Archive.?

In Figure 1, we provide a representative sample of the resource demands of two actual super-
computer traces, the first, labeled KTH, from a 100-node SP2 at the Swedish Royal Institute of
Technology, and the second, labeled SDSC-SP2, from the 128-node IBM SP2 at the San Diego
Supercomputer Center. Figures 1(a)-1(f) illustrate the time evolution of the arrival process by
presenting the total number of arriving jobs per week, the time evolution of the service process,
and its coefficient of variation (C.V.). We observe significant variability in the job arrival and
service processes, which indicates the importance of not only aggregate statistics (i.e., the average

*For more details on trace workload analysis, we direct the interested reader to [7].
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Figure 1: Total number of arriving jobs per week (a)—(b), mean job service time per week (c¢)—(d),
coefficient of variation (C.V.) of job service times (e)—(f), and percentage of jobs per class (g)—(h).
All graphs are presented as a function of time (weeks).

performance measures obtained after simulating the system using the entire workload trace), but
also of transient statistics within small windows of time.

Figures 1(c)-1(f) also show the mean service times and their respective C.V.s if jobs are classified
according to their duration (dashed lines). We observe very skewed run times within each workload
and significant variability in their C.V.s, which significantly reduce if jobs are classified according
to their duration. This classification also aims at balancing the length of each of the four queues
by keeping the number of jobs per week assigned to each queue nearly the same. Figures 1(g)-1(h)
shows that despite the fact that we have a priori knowledge of the workload demands, this static
classification does not result in a well-balanced system across time as the target of maintaining
roughly 25% of the number of jobs per class, is not reached across all weeks. The multiple-queue
backfilling policy that was developed in [7] is based on this classification, and experiments indicate
that a four-queue classification is promising across most of the workload traces from the Parallel
Workloads Archive, but no clear answer is given as to what the ideal number of queues should be.
Furthermore, given a predefined ideal number of queues, no clear answer is given to the problem
of how to best partition jobs into different classes in order to meet the needs of a dynamically
changing workload. We address these two questions in the following sections.

2.1 The Multiple-Queue Backfilling Policy

The multiple-queue backfilling policy splits the system into multiple disjoint partitions, with one
queue per partition. Initially, each partition is assigned an equal number of processors. As time
evolves, processors idle in one partition can be used for backfilling in another partition. In this way,



the partition boundaries are dynamic, allowing the system to adapt itself to fluctuating workload
patterns. Furthermore, the policy does not starve a job that requires all processors for execution.

In general, the process of backfilling exactly one queued job (of possibly many queued jobs to be
backfilled) proceeds as follows. Let P be the partition to which the job is assigned. Define p,, to
be the pivot (i.e., the first job in the queue) in partition P, and define ¢, to be the time when p,,
can begin executing. If the job under consideration is p,, it begins executing only if the current
time is equal to ¢, in which case a new p,, is defined. If the job is not p,,, the job begins executing
only if there are sufficient idle processors in partition P without delaying p,,, or if partition P can
obtain sufficient idle processors from one or more other partitions without delaying any pivot. This
process of backfilling exactly one job is repeated, one job at a time, until all queued jobs have been
considered. The multiple-queue backfilling policy, outlined in Figure 2, is executed whenever a job
is submitted or whenever an executing job completes.

for (all jobs in order of arrival)
1. P <« partition in which job resides
2. p, «— pivot job (first job in the queue for P)
3. t, «— earliest time when sufficient processors will be available for p,,
4. i, «— currently idle processors in P
5. x, «— idle processors in partition P at ¢, not required by p,,
6. if (job is p,,)
a. if (current time equals ¢,)
I. if necessary, reassign processors from other partitions to P
I1. start job immediately
7. else
a. if (job requires < i, and will finish by ¢, ) start job immediately
b. else if (job requires < min{i,,z,}) start job immediately
c. else if (job requires < {i, plus some combination of idle/extra processors in other partitions}
such that no pivot is delayed)
I. reassign necessary processors from other partitions to P
II. start job immediately

Figure 2: Multiple-queue backfilling algorithm

Although permitting processors to cross partition boundaries begins to address the issue of fluctu-
ating workload patterns, the fixed criteria for defining job classes and assigning them to partitions,
as given in [7, 8] (see legend in Figure 1), are too inflexible for a good general solution. These
fixed criteria must be determined a priori, which is impossible in any real world scenario. A better
approach, which we introduce here, is to dynamically recompute the partitioning criteria to better
meet the needs of the transient arrival and service demands of evolving workloads.

To this end, at the start of each new week, we evaluate the set of jobs that completed in the previous
week. Using this set of jobs only, we define new partitioning criteria by examining the estimated
runtimes of the jobs, and from those estimated runtimes select appropriate criteria that would have
balanced the number of jobs across all queues. The algorithm for determining the partitioning
criteria for a new week is given in Figure 3. As described in the sections to follow, this algorithm
provides the multiple-queue backfilling policy more flexibility to respond to workload fluctuations,
yet alone it is not a sufficient general solution.



. P «— current number of partitions in the system
. S «— set of jobs that completed in the previous week
. F(t) «— build the cumulative distribution function using runtime estimates ¢ of jobs in S
. for (i from 1 to P)
find ¢; such that F(t;) =i/P
. New week’s partitioning boundaries for job with runtime estimate ¢ is
1, 0<t<ty

2, t1 <t<ts

W N =

[9)]

P:

P, tp1 <t<tp

Figure 3: Algorithm for automatically recalculating the job partitioning criteria in multiple-queue
backfilling.

2.2 Experimental Methodology

The simulation experiments are driven by four workload traces from the Parallel Workloads Archive

3]:

e CTC: log containing 79302 jobs executed on a 512-node IBM SP2 at the Cornell Theory
Center from July 1996 through May 1997;

e KTH: log containing 28490 jobs executed on a 100-node IBM SP2 at the Swedish Royal
Institute of Technology from October 1996 through August 1997;

e SCDC-SP2: log containing 73496 jobs executed on a 128-node IBM SP2 at the San Diego
Supercomputer Center from May 1998 through April 2000;

e Blue Horizon: log containing 250440 jobs executed on a 144-node with 8 processors per
node IBM SP at the San Diego Supercomputer Center from April 2000 through January 2003.

From the traces, for each job we extract the arrival time of the job (i.e., the submission time), the
number of processors requested, the estimated duration of the job, and the actual duration of the
job. Because we do not use job completion times from the traces, the scheduling strategies used on
the corresponding systems are not relevant to our study.

We evaluate and compare via simulation the performance of multiple-queue backfilling relative to
standard single-queue backfilling. We consider aggregate measures, i.e., average statistics computed
using all jobs for the entire simulation run, and transient measures, i.e., per-week snapshot statistics
that are plotted versus experiment time to illustrate how the policies react to sudden changes in the
workload. The performance measure of interest here is each job’s bounded slowdown?® [11] defined
by

d

=l
° - max{10, v}

where d and v are respectively the queuing delay time and the actual service time of the job. To
compare the multiple-queue policy with the single-queue policy, we define the slowdown ratio R for

3The maximizing function in the denominator reduces the otherwise dramatic impact that very small jobs (less
than 10 seconds execution time) can have on the slowdown statistic.



a job by the equation
S1 — Sm

~ min{s1, sm}
where s1 and s, are the bounded slowdowns computed for that job using respectively single-queue
and multiple-queue backfilling. R > 0 indicates a gain in performance using the multiple-queue
policy relative to a single queue. R < 0 indicates a loss in performance using the multiple-queue
policy relative to a single queue. The aggregate and transient measures are computed as averages
of job slowdown ratios.*

Note that the use of the R metric is meaningful in the context of our goals. We compare individually
the performance of each job under the two different policies. If one policy outperforms the other
with respect to a given job, this will be reflected in the measurement — but a loss in performance
relative to the other policy will also be reflected. Our goal is to improve the overall slowdown
by reducing the queuing delay experienced by short jobs. Since the bounded slowdown metric is
most affected by queuing delay for short jobs, a positive result for R indicates that, indeed, the
multiple-queue policy is assisting the shorter jobs.

2.3 Multiple-Queue Backfilling: Strengths and Weaknesses

In this section, we present results showing that the multiple-queue backfilling policy outperforms
the standard single-queue policy in the presence of exact estimates and, in most cases, in the
presence of inexact user runtime estimates. For the figures to follow, we use the multiple-queue
backfilling algorithm with four queues enhanced by automatic recalculation of the job partitioning
criteria, but without any other modifications.

Figure 4 depicts the aggregate slowdown ratio R of multiple-queue backfilling relative to single-
queue backfilling for each of the four workloads. Figure 4(a) provides an overall comparison of the
relative performance of the two policies when exact runtimes are provided by the user and when
these same exact runtimes are used for recomputing the job partitioning criteria each week. In other
words, we assume that we have the ideal case, where the workload is known a priori. As shown
by these aggregate performance measures, multiple-queue backfilling provides better overall job
slowdown (i.e., R > 0) for all four traces. There are, as one can expect, varying degrees of success
from one workload to another, with SDCS-SP2 receiving the best performance gain while CTC
receives the most modest gain. Nonetheless, the improvement for CTC and Blue Horizon using
multiple-queue instead of single-queue backfilling are more than 120% and 200%, respectively.

Figure 4(b) provides an overall comparison of the relative performance of the two policies using in-
exact user estimates (i.e., runtime estimates provided in the workload traces), and when the runtime
estimates of the previous week are used to recalculate the job partitioning criteria using the algo-
rithm of Figure 3. The figure shows that partitioning using user estimates can negatively impact the
performance of multiple-queue backfilling. User runtime estimates are notoriously poor [9, 11]. As
a result, user estimates can lead to poor partitioning of jobs relative to their actual runtimes so that
the effectiveness of the multiple-queue policy is reduced. Nonetheless, performance improvement
relative to single-queue backfilling is achieved for three of the four traces, with improvement for
SCSD-SP2 over that using exact estimates. Note that for CTC, however, multiple-queue backfilling
with inexact estimates performs worse overall than single-queue backfilling.

4Note that, when computing these measures, we ignore jobs that executed for less than 10 seconds but requested
more than one minute. These jobs appear to have crashed, and considering their results often dramatically skews the
measures in our favor. We do not feel that these skewed measures are a meaningful representation.
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(a) CTC (b) KTH
15 T T T T 60 T T T T

inexact estimates ' inexact estimates
0 actual runtimes N b 40 - actual runtimes

Slowdown Ratio
Slowdown Ratio

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

week week
(c) SDSC-SP2 (d) Blue Horizon
500 T T
inexact estimates 40 + . . [
wop I o e ;;
g 30) .
= 300 = i
&~ & 0"
£ 200 £ ‘
S S
i .
2 100 2
2 72
0 ! /
—100 L _10 L L L L \»
0 20 0 60 80 100 0 20 40 60 80 100
week week

Figure 5: Slowdown ratio R per week as a function of time for each of the four traces. For dashed
lines, actual runtimes were used with a priori knowledge of the workload. For solid lines, inexact
user estimates were used with no a priori knowledge.

We now turn to the transient performance behavior of multiple-queue backfilling. Figure 5 depicts
transient one-week snapshots of the slowdown ratio versus time for each of the four traces. The
dashed lines in the figure represent the improvement of multiple-queue backfilling over single-queue



backfilling when using actual runtimes of that same week as exact estimates for job classification
(i.e., a priori knowledge). Generally, marked improvement in job slowdown is achieved (R > 0)
by using multiple-queue backfilling. Although single-queue outperforms multiple-queue backfilling
(R < 0) for a select few of the weeks (e.g., week 11 for KTH, week 101 for Blue Horizon), R
is positive for a majority of the weeks, corresponding to performance gains using multiple-queue
backfilling.

The solid lines in Figure 5 represent the practical case when no workload is known a priori. In this
case, user estimates of the previous week are used to recalculate the partitioning criteria, and each
incoming job is allocated to a queue according to its estimated (inexact) runtime. In this context of
inexact user estimates, transient analysis is consistent with the generally diminished performance
shown in the aggregate results. Relative to the exact-estimate results (i.e., dashed lines), for three
of the four traces there is an increase in the number of negative peaks (R < 0) and the magnitude of
the positive peaks is diminished. This trend is most notable for CTC, with few prominent positive
peaks and several prominent negative peaks (e.g., weeks 30 and 40).

In short, our results show that multiple-queue backfilling with automatic recalculation of partition-
ing criteria provides dramatic improvement in slowdown relative to single-queue backfilling when
exact runtime estimates are known a priori. However, in the more realistic setting in which runtimes
estimates are not known, and are often very inaccurate, the performance benefit of multiple-queue
backfilling can diminish or can even result in a performance loss. These observations lead us to
consider an improved, more flexible scheduling policy discussed in the following sections.

3 Online Simulation Policy

The results in the previous section show that in most instances the multiple-queue policy outper-
forms the single-queue policy overall, but there are instances where the single-queue policy does
perform better, especially (in the practical case) when only inexact user runtime estimates are
available. Although with estimates the algorithm looks at the past (previous week) to predict the
future (current week) for determining the partitioning criteria, experiments with different numbers
of queues® (e.g., 2, 3, and 8) have also shown that there is no universal number of queues that is
ideal across all weeks for each workload. For some weeks, two queues may perform better than
three, but for some others four queues perform best. Based on this observation, we introduce a
new scheduling policy here that automates changing the number of partitions on the fly to address
transient workload fluctuations. The policy is based on the ability to execute lightweight simulation
modules in an online fashion.

More specifically, self-adaptive parameterization based on online simulation can be described as
follows. Given a current state of the system, and given a set of jobs that are waiting for service in
the queue, we simulate a different scheduling policy (as defined by a different number of partitions
for multiple-queue backfilling with automatic recalculation of partitioning criteria).® The main
idea is to run a quick trace-driven simulation for the waiting jobs without affecting the operation
of the actual system. The ability to run and compare the performance of several such simulations
(each modeling a different policy) within a very short time can help provide educated changes
in the policy employed by the scheduler to better serve the waiting jobs. These simulations are

®Due to space restrictions we do not present these results in this paper
51n this regard, it should be noted that single-queue backfilling is a special case of the more general multiple-queue
backfilling with P = 1.



triggered whenever a performance measurement (here, bounded slowdown) exceeds a pre-specified
threshold. The multiple simulations are executed online but with the initial state of the simulation
exactly the same as the state of the real system. The number of partitions that provides the best
simulated performance is then chosen as the (perhaps new) number of partitions in the real system,
with appropriate reconfiguration (if necessary) of the real system to incorporate this number of
partitions. In this fashion, we anticipate to reach faster system recovery from “wrong” scheduling
decisions (because of inexact user estimates that direct jobs to the wrong queues) that result in a
substantial increase in the waiting queue (and consequently significant increase in the average job
slowdown).

3.1 Policy Parameterization

More specifically, for the online simulation policy, define the following parameters.

e 7: the pre-specified bounded slowdown threshold that triggers online simulation; and

e L: the length of time (weeks) to simulate.

Let P be the current number of partitions in the system, and let Ppax be the maximum number of
partitions allowed in the system. When the aggregate bounded slowdown in the system exceeds 7,
Prhax online simulations are executed, using multiple-queue backfilling with automatic recalculation
of partitioning criteria, with 1,2,..., Pyhax partitions respectively. The simulation with the best
aggregate bounded slowdown for the simulated period £ determines the number of partitions to be
used in the actual system.

We stress that for each experiment we must start the online simulation in ezactly the same state as
the real system, but with a different number of partitions. If the number of partitions is different,
we keep the same collection of queued jobs that are present in the real system, but we must partition
those jobs differently based on the new partitioning criteria that are adjusted for the new number
of partitions. For more details on this and other implementation particulars, we direct the reader
to Appendix A.

3.2 Performance of the Online Simulation Policy

In this section, we present results showing that the online simulation policy, using multiple-queue
backfilling with automatic recalculation of partitioning criteria, performs well even in the presence
of inexact user estimates. That is, unlike certain instances for multiple-queue backfilling with
automatic recalculation of partitioning criteria alone, the online simulation policy is able to perform
well even when there is no a priori knowledge of the workload.

For Figures 6 and 7, we have used the online simulation policy parameters’ shown in Table 1.
Figure 6 depicts for each of the four workloads the aggregate slowdown ratio R relative to single-
queue backfilling for (a) multiple-queue backfilling using actual runtimes with a priori knowledge,
(b) multiple-queue backfilling using inexact user estimates and no a priori knowledge, and (c) online
simulation using inexact user estimates and no a priori knowledge. Note that, with each policy in
the presence of inexact user estimates, online simulation outperforms multiple-queue backfilling for

"We empirically selected these parameters by comparing results from simulation runs for each trace with 7 €
{2.5,5,7.5,10, 25,50, 75,100} and L € {1,2}.

10



‘ Workload ‘ T ‘ﬁ
CTC 2.5 | 2
2
1
1

KTH 100
SDSC-SP2 25
Blue Horizon | 10

Table 1: Selected online simulation policy parameters for the four workloads.

each of the four traces (compare (b) and (c)). Furthermore, online simulation with inexact user
estimates performs nearly as well as multiple-queue backfilling with actual runtimes (i.e., a priori
knowledge) for CTC and Blue Horizon, and even better for KTH and SDSC-SP2 (compare (a) and
(c)). Even though in an actual scheduling context we can not know exact runtimes a priori, our
results suggest that with online simulation we can perform nearly as well as, or even better than,
having a priori knowledge of the workload.
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Figure 6: Aggregate slowdown ratio R for four traces using actual times as exact estimates, using
inexact user estimates, and using online simulation.

Figure 7 depicts transient one-week snapshots of the slowdown ratio R versus time using online
simulation with inexact user estimates. The solid lines represent the results from using online
simulation and no a priori knowledge of the workload; the dashed lines represent the results from
using multiple-queue backfilling assuming a priori knowledge of the workload, and are the same
as the dashed lines in Figure 5. Again R > 0 indicates a performance gain from using online
simulation relative to single-queue backfilling. For the solid lines, R is positive for a majority of
the weeks, and the number of negative spikes prevalent in Figure 5 is dramatically reduced, most
specifically for CTC. Also notice that online simulation corrects the problems that multiple-queue
backfilling experiences with inexact estimates.

Table 2 provides statistics for the online simulation tests and associated partition changes — these
data were gathered from the same experiments that produced Figures 6 and 7. The table also
lists per-partition statistics on the number of changes to P = 1,2,3 and 4 partitions for our
experiments. Notice that although the percentage of weeks with online simulation tests varies
significantly across workloads, the percentage of tests that result in a partition change is much
more stable. Furthermore, except for SP2, the number of partition changes to P = 1,2,3 and 4
are rather uniformly distributed. Notice that SP2 has relatively few changes to P = 1 partitions,
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Figure 7: Slowdown ratio R per week as a function of time for each of the four traces using online
simulation. For solid lines, online simulation was used with inexact user estimates (no a priori
knowledge of the workload). For dashed lines, multiple-queue backfilling was used with exact user

estimates (assuming a priori knowledge).

% Weeks | # Partition % Tests
Workload # Weeks | # Tests | With Test Changes With Change
CTC 48 44 91.7 27 61.4
KTH 48 26 54.2 18 69.2
SDSC-SP2 104 90 86.5 53 58.9
Blue Horizon 104 60 D7.7 41 68.3

Workload ‘ # Changes ‘ #toP=1 ‘ # to P =2 ‘ #toP=3 ‘ #toP =4 ‘
CTC 27 7 8 8 4
KTH 18 2 6 4 6
SDSC-SP2 53 4 16 13 20
Blue Horizon 41 10 9 7 15

Table 2: Queue change statistics using online simulation for the four traces.

suggesting that the SP2 workload is better suited to multiple queues — this is also consistent with
the improvements that multiple-queue backfilling alone achieves (as shown in Figures 4 and 5).

We note that online simulation cannot be used indiscriminately. Instead, the online simulation
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policy parameters 7 and £ should be tuned to match the characteristics of a specific system. As
suggested by the previous figures, appropriate parameters can lead to very good performance even
in the presence of inexact runtime estimates. However, inappropriately chosen parameters can lead
to a loss in performance with respect to single-queue backfilling. Figure 8 depicts the aggregate
slowdown ratio R for four different selections of online simulation parameters for the CTC trace.
For these examples, notice that, even with the same choice for 7, a different choice for £ determines
whether there is an overall gain or loss in performance. Figure 9 depicts the transient slowdown
ratio for the same parameters. Choosing £ = 1 leads to a dramatic loss in performance around
week 30, which is mostly responsible for the loss in performance noted in the aggregate measures.
For reference, superimposed are dashed lines representing the best choice of parameters for CTC
— the same as the solid line for CTC in Figure 7.
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Figure 8: Aggregate slowdown ratio R for the CTC trace with four different online simulation
parameter choices.

Moreover, the online simulation policy can provide great performance benefits, but the parameters
should be selected to match the workload of the system. Fortunately, for online simulation there
are few parameters that a system administrator must tune. Table 3 shows the aggregate slowdown
ratio R for each of the four traces with all online simulation policy parameters that we used in
our experiments. From these results, a choice of £ = 2 weeks provides good performance; the best
choice of 7 is specific to the workload. Furthermore, only 3 of the 64 experiments shown result in a
loss in performance with respect to single-queue backfilling. Our experiments show that, in general,
even if the parameters are chosen indiscriminately, the online simulation policy will improve the
performance of the system.

4 Concluding Remarks

We have presented a first step toward automating the difficult process of job scheduler parameter-
ization in high-end parallel systems. Detailed simulation experiments using actual supercomputer
traces from the Parallel Workloads Archive strongly suggest that self-adaptive policies are needed
to address the observed variability in workloads to improve policy performance. We have presented
a policy that is based on online execution of lightweight simulation modules, each modeling a dif-
ferent scheduling policy. This online simulation approach proves effective in modeling scheduling
micro-scenarios and departs from earlier work in that it strives for online tuning of scheduling
parameters, thus stressing speed in addition to accuracy. Speed allows for executing these alterna-
tive scheduling scenarios while the system is in operation, and for making conclusions on possible
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Figure 9: Slowdown ratio R per week as a function of time for the CTC trace with four different
online simulation parameter choices. For reference, superimposed with dashed lines are the results
using our best choice of parameters for CTC.

25/1 25/2 5/1  5/2 75/1 75/2 10/1  10/2
CTC 0649 0.712 -0.676 0269 -0.100 0.443 0572 0.559
KTH 5327 4520 5790 4918 5117 4543 5.608 4.577
SDSC-SP2  12.823 13.331 13.474 12.713 13211 11.613 13.200 11.573
Blue Horizon ~ 1.092  1.224 1.025  1.21 0922  1.33 0.897 1.356

25/1  25/2 50/1 50/2 75/1  75/2 100/1 100/2
CTC 0552 0.645 0.133 0.013 0.157 0.033 -0.637 0.466
KTH 5940 5.227 6.275 6.135 2.936  4.569 4.002  6.431
SDSC-SP2  13.709 11.675 11.972 12.961 12.433 12.547 6.985 10.831
Blue Horizon ~ 0.915 1.323 1.265 1.201  1.25 1.306 1.297 1.301

Table 3: Aggregate slowdown ratio R for all traces and all policy parameters 7 /L from our exper-
iments.

scheduler parameter reconfiguration if required. Our experiments indicate that this online method-
ology does allow for quick system recovery from earlier incorrect scheduling decisions, resulting in
schedulers that manage to adapt their parameters to the transient nature of the workload.
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In this paper we showed the effectiveness of online simulation when used to define the best param-
eters for performance in multiple-queue backfilling policies. Our future work will concentrate on
developing lightweight simulation modules that can be easily parameterized by the system admin-
istrator. More specifically, the system administrator may choose to optimize another measure than
average job slowdown, or may define policies that are not based on multiple-queue backfilling. Our
target is to provide a library of lightweight simulation modules which the system administrator
can use to define different policies and explore online their performance. Finally, we will provide
simulation modules that will allow the modeling of policies that provide priorities and reservations
to jobs, i.e., the schedule guarantees that a job completes by a certain time, or a job starts execution
at a specific time.
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A Particulars of Online Simulation

When executing an online simulation of the actual system with a number of queues different than
that of the current state of the system, certain issues must be addressed. This appendix discusses the
particulars necessary for performing online simulation in the context of multiple-queue backfilling
with automatic recalculation of partitioning criteria. These particulars, of course, depend on our
choice of multiple-queue backfilling as the scheduling policy. As discussed previously, the online
simulation methodology can certainly be used in the context of different scheduling policies and
different target statistics, but the particulars presented herein will change accordingly to match the
needs and functionality of the system being simulated.

A.1 Redefining the Partitioning Criteria

We must start the online simulation in exactly the same state as the real system, but perhaps with
a different number of partitions. If the number of partitions is different, we keep the same collection
of queued jobs that are present in the real system, but we must partition those jobs differently based
on new criteria. Exercising parsimony, we choose the online simulation partitioning criteria to be a
uniform reassignment of the actual system’s partitioning criteria. For example if P = 4 is the current
number of partitions in the actual system, if tp = ¢4 is as defined in Figure 3 for the actual system,
and if Py, = 3 is the number of partitions in the online simulation, then the partitioning criteria
in the online simulation for a job with runtime estimate ¢ is given in Figure 10(a)®. Analogously,
if P = 2 is the current number of partitions in the actual system, if tp = to is as defined in Figure 3
for the actual system, and if Py, = 4 is the number of partitions in the online simulation, then the
partitioning criteria in the online simulation is given in Figure 10(b)8.

81f a runtime estimate is greater than the upper bound for partition P, the job is assigned to partition P.
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Figure 10: Examples of uniform reassignment of partitioning criteria for online simulation.

A.2 Redefining the Pivot Jobs

We must also address pivot jobs in the context of a different number of partitions. If P > P, the
first pivot from the actual system assigned to a new partition P in the online simulation becomes the
pivot for P. Consider a pivot p in the actual system that is assigned to P in the online simulation
such that P has already been assigned a pivot — p retains its scheduled reservation for execution,
but is not otherwise considered a pivot. If P < Py, each pivot in the actual system becomes
the pivot for its assigned partition in the online simulation. Any partition in the online simulation
that is not initially assigned a pivot will subsequently be assigned a pivot as the online simulation
executes.

A.3 Actual System Reconfiguration

When choosing to reconfigure the actual system to a different number of partitions, we must also
address redefining the partitioning criteria and the pivot jobs. For reconfiguring the actual system,
the protocol for redefining partitioning criteria is the same as described in Section A.1 for online
simulations, and the protocol for redefining pivot jobs is the same as in Section A.2.
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