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Duration Measures for Corporate Project Valuation 

 
Abstract: 

 
Sensitivity analysis is a very common exercise performed with the forecasting of project 
cash flows. In this paper, a duration-type measure is generated that provides a single 
number for the assessment of project cash flows relative to changes in the discount rate 
(or adjusted for changes in a particular cash flow model parameter).  The calculation is no 
more difficult than the duration measures that already exist for bonds.  Yet, the 
calculation provides valuable insight that many times is lost when performing sensitivity 
analysis.  Further, at a minimum, the measure provides a gauge for the consequences of 
mis-specifiying the discount rate for a project. 
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INTRODUCTION: 

 When evaluating a project, forecasting parameters such as cash flows, timing of 

cash flows, and a discount rate is a necessary process.  Unfortunately, forecasted 

parameters are not always reliable even under the best of circumstances.  Consequently, 

even the best forecasting methods are subject to sensitivity analysis to determine the 

effects of changes in forecasting parameters.  Generally, this is performed by assessing 

various scenarios for the parameters and may even lead to a probability distribution for 

the project’s profitability.  The process is tedious and has the potential to provide analysis 

that is equally complex to interpret. 

 Ultimately, the goal of sensitivity analysis is to provide a measure of how 

susceptible the forecasted cash flows are to a change in the environment in which the 

forecasted cash flows have been generated.  When analyzing a bond portfolio, duration 

measures provide the equivalent of sensitivity analysis relative to interest rate changes.  

The purpose of this paper is to generate an equivalent duration measure for project cash 

flows.  Such a measure can be simple to calculate (depending on the cash flow structure 

or the modeling of the cash flows) and captures the intuition of project sensitivity 

analysis in a single number. 

 The current literature takes duration analysis beyond bonds and analyzes duration 

of equities (e.g. Havert, McLaughlin, and Taggart (1998)).  This investigation takes 

duration analysis to the project level and can in theory provide a duration measure for the 

cash flows of the entire firm or for the cash flows to equity holders.  The primary goal is 

to provide a duration measure relative to the discount rate (keeping cash flows static) 

because the discount rate is very difficult to assess for a project even when cash flows are 
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relatively certain.  However, duration measures can be calculated based on a cash flow 

model parameter (e.g. the sales growth rate) or based on the discount rate which can in 

turn also affect a cash flow model parameter. 

 In the first section of the paper, a duration measure for project valuation is derived 

and discussed.  An associated duration measure specific to a project input parameter is 

derived in the second section.  The third section concludes the paper.  In addition, there is 

an appendix containing VBA code for Excel-type functions to measure project duration 

and project convexity. 

 

SECTION 1: The Duration Measure for Project Cash Flows 

 Macaulay’s (1938) bond duration, “D”, is the negative of the first derivative of 

the bond price multiplied by (1 + discount rate) and divided by the bond price.  More 

specifically, let the discount rate be symbolized by “k” and let the bond price be 

symbolized by “P”. 

( )
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The duration is then used to find an approximate percentage change in the bond price 

given a change in the discount rate (see Bodie, Kane, and Marcus (2004)). 
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One can perform a similar calculation based on modified duration, “DM”, which is 

Macaulay’s duration divided by (1 + k). 

 The magnitude of the duration measure indicates the susceptibility of the bond 

price to an interest rate change.  A larger duration indicates a greater percentage change 
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in bond price should interest rates move.  To mitigate the risk of interest rate fluctuations, 

securities of varying duration can be combined to produce an optimal or target portfolio 

duration.  Consequently, duration is a simple metric that provides valuable insight in 

regard to bond portfolios.  This is the same intuition desired for evaluating project cash 

flows in regard to sensitivity analysis. 

 To create a “project duration” measure, “DP”, it is simply a matter of following 

the formula provided in equation (1).  Project cash flows (CFi), positive or negative, are 

evaluated on a periodic basis with a terminal value (TERMN) used to value all cash flows 

beyond period “N”.  Notice the project valuation, “V”, resembles a bond valuation 

without fixed coupons. 
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In practice, the terminal value is usually based on the Nth cash flow, “CFN”.  CFN is 

assumed to grow at a rate, “g”, into perpetuity and the terminal value is calculated as a 

growing perpetuity (assuming k > g). 
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Equation (5) restates equation (3): 
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Equation (6) is the negative of the partial derivative of the project cash flows relative to 

the discount rate: 
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Multiplying equation (6) by (1 + k) and dividing it by equation (5) produces the project 

duration: 
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  Although equation (7) appears daunting, the components of the equation are all 

based on what would be existing project cash flows.  Further, Excel subroutines are 

supplied in the appendix to perform the calculation. To demonstrate the calculation of the 

project duration and to allow for project comparison where the project duration measure 

is useful, Table 1 contains three projects that have the same net present value ($1,733.33), 

but with slightly different cash flows (Note: although the same discount rate and maturity 

are assumed for all three projects for presentation purposes, one should not infer that the 

discount rates or the maturities of the projects need to be the same for this type of 

analysis). 

Table 1: An Evaluation of Three Projects with Equivalent Net Present Values and 

Perpetual Cash Flows 

 

 

Time: 

Project 1 Cash 

Flows: 

Project 2 Cash 

Flows: 

Project 3 Cash 

Flows: 

Year 0 $ (2,000.00) $   (2,000.00) $ (2,000.00) 
Year 1 $     110.00 $           0.00 $     110.00 
Year 2 $     121.00 $       121.00 $     121.00 
Year 3 $     133.10 $       133.10 $     133.10 
Year 4 $     146.41 $       146.41 $     146.41 
Year 5 $     161.05 $       161.05 $     161.05 
Year 6 $     177.16 $       177.16 $     177.16 
Year 7 $     194.87 $       194.87 $     194.87 
Year 8 $     214.36 $       214.36 $     214.36 
Year 9 $     235.79 $       235.79 $     235.79 
Year 10 $     259.37 $       259.37 $     259.37 
Year 11 $     285.31 $       285.31 $     285.31 
Year 12 $     313.84 $       313.84 $         0.00 
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Year 13 $     345.23 $       345.23 $     345.23 
Year 14 $     379.75 $       379.75 $     379.75 
Year 15 $     417.72 $       417.72 $     417.72 
Year 16 $     459.50 $       459.50 $     459.50 
Year 17 $     505.45 $       505.45 $     505.45 
Year 18 $     555.99 $       555.99 $     555.99 
Year 19 $     611.59 $    1,223.18 $  1,223.18 
Year 20 $     672.75 $       672.75 $     672.75 

Terminal Value*: $11,661.00 $  11,661.00 $11,661.00 

Net Present Value: $  1,733.33 $    1,733.33 $  1,733.33 
Payback Period: 10.87 Years 11.23 Years 10.87 Years 
Discounted Payback Period: 20 Years 20 Years 20 Years 
Project Duration: 50.45 51.49 50.85 

Effect of 10 Basis Point 

Increase in Discount Rate: -4.59% -4.68% -4.62% 
Note: The discount rate is 10% APR. 
*The terminal value is based on the cash flow in Year 20 assuming a 4% perpetual growth rate.  This 
terminal value assesses all of the cash flows from Year 21 and onward.  

 

When examining Project 1, the numerator for equation (7) is $87,444.44 and the 

denominator for equation (7) is the net present value (NPV) of the project, $1,733.33.  As 

stated in Table 1, the project duration is 50.45 and indicates that a 10 basis point increase 

in the discount rate will reduce the NPV by 4.59% (-50.45*{0.1% ÷ (1 + 10%)} = -

4.59%).  To provide a comparison with Project 1, Project 2 has slightly different cash 

flows with an equivalent NPV (zero in Year 1, but offset with a higher cash flow in Year 

19).  However, due to having the larger cash flow in Year 19, Project 2 is more 

susceptible to a change in the discount rate.  Consequently, the project duration for 

Project 2 is higher than the project duration of Project 1 (51.49 compared to 50.45).  For 

Project 2, a ten basis point increase in the discount rate leads to a value reduction of 

4.68%  (-51.49*{0.1% ÷ (1 + 10%)} = -4.68%). 

Given the higher project duration in Project 2, Project 1 becomes the better choice 

if the projects are mutually exclusive or if there is a capital constraint preventing the 

acceptance of both projects should the projects be independent.  Should the two projects 
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be contingent, the duration of the combined project is simply the weighted average of the 

project durations (i.e. 50.97 = 50.45*{$1,733.33 ÷ $3,466.66} + 51.49*{$1,733.33 ÷ 

$3,466.66}).  Notice that the duration measure aids in assessing projects that are perfectly 

(or nearly) equivalent by the traditional NPV method.  In this case the NPV of both 

projects are equal, but one can also envision a case in which a project with a lower NPV 

may be deemed more acceptable because its duration is significantly lower than another 

project with higher NPV (assuming non-contingent projects).  However, an assessment of 

the trade-off between project duration and NPV is not pursued in this paper. 

NPV is not the only criteria in which projects can be assessed.  Using the Payback 

Period method, Project 1 is deemed better because the payback period of 10.87 years is 

shorter than the payback period of Project 2, 11.23 years.  The payback period method 

does capture some of what project duration measures because cash flows that accumulate 

faster lower the project duration.  The problem with the payback period method is that 

not all cash flows are considered as part of the measure.  The project duration measure 

does incorporate all cash flows and can quickly be converted to measure the effect of a 

change in the discount rate on the value of the project.  To illustrate the advantage of the 

project duration measure relative to the payback period method, Project 3 is introduced 

from Table 1. 

Project 3 is similar to Project 1 except in regard to the cash flows in Year 12 and 

Year 19.  Both projects have the same NPV and payback period, but have different 

project duration measures, 50.45 for Project 1 and 50.85 for Project 3.  Consequently, the 

payback period method views both projects as equivalent.  The project duration measure 

reveals that a ten basis point increase in the discount rate will affect Project 3’s value 
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(decreases by 4.62% [i.e. -50.85*{0.1% ÷ (1 + 10%)} = -4.62%]) more so than Project 

1’s value.  Thus, Project 1 is viewed as superior to Project 3 using the project duration 

measure even though NPV and the payback period method view both projects as 

essentially the same. 

When using the discounted payback period method, the same criticism of “not all 

cash flows being evaluated” still applies.  Casting this criticism aside, one should notice 

that all three projects have the same discounted payback period of 20 years (recall the 

projects are perpetual; Table 1 contains explicit cash flows until Year 20 and a terminal 

value is assessed for Years 21 and onward).  Again, the project duration measure allows 

one to distinguish between the three projects even though the discounted payback period 

is the same for all three projects.  Essentially, the project duration measure provides 

critical information that current project evaluation methods cannot provide in a simplified 

manner.   

 Yet, based on the example above, one can argue that the impact of a slight 

discount rate change is so small that it is a detail not worth pursuing.  The reason for the 

small impact on the project value is because of the terminal value substituting for the 

infinite horizon of the project.  To demonstrate this fact, eliminate the terminal value for 

all three projects and add a cash flow of $740.02 in the 21st year.  All three projects have 

an NPV of $100.00 and a Discounted Payback Period of 20 years.  The Payback Period is 

again, 10.87 years, 11.25 years, and 10.87 years respectively for the three projects.  

Consequently, the ability to compare the three projects using NPV, Payback Period, and 

Discounted Payback Period is still equally difficult, yet the project duration measures are 

still distinct for each project and change dramatically: 231 for Project 1, 249 for Project 
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2, and 238 for Project 3.  Respectively, a ten basis point increase in the discount rate 

reduces the NPV by 21.00%, 22.64%, and 21.64%.  Although the duration measures 

appear high, the measures are reasonably accurate when the three NPVs are compared 

using a 10.10% discount rate: $79.15 (a 20.85% decrease in value) for Project 1, $77.52 

(a 22.48% decrease in project value) for Project 2, and $78.52 (a 21.48% decrease in 

project value) for Project 3. 

Further, depending on the magnitude of the cash flows, even a slight percentage 

decrease in value could be in the millions of dollars.  Consequently, one should not 

dismiss the project duration measure based on the potentially small impact it has on the 

project value (measured as a percentage) and recognize that the impact of the project 

duration measure is commensurate with the scale of the project.  The larger the cash 

flows, the greater the impact of small differences between project duration measure 

comparisons.    

 As mentioned earlier, an appendix for the paper contains VBA code for Excel-

type functions that measure project duration for finite maturity projects and for projects 

with an infinite horizon using a terminal value similar to equation (4).  Also, like bond 

duration, project duration will vary through time and if parameters, such as the discount 

rate, change within the project.  To capture how the duration measure can change based 

on a discount rate change, a second measure called “convexity” is employed.  Convexity 

or “project convexity” (CP) in this context, is based on the second derivative of the 

project’s value relative to the discount rate. 

Vk

V
CP

1
*

2

2

∆

∆
=          (10) 



 10 

It is difficult to say how useful convexity is as a measure in the context of a 

project, but for completeness, the project convexity measure for an infinite horizon 

project similar to equation (5) is: 

           (11) 
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And, the project convexity measure for a project with a finite horizon is: 
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For the projects illustrated in Table 1, the convexity measures are 1,655.58 for Project 1, 

673.60 for Project 2, and 1,666.26 for Project 3.  The greater the project convexity, the 

more change one will see in the project duration measure should the discount rate change.  

In one sense, the project convexity measures the “instability” or the “magnitude of 

change” of the project duration measure should the discount rate need to be adjusted 

because it actually changes or because it is measured with some error initially.  

Consequently, not only does Project 2 have the highest project duration, the project 

duration will change more (relative to Projects 1 and 3) should the discount rate change 

based on Project 2 having the highest project convexity.   

 

SECTION 2: Project Parameter Duration 
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 Even though the paper has been focused on the sensitivity of the project value to 

the discount rate, project duration measures can also be generated for project input 

parameters assuming a model for project cash flows (e.g. the project cash flow at time “i” 

could be modeled as a function of parameter “θ”, CFi(θ); or parameters if “θ” is a vector).  

Measuring duration relative to a model parameter (aside from the discount rate) is 

different from what was performed in the previous section.  The key difference is that the 

duration measure is now taken in the context of parameters that generate the cash flows 

as opposed to a duration measure that simply takes the cash flows as given and assesses 

the effect of a discount rate change.   Equation (6) now becomes equation (13). 
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The project “parameter” duration measure becomes: 
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In equation (14), the project parameter duration appears to be similar to modified 

duration from bond pricing (rather than Macaulay duration) and relates to the percentage 

change in project value in a similar manner as modified duration. 

[ ] θ∆−=
∆

*PRMD
V

V
         (15) 

What one has to realize is that the “(1 + k)” term in Macaulay’s duration formula 

exists to simplify the duration calculation and is actually not necessary for converting the 

duration to a percentage change in price.  This becomes apparent when equation (1) is 

substituted into equation (2); the “(1 + k)” term cancels out.  In theory, a “(1 + θ)” term 

can be introduced into equations (13) and (14), but the only reason to perform such a task 
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is for simplifying the duration calculation.  Consequently, the “(1 + θ)” term is left out of 

equations (13) and (14), but can be introduced if necessary.  

 What if the cash flow model parameter and the discount rate are both affected by 

a common factor, say “λ”?  This is not an unreasonable question because “λ” could be a 

macroeconomic factor such as inflation.  Equation (13) becomes: 

           (16) 
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Equation (14) becomes: 













∆
∆

−=
V

V
DPRM

1
*

λ
        (17) 

Equation (15) becomes: 

[ ] λ∆−=
∆

*PRMD
V

V
         (18) 

 

 

To visualize how project parameter duration is calculated, assume a project has a 

finite life of “N” years.  The project value is defined as the present value of the free cash 

flows (free cash flow = (revenue – operating expenses –depreciation expense)*(1 - tax 

rate) + depreciation expense – change in net working capital – change in fixed assets; this 

definition is similar to that of Brigham and Houston (2004)).  The revenue grows at a rate 

of “g” and many of the parameters are measured as a proportion of revenue: operating 

expenses (%OP), current liabilities (%CL), current assets (%CA), and fixed assets 
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(%FA).  Depreciation expense is indirectly connected to the revenue through fixed assets 

because it is measured as a percentage based on straight-line depreciation (%DEP; e.g. 

5% = 1 ÷ 20 years) multiplied by the average of the fixed assets. 

 Following the work of Arnold and James (2000), let revenue have an initial value 

of “REV0” that is not part of the valuation (only for convenience) and evaluate the 

revenue stream portion of the project (call it “PV(REV)”): 

( ) ( )
( )

( )
( ) 









+

+
−

−

+
=

N

N

k

g

gk

gREV
REVPV

1

1
1*

1*0       (19) 

The operating expenses are evaluated simply as a proportion of the revenue cash stream: 

%OP*PV(REV).  The evaluation of the change in net working capital (∆NWC; net 

working capital defined as current assets less current liabilities) is an adjustment on 

equation (17) based on Arnold and James (call it “PV(∆NWC)”): 

( ) ( ) ( )
( )







+
−−=∆

g
CLCAREVPVNWCPV

1

1
1*%%*     (20) 

The evaluation of the change in fixed assets is similar to equation (20) (call it 

“PV(∆FA)”): 

( ) ( ) ( )
( )







+
−=∆

g
FAREVPVFAPV

1

1
1*%*      (21) 

Depreciation expense is based on the average of fixed assets, again following Arnold and 

James, an adjustment is made to equation (19) to evaluate depreciation expense (call it 

“PV(DEP)”): 

( ) ( ) ( ) ( )
( )

2
1

1
1*%*%* ÷









+
+=

g
DEPFAREVPVDEPPV    (22) 
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Taking advantage of the common factor for “PV(REV0)” and applying some algebra, the 

value of the project, “V” (i.e. the discounted value of the free cash flows), becomes: 

( )
( )
( )
( )

( ) ( )

( )

( )
( ) 















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
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




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

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





+
−+−−
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
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





+
++

−−


































+

+
−

−

+

=

g
FACLCA

T
g

DEPFA

TOP

k

g

gk

gREV

V

N

N

1

1
1*%%%

*2
1

1
1*%*%

1*%1

*

1

1
1*

1*0

   (23) 

where “T” is the tax rate. 

The goal is to calculate the project parameter duration relative to the revenue 

growth rate “g”.   Consequently, the partial derivative of equation (23) needs to be taken 

with respect to “g”.  The negative of the derivative is then multiplied by (1 + g) for 

convenience and divided by equation (23) to find the project parameter duration.  Let “A” 

equal “PV(REV)” and perform the rest of the calculation in pieces: 

( ) ( )
( )

( )
( )

( )
( ) 









+

+
−

+
+








−

+
+

=+
∆
∆

−=
N

N

k

gN

gk

gREV

k

g
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g

A
B

1

1*
*

1*
1

1

1
*1* 0   (24) 
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( )

( )
( ) 









































+
−+−−









÷









+
++−−

=

g
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T
g

DEPFATOP

C

1

1
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*2
1

1
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   (25) 

( ) ( )[ ]
( )g

FACLCATDEPFA
g

g

C
D

+
+−+÷

=+
∆
∆

−=
1

%%%2*%*%
1*   (26) 

The project parameter duration (DPRM) becomes: 

( )





 +









∆
∆

−=
+

=
V

g

g

V

CA

DACB
DPRM

1
*

*

**
      (27) 
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 A terminal value equation can be added if the project has an infinite life.  Further, 

an initial cost can also be added as a negative value in the denominator of equation (27).  

This particular example is rather complex because the revenue growth factor is pervasive 

throughout the sales-driven pro forma analysis of Arnold and James.  However, less 

complex valuation models can be incorporated by following one of the definitions for 

project parameter duration in equations (14), (17), or (27) depending on the model.  

Equation (28) completes the above analysis by computing the percentage change in 

project value based on the project parameter duration from equation (27). 

 
( )







+
∆

−=
∆

g

g
D

V

V
PRM

1
*         (28) 

 

SECTION 3: Conclusion 

 Duration and convexity measures are used frequently in the assessment of interest 

rate risk in regard to bond pricing.  This same technique is easily adapted to assess 

project valuation in regard to a cash flow model parameter or the project discount rate.  

The benefit is that a single number (or numbers if convexity is considered) provides the 

same intuition as sensitivity analysis without the complexity or the difficulty in 

interpreting the results.  This investigation can also be used to take duration analysis to 

the equity level using the cash flows to equity holders and subsequently to the duration of 

a portfolio of equities.   

 An added dimension for project assessment is the ability of the decision maker to 

consider the vulnerability of project valuation estimates to shifts in the model parameters 

or shifts in the discount rate in a very convenient manner by considering a number rather 

than an entire output of scenarios.  Although a given project may have a better expected 
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value, the vulnerability of the project valuation to parameter/discount rate changes may 

make it less appealing when compared to another project of lesser expected value with 

more robust parameter/discount rate estimates.  More simply, project duration 

(convexity) and project parameter duration (convexity) provide metrics to assess project 

forecasting error without additional complex scenario analysis that can be difficult to 

interpret. 
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Appendix: Excel VBA Code 

Excel VBA code for project duration when the project has an infinite horizon: 

Function ProjectDuration_wCG(Inital_CF, Future_CFs, Discount_Rate, Constant_Growth) 
 
CFcount = Application.Count(Future_CFs) 
CFcount_m1 = CFcount - 1 
 
Sum1 = 0 
Sum2 = 0 
Period = 1 
Do While Period <= CFcount_m1 
Sum1 = Sum1 + Future_CFs(Period) / (1 + Discount_Rate) ^ (Period) 
Sum2 = Sum2 + Period * Future_CFs(Period) / (1 + Discount_Rate) ^ (Period) 
Period = Period + 1 
Loop 
 
PVCG = ((Future_CFs(CFcount) / (1 + Discount_Rate) ^ (CFcount))) * (1 + ((1 + Constant_Growth) / 
(Discount_Rate - Constant_Growth))) 
ProjectValue = Inital_CF + Sum1 + PVCG 
 
NumeratorCG1 = ((Future_CFs(CFcount) * CFcount) / (1 + Discount_Rate) ^ (CFcount)) 
NumeratorCG2 = (1 + Constant_Growth) / (Discount_Rate - Constant_Growth) 
NumeratorCG3 = ((1 + Discount_Rate) * (1 + Constant_Growth)) / (CFcount * (Discount_Rate - 
Constant_Growth) ^ (2)) 
Numerator_CG = NumeratorCG1 * (1 + NumeratorCG2 + NumeratorCG3) 
Numerator = Sum2 + Numerator_CG 
 
ProjectDuration_wCG = Numerator / ProjectValue 
 
End Function 

 
Excel VBA code for project duration when the project has a finite horizon: 

Function ProjectDuration_woCG(Inital_CF, Future_CFs, Discount_Rate) 
 
CFcount = Application.Count(Future_CFs) 
 
Sum1 = 0 
Sum2 = 0 
Period = 1 
Do While Period <= CFcount 
Sum1 = Sum1 + Future_CFs(Period) / (1 + Discount_Rate) ^ (Period) 
Sum2 = Sum2 + Period * Future_CFs(Period) / (1 + Discount_Rate) ^ (Period) 
Period = Period + 1 
Loop 
 
ProjectDuration_woCG = Sum2 / (Sum1 + Inital_CF) 
 
End Function 
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Excel VBA code for project convexity when the project has an infinite horizon: 

Function ProjectConvexity_wCG(Inital_CF, Future_CFs, Discount_Rate, Constant_Growth) 
 
CFcount = Application.Count(Future_CFs) 
CFcount_m1 = CFcount - 1 
 
Sum1 = 0 
Sum2 = 0 
Period = 1 
Do While Period <= CFcount_m1 
Sum1 = Sum1 + Future_CFs(Period) / (1 + Discount_Rate) ^ (Period) 
Sum2 = Sum2 + (Period * (1 + Period) * Future_CFs(Period)) / ((1 + Discount_Rate) ^ (Period + 2)) 
Period = Period + 1 
Loop 
 
PVCG = ((Future_CFs(CFcount) / (1 + Discount_Rate) ^ (CFcount))) * (1 + ((1 + Constant_Growth) / 
(Discount_Rate - Constant_Growth))) 
ProjectValue = Inital_CF + Sum1 + PVCG 
 
NumeratorCG1 = (CFcount * (CFcount + 1) * Future_CFs(CFcount)) / ((1 + Discount_Rate) ^ (CFcount + 
2)) 
NumeratorCG2 = (1 + Constant_Growth) / (Discount_Rate - Constant_Growth) 
NumeratorCG3 = (2 * (1 + Discount_Rate) * (1 + Constant_Growth)) / ((CFcount + 1) * (Discount_Rate - 
Constant_Growth) ^ (2)) 
NumeratorCG4 = (2 * (1 + Discount_Rate) ^ (2) * (1 + Constant_Growth)) / (CFcount * (CFcount + 1) * 
(Discount_Rate - Constant_Growth) ^ (3)) 
 
Numerator_CG = NumeratorCG1 * (1 + NumeratorCG2 + NumeratorCG3 + NumeratorCG4) 
Numerator = Sum2 + Numerator_CG 
 
ProjectConvexity_wCG = Numerator / ProjectValue 
 
End Function 

 
Excel VBA code for project convexity when the project has a finite horizon: 

Function ProjectConvexity_woCG(Inital_CF, Future_CFs, Discount_Rate) 
 
CFcount = Application.Count(Future_CFs) 
 
Sum1 = 0 
Sum2 = 0 
Period = 1 
Do While Period <= CFcount 
Sum1 = Sum1 + Future_CFs(Period) / (1 + Discount_Rate) ^ (Period) 
Sum2 = Sum2 + (Period * (Period + 1) * Future_CFs(Period)) / ((1 + Discount_Rate) ^ (Period + 2)) 
 
Period = Period + 1 
Loop 
 
ProjectConvexity_woCG = Sum2 / (Sum1 + Inital_CF) 
 
End Function 
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