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BOUNDARY VALUES IN RANGE SPACES OF CO-ANALYTIC TRUNCATED
TOEPLITZ OPERATORS

ANDREAS HARTMANN & WILLIAM T. ROSS

ABSTRACT. Functions in backward shift invariant subspaces have nice analytic continuation
properties outside the spectrum of the inner function defining the space. Inside the spectrum
of the inner function, Ahern and Clark showed that under some distribution condition on the zeros
and the singular measure of the inner function, it is possible to obtain non-tangential boundary
values of every function in the backward shift invariant subspace as well as for their derivatives up
to a certain order. Here we will investigate, at least when the inner function is a Blaschke product,
the non-tangential boundary values of the functions of the backward shift invariant subspace after
having applied a co-analytic (truncated) Toeplitz operator. There appears to be a smoothing effect.

1. INTRODUCTION

Let H? denote the Hardy space of the open unit disk {|z| < 1} andL? = L?(df/2m) denote
the classical Lebesgue space of the unit cifitle {|z| = 1} with norm| - |. H? is regarded as a
closed subspace @F in the usual way via non-tangential boundary values. For an inner function
I,we letK; = H? © I H? be the well-known model spade [Nik86].

The boundary behavior of functions ity have been well studied. For example, every function
in K7 has a meromorphic pseudo-continuation to the extended exterior disk [CROOQ, IDSS70,
RS02]: For everyf € K, there is a meromorphic functioA on the extended exterior disk
whose non-tangential boundary values match thogeabinost everywhere. As another example
[Moeb62], everyf € K; has an analytic continuation acrdBs o(7), where

R EREIVED
A=z
is the spectrum of. If I = B,s,, whereB, is the Blaschke factor with zerds= {\,,},>1 c D
(repeated according to multiplicity) ang is the singular inner factor with associated singular
measurg: on T, then

o(I) = A" usuppp).
Note that every function irf; has a pseudo-continuation acrd@slthough, if the Blaschke

product has zeros which accumulate everywherél'aor if the support ofu is all of T, for
example, functions i&; might not have an analytic continuation across any subdit of
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2 ANDREAS HARTMANN & WILLIAM T. ROSS

Our starting point for this paper is a result of Ahern and K[&C70b] which examines the
non-tangential boundary behavior of functionsiin even closer by considering what happens
nearo(I) where analytic continuation is not guaranteed. To state theult, we set a bit of
notation: LetP; be the orthogonal projection @ onto K; and A, : K; - K, A.f = Pi(zf)
be the compression of the shift (‘multiplication byon H?) to K7;.

Theorem 1.1 (JAC70k]). For aninner functiory = B, s, and( € T, the following are equivalent:
(1) Everyf € K; has a non-tangential limit &, i.e.,

£(©) = < lim F()

exists.
(2) Foreveryf e Ky, f(\) is bounded as — ¢ non-tangentially.
(3) P;1 e Rng(Id—CA,).
(4) (Id-\A,)"'P;1 is norm bounded as — ¢ non-tangentially.
(5) I has an angular derivative in the sense of Caratheodory, ae.,

4%\1221]()\) =neT
and
<limI'(\) exists
A—=>C

(6) The following two conditions hold:

1—|A[?
2
(1.3) du(§)

rje-cE ™

This is only a partial statement of the Ahern-Clark resulheyf went on further to charac-
terize the existence of non-tangential boundary limitshef derivatives (up to a given order) of
functions inkj;.

Note that simple examples show that one can have an innetidant and a¢ € T such
that every function inK; has a non-tangential limit @ without necessarily having an analytic
continuation to a neighborhood ¢f

If one (and hence all) of the equivalent conditions of the ih€lark theorem is satisfied,
then it makes sense to evaluate functighs K; at ¢, and the corresponding point evaluation
functional can be represented bé/ That is to say that

F(Q)=({f.kl) VfeKy

In this paper, we study the boundary values of function& jreven further - beyond pseudo-
continuation, analytic continuation, or the above AhetarCresult - by replacing the function
Pr1in conditions (3) and (4) in the Ahern-Clark theorem wih, whereh € H2.
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Let us take a closer look &id -\ A, )~ P;1 from condition (4). SincéA,)"g = P;zng for any
g € K7, we get, for everyf ¢ Ky and\ € D,

<f,§;]X”(Az)"P11> < i ”PI> <f — P,1>
= <fgf%§;u%1—1)+

A
S
(1.4) FA).

Thus(Id —XAZ)—lPll is the reproducing kernéiﬁ for the model spac&’; and the Ahern-Clark
theorem gives a condition as to whehconverges weakly to the boundary reproducing kernel
function ké as\ — ¢ non-tangentially.

(f7 (Id _XA2)71P11>

WhenPF;1 is replaced by, h, whereh € H?, an analogous calculation to the onelin{1.4) gives
us, at least formally,

(1.5) (f,(Id-AA) 7 Prh) = (A f)(N),

whereA;f = P;(hf) is the truncated Toeplitz operator &y - which we assume to be bounded.
Note thatA; is initially densely defined on bounded functions &n and, for certaim, can be
extended to be bounded d@y. Certainly ifh ¢ H>°, the bounded analytic functions @ then
A; is bounded orfs;. However, there are unboundgd /2 which yield boundedi;. We will
discuss these details further in the next section. Trudckbeplitz operators have been studied
quite a lot recently and we refer the reader to the seminatmplay Sarason which started it all
[Sar07].

By examining the weak convergence of the kernel functions
(1.6) kP = (Id-MA,) Y Prh

as )\ — ( (non-tangentially), we will determine the boundary bebawf functions inRng A,
the range of the truncated Toeplitz operathy. SinceRng A;; ¢ K, functions in this range
will have finite non-tangential limits at at all poinfse T where conditions (112) and_(1.3) are
satisfied. Certain choices afcan force other points € T to be points of finite non-tangential
limits. In the Sectiom5 of this paper, we will make a few reksaabout the boundary behavior
of the functions

fu(N) = {f, (1 -XA,) " Prh)

(which is the left-hand side of (1.5)), where the truncatedplitz operatord;; is not necessarily
bounded and ¢ K7 is not necessarily in the domain 4f-.

To state our main theorem, we introduce some notationAFkdD, let
zZ=A
by(2) = —
2 (2) 1-)\z
be the single Blaschke factor with zeroJatFor a Blaschke produdB, = [Tycx (JA|/A)by with
zerosA = {\,}.>1, repeated accordingly to multiplicity, let the Takenakaljuist-Walsh func-

tions be defined by
VI P e
) = [Ton(2)-

1)\Zk1

Y (2
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It is well known [Nik86, p. 117][[Tak25] thaf~,, : n € N} is an orthonormal basis fdk s, . In
fact, this basis was used in the proof of the Ahern-Clark tbeomentioned earlier. With our
notation set, our main result reads as follows.

Theorem 1.7. When! is a Blaschke product with zer@s= {\, },-1 andh ¢ H? so thatA; is
bounded or¥;, every function iRng A;- has a finite non-tangential limit &t < T if and only if

(1.8) - 1(Az7) () < oo.

n>1

The alert reader might question whether or f14+,,) (¢) in (1.8) actually exists. It is after all
the non-tangential boundary value of a function fréfp. However, as we will see in the proof
of this theorem A;-y,, will turn out to be a rational function whose poles lie outsaf D~ and so
Az, can be evaluated gtwithout any difficulty. Also observe that whén= 1,

1=\,
S (A ©OF = ¥ ha(QF = ¥ =
n>1 n>1 n>1 |C - )\n|
giving us condition[(1.2) in the Ahern-Clark theorem.

The proof of Theorerm 117 will show that when conditibn {1 8$atisfied then, as— ¢ non-
tangentially, the kernel functioris; from (1.6) converge weakly to some functib@e K;. This
function turns out to be sort of a reproducing kernelRoig A5 at¢ in that

(A Q) =(f. k) VfeK:
We will see from the proof of Theoreim 1.7 that

[K¢]? = Z (A7) (O

In Section B we will compute an explicit formula fot;~,, () which turns out to be quite
cumbersome in the general case. Still, we are able to give sxamples in Sectidd 4 of when
the condition in[(1.8) holds. We mention that whieis an interpolating Blaschke product [Gar07,
Ch. VII], the condition in[(1.B) becomes much simpler.

Theorem 1.9. If I is an interpolating Blaschke product with zerds- {\,,},..1 andh € H? such
that A;- is bounded ori;, then every function iRng A;- has a finite non-tangential limit &te T
if and only if

(1.10) (1 -

n>1

h(>\ )

We will discuss an example in Sectioh 4 which will show thas tbondition does, in ge-
neral, not apply to non-interpolating Blaschke productsfakt, it already fails when we take
a Blaschke product associated with a non-separated unitwaooihterpolating sequences. Al-
though we do not develop this further here, the correspagnexample will show how one can
obtain a condition for finite unions of interpolating Blaketproducts.

Non-tangential boundary values of functions in spacesedle backward shift invariant sub-
spaces have been studied recently. We would like to mentipaiticular the results by Fricain
and Mashreghi dealing with de Branges-Rovnyak spatgs [FM084d, FM08b] which are one
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way of generalizing the backward shift invariant subspa&ese Sarason’s book [Sar94] for re-
lations between the spacd(a) := Tz H? andH (b) whenb is non extreme (this guarantees that
there isa € Ball(H*>) such thafa|? + |b]? = 1). Our situation is somewhat different since we
consider Toeplitz operators not on the whéié but only on the model spadg;.

Finally, the first mentioned author has considered anatgiitinuation questions in weighted
backward shift invariant subspaces which appear natuiralige context of kernels of Toeplitz
operators([Har]. We refer the reader to the survey [FH10frore information.

The reader has probably noticed that we only discuss inmetifins/ which are Blaschke
products, i.e./ has no singular inner factor. We will make some commentseaetid of the
paper as to the difficulties which arise in the the preseneesfigular inner factor.

A final word concerning numbering in this paper: in each segtive have numbered theo-
rems, propositions, lemmas, corollaregsd equations consecutively.

2. PRELIMINARIES

For an inner functior, let K; = H? © I H? be the model space corresponding t&ince H?
is a reproducing kernel Hilbert space with kernel

1
BB TR

then so isK; with reproducing kernel

KL(2) = (k) (2) = S HIE),
1-)Az
whereP; is the orthogonal projection df? onto K;. Note that these kernels are bounded func-
tions and finite linear combinations of them form a dense estub&K’;. This enables us, for
¢ € L2, to define the operatad,, densely onk; by A,f = P;(¢f). These operators, called
truncated Toeplitz operatordave many interesting properties [Sar07] which we wonttige
here. We do, however, mention a few of them which will be imt@ot for our purposes.

First we note that the symbols which represent truncateglife®perators are not unique. In
fact [SarQ7, Thm. 3.1]

(2.1) Ay, = Ay, <> 01—y € TH> + TH?.

Secondly, wherp is a bounded function then certainly the truncated Toeppratord,, extends

to be a bounded operator dfi; with |A,| < |¢[.. However, there are bounded truncated
Toeplitz operators (i.e., ones which extend to be boundeH grwhich do not have a bounded
symbol [BCE 10Q].

In this paper, we focus our attention on the co-analyticdated Toeplitz operatot-, where
h € H?. As mentioned earlier, whel ¢ >, the bounded analytic functions @ then4;. is
bounded or¥i;. Although by using[(2]1) every bounded: has an unbounded symbol, a well-
known result of Sarasoh [Sar67] says that if a co-analyticdated Toeplitz operator is bounded,
then it can be represented bypaundedco-analytic symbol.
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The central step in the Ahern-Clark approach is to expressaproducing kerndt! in terms
of the resolvent of a certain operatorirapplied to a fixed function:
kL= (Id-)A,) TPl

In this situation, the following lemma allows to deduce thestence of the boundary limits at a
point( € T from the fact thatld - A, ) is injective andP;1 is in the range of this operator.

Lemma 2.2 (JAC70h]). Leté € T and L be a contraction on a Hilbert spadé such tha{Id —£ L)
is injective. Furthermore, lef)\, },.-1 be sequence of points b tending non-tangentially tg
asn — oo. Then, for a fixed € H, the sequence

wy, = (Id-\, L)y
is uniformly bounded if and only if belongs to the range ¢fid -£ L), in which casew, tends
weakly towq = (Id - L) 1y.
Remark 2.3. Below we will apply this lemma to the operatdr, on K;. Clearly A, is a con-
traction onK;. To show tha{Id -£ A, ) is injective, observe, fof € K, that
(Id-€A.) f =0 Pr((1-€2)f) =0 (1-€2)f e [H

But sincez — (1 -¢£2) is an outer function, theh divides the inner part of from which we get
felH?andso, sincg € K; = H>e ITH?, f =0.

As mentioned in[(1]5), foh € H?, the function

k= (Id-MA.) L Pih
serves as a reproducing kernel Raig A4;- in the sense that
From this and the identity
(Az )N = (Pr(hf),ka) = {f,hk3) = (f, Pr(hES)), Y fe K,

we also deduce that
(2.5) Kl = Pr(hkY).

The next proposition, similar to Theorém11.1, begins to gé&t@boundary behavior of func-

tions in Rng A;. The proof is pretty much the same but we include it anywayttiersake of
completeness.

Proposition 2.6. For an inner function/, a point¢ € T, and a functiom: € H? so thatA; is
bounded ori;, the following are equivalent:

(1) Every function ilRng A;; has a finite non-tangential limit &t

(2) Prh e Rng(Id-CA.,).
(3) k% is norm bounded as — ¢ non-tangentially.

Proof. By (2.4), along with the uniform boundedness principle, vageh(1) implies (3). State-
ment (3) is equivalent to (2) by Lemrha P.2. Statement (3) iiegp(1) follows from Lemma 212

and (2.4). [ ]

Corollary 2.7. The following statements are equivalent:
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(1) Every function ilRng A;; has a finite non-tangential limit &t
(2) There exists € H? andk € K; which solve the following interpolation problem

(2.8) Prh=(1-C2)k + Tu.

Proof. Assuming statement (1) holds, we can use Propodifidn 2rgalath Lemmd 2.2 to say
thatk? converges weakly to somk% e K; as\ - ¢ non-tangentially and moreover,

k= (Id-CA.) ' Pyh.
Using the the general observatiofn(zv) — zv = (P; — 1d)(zv) € Ker P; = [ H? we see that
Prh = (1d-CA)k{
= k- CALK
=k} = Czkl +Tu, weH?
=(1 —Zz)k? + Tu.
This shows that (1) implies (2). To show (2) implies (1), siyygverse the argument. [
The above proof also says the following.
Corollary 2.9. If A;f has a finite non-tangential limit &t for every f € K; then
(Azf)(C) = {f. kE).
Proof. In this situation, usind (215), we will have, for evefy K7,
(fv k?) = < gl_r)%(fv kﬁ) =< g\l_r)%(fv Pl(hkk)> =< gl_r)%(f? hkk) =4 glifé(ﬁf, kk)
(AR ) (C)-

3. THE MAIN RESULTS

Remark 3.1. Until we say otherwise, we will assume tltat /72 is chosen so that; is bounded
on K. Furthermore, by (211)l5 = A5 and so we will also assume that K.

We will proceed as in [AC70b]. For a Blaschke prodiiatith zero setA = {), },,-1, we have
already introduced the functions

()= Y 'A 2nm<z>

h\,_—/
=:Bp_1(2)

which form an orthonormal basis fa¥;.

It turns out that the central point in the result is the bebeasf A;-v, at a boundary point. This
is what we will determine now. Before proceeding though, hveutd justify that the expression
(A57,)(C) is always defined. First observe thatbelongs tak s, , a finite dimensional subspace
of rational functions whose poles lie outsifle. Moreover, A;v, € Kp,. This is because
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Ay acts onK g, as the restriction of the co-analytic Toeplitz operdfgr and7;Kp, c Kp,.
Consequently, we can evaluatg~, at¢ € T without any difficulty.

Proposition 3.2. let A be a Blaschke sequence ald H?2. Then, writing

[1G:-2) = [1( - )™,

l=1 =1
we have, forany € T,

T he L dRt () Mot (1 = Ampir)
(3:3)  (A77)(Q) = V1= |\ Z = n; .
" zZ; (ke = D)y | (1= ) T (o = 1)
Proof. SinceA; = T3 K; and13Kp, c Kp, we get, for\ e D,

(Az)(N) = (Tm)(N) = (Pehom) (M)
This last quantity is now equal to

(hyms kx) = /1 = | An|2(kn, Bu1, hky).

We thus have to compute
1 =z - )\
[1—="1()

ks B, hk :f _
<)\n ! )\> T1- )\2111 )\lz 1)\

Passing to the conjugate expression and then replacinggbsurelm = df/(27) by dz/(2miz)
we get

dm(z).

"11 Nz 1 dz
Tn By hhky) = f h(z)——
(k. 1 hk) 27 1- Z>\n112—)\l ()1_)\22

1 1 -z 1
— h —d
’fﬁrz A H (2) Y :

27 -l 2N 1-Xz

1o 1 (RIS (- X2)
(3.4) %fwﬂz—&[ — :|dz

Now let [T, (2 - \) = [1-;(z — )" wherey, are thedifferentzeros ofB,, andk; are their
corresponding multiplicities. Then from the residue tle@ome obtain:

z?": 1 gkt h(m) [Tes (1= Xnpr) .
= (ki-1) (1= M) Ty g (i = )™

This expression is perfectly well behaved for— (, so that by conjugating back and multiply-
ing by the normalization constagtl - |\,|2, we obtain the desired result. [ |

(kx, Bn-1,hky) =

In the situation of simple zeros we get a much nicer formuéd te will use in the example
at the end of this paper.

Corollary 3.5. Let A be a Blaschke sequence with simple zeros. Then we havecfof edl,

A (O = VITES 2 L 1o

T 1-XNC(B)a() 1= A,
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where

[T b

k=1,k=l

The interesting observation here is that the expred$iBp),, ()| measures, in a sense, the
deviation ofA from an interpolating sequence. This will be very usefulim Bxamplé 4.0.

Proof. Starting from the computatioE(BA) the residue theorem gives:
kx Bp_1,hky) =
(kx, Bn-1, hkyx) l; 1_/\)\1 JI_LMZ N

We split the above sum in two pieckés n — 1 and/ = n and do some regrouping to get

n () TS (1= 25N) ﬁ
=1 IPYY o1l N~ )‘j
S h(W)TT T -MN) o 1 h(A)I‘[ HA-\) e
H_ VDY H N
=1 1—)\)\1 j=1,5#1 M 1- )\)\ j=1 "\n
Now
el n 1 T— N2 22 =N 1= e 1-X0) 1=
(1-%N) - A An
311 7 j—Il—,Ll A=A A=Ay j—Il—,Ll A=A A=A Gl N A T =N
1=\ 1
1=\ (Ba)a ()
Also,
_ 1 -2 1
1-X\A\) = —— .
e=x U e vl (h e R o w R e
Hence
ih(kl)rl?;f_(l—k_m) oo
=1 1-AN\ L1 N A
_"‘1 h(A)  1—=|NJ? 1 .\ h(An) 1=\, )2 1
(=20 1= 20 (Ba)xy(A) - (1=-2A0) 1=\, (B, (M)
which concludes the proof. [ ]

Remark 3.6. It is worth reminding the reader again that we are assumirgk; and A; is
bounded onk;.

Proof of Theorerh 117By Corollary[2.7T the existence of finite non-tangential baany limits of
all functions inRng A;, is equivalent to the interpolation problem of findih@e K such that

(3.7) (1-C2)kl -helH?,

where! is now a Blaschke product.
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Let us use some ideas from [AC70b]. If there is a functl't@re K satisfying [3.7) then there
are complex coefficients, such that

n>1
with .., |c.]? < 0. In particular,
Cn = {Vns l{:é’)
But sincev,, € K; we can use Corollafy 2.9 to get
(s k) = (A7) (C)

which proves the necessity.

Let us now prove the sufficiency.

Assumingy.,..; |(A77,)({)[? < oo, we can define the function

(3.9) u= " (Az1) (O
n>1
in K. In order to verify the interpolating condition in_(3.7)jstsufficient to check that
__h
1-2C

vanishes to the right order, meaning that at each poimf\ these differences vanish with order
corresponding to the multiplicity ok. The reader might observe that these differences are not
necessarily in2. However, it is clear thak(z)/(1 - (z) is controlled byl /(1 - (z)3? so that

we can write the interpolation condition as

u— h_eIHp
1-2C

for p < 2/3, but we will not really use this formulation.

The proof of the interpolating condition will be very tecbail in the general case. However,
if the zeros aresimple which we assume to be the case for the moment, then the farfoul
A7y, (¢) in Corollary[3.5 simplifies the argument considerably. lis 8ituation, we have

(A7) () = VI PP Y MO 1 1P

S 1-MC(Bo)a (M) 1= N\,
Hence using Fubini’s theorem we get, for ed¢le N,

u(An) Z:I(Amn)(C)%(AN)

N " h(N\) 1 1=\ V1= A2

= 11—\, — — ——B,_1(\
VP e B O T o 1y W)
NOohO) & 1= 1= A Baa(An)

3.10 = — — — .
( ) =1 )\lC nZ::l IT-XN 1= AN (Bn))\z()‘l)

=N
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So, in order to show the interpolation conditiot\y) = h(Ax)/(1 - {\y) it suffices to show

that
(1 ifi=N
AUNZY 0 ifl<N.

Clearly, ifl = N thenay v = 1 (observe in particular thdt= n = N and(Bx ), = By-1).

Now let k,.«(2) = 1/(1 - réz) be the reproducing kernel faif? at r¢ for any ¢ € T. Let
Pg,, be the orthogonal projection onfoz,, which can be written explicitly using the Takenaka-
Malmquist-Walsh basis so that

n

N
Uy = PBN]{:T§ = Z(krﬂf}/"),}/" = Z ’}/n(’f’g)’}/n
n=1

n=1
Sincew, — k¢ € ker Pg,, = ByH? we getv,(\,) = ke(N,) forn =1,...,N. All functions
involved are rational function with no poles @ so that we can pass to the limitas> 1~ so
that )

1-EN,
N

U(An)=75311»(An)= n=1,2,...,N.

Notice also that N
0= V()7 = D (A7) ()1
n=1 n=1
Replacing the functioh by 1 in (3.10), we obtain
Mol X1\ 1= \2 Baaa(My)
v(Ay) = — — — ,
) = T 2T s Bow (W)

= QN

and sincear(\y) = 1/(1 - {\y) anday y = 1, we get

N-1 1
Z =y N = 0
i 1-N¢

for every{. The reproducing kernels for differefitare linearly independent, so that the coeffi-
cientsay y must necessarily vanish for= 1,2,..., N - 1, which finishes the proof for simple
zeros.

The reader might observe that the explicit formngfy is not really of importance (well, it is,
of course...). The central point is thak y = 1. We will now generalize this argument to the
case of arbitrary Blaschke products. As to be expected, e 5 more technical.

For the proof in the general situation, let= \y,; be any point of the sequence such that
i+ A foreveryl < N. Itis the first time we meet this zero. Suppose also thaas multiplicity
ko. We have to show that for eveiy< £ < ko,

h (kil)
U(k_l) = (—_) .
(1) -z (1)
Let us compute the derivatives of Let [T\ (2 = \,) = [T, (= — )" wherep, = p andk, = k
(and notk,). Evaluating the i — 1)-st derivative of the function, as defined in (319), at needs
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only to take into account the firé{ + £ terms of the sum since for> N + k + 1, +,, has a zero
of sufficiently high order a thaty{*™ (1) = 0. Thus from [3.4) we get

u® D () = z (A (O ()

N+k 1 dh! h(pu) T (1= Angur)
1-1|\, =
Z (1= Pal) Z - Dl aup [(1 = ) Tl (s = )™

[kn, Bt 17V ()

N+k dp h( l)
- 0- '”)Zw—l)'z( il

1-Cu

S [(I—M)H§:1,j¢l(m—uj ;

We will now apply Fubini’'s theorem. In order to do this, we ebse that the double sum

Yoot Z ' runs exactly through the zerds,, n = 1,2,..., N + k. Let us define a function in
two varlables by

dki-1 L(1-\, _
ESTCRBYE) ) ,_][kMBn_l]“f D ().

l

[y

o(l,p)=(p+1)+

M

ky

1l
—_

J

which is a bijection of a disjoint union of sets = {
{1,2,...,N +k}. Hence

=

Aok =1}, 1 =1,...,r to the set

N+k

w0 (p) = Zl (A7) (O™ (w)

r Ml il =1\ dp [ h(w)
Z 1)'2( p )d_ufll—zmlx

& dk S [ e (1= A -
(3.11) < 2 (=]aP)- [ 1 ) ]UmBn_l]“f ().
n=o(l,p) j 1 j;tl(:ul :uj)

Let us investigate the term we are particularly interestefbi the interpolation problem. It
corresponds to the very last terin: » andp = k, — 1 = k — 1. In this situationp = o(r, k- 1) =
N + k. We compute the last factor:

- lik-1
[, B ) )= 35 (M )i, B (o

p=0

Now Byir-1 = b’@ By b’“l so that all derivatives up to ordér- 2 of this product evaluated at
w1 will vanish and

r—1
B () = G0 () [T ().
=1
It is well known, and easy to verify (e.g. using once againlteiniz rule), that

N N C et O LI
T = Ty
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Hence

k- T E-1) =t
[kx, Bn- 1](k Y (1) = Ky (M)( ( “In |2)k 1 kul - ( —1?) k:H

k-1
We are now in a position to compute the coefficient of the t%ﬁg—llh(—”_) (corresponding to
l=r,k =k p=k-1,and hence, as already seen; o(l,p) = N + k, Ay = 11). Itis given by

1 (k-1 d=1r [T (1= M) (k-1)
(k_l)!(/f—l)(l_lM )d kol p[ ITj- 13#1(# 115)" ][kAan_l] k )
. oy [ T (1= Frmp) B (1 = ) - 1] (k-1)! =
A )[ IT521 (e = )% |u|2 k H
(3.12) = 1.

Hence we are led to show that the remaining sum adds up to Ghisoit is sufficient to show
thatforeveryl=1,...,r-1,p=0,....k,—1landforl=r,p=0,...,k - 2, we have

N+k dk -1-p n—l (1 )\_)\l) i
(3.13) (1= A l ] ki, B 17V (1) = 0.
nzaz(;,p) | | ,Ukl o ] 1]#1(“1 :uj)k [ * 1]

The trick is the same as for simple zeros: redo all the contipaafrom above for the cage= 1
for which we will deducel(3.13) from the interpolating proiye

For this, let¢ e T and0 < r < 1. Set

N+k N+k

vr(2) = Zl (Ary) (r)n(2) = Z::lvn(r€)7n(2)-

Let us first check that, interpolates what it should (while this is of course congdim [AC70D]
we add here a proof for completeness). To this end, as bd#irk,. be theH? reproducing
kernel atré € D. Also let Pg,,,, be the orthogonal projection onto the spdcg, . Using the
Takenaka-Malmquist-Walsh functions we obtain

N+k N+k
Ppy, ke = Z <kr§77n>7n = Z Y (TE)Vn = Ur.
n=0 n=0

Hence
(e ]{77«5 € ker PBN+k = BNJrkHz.

Now all these functions are rational functions with no pafe® so that we can pass to the limit
r — 1~ to obtain forp and1 < k£ < ky (same meaning of these parameters as in the first part of
the proof),

- 3 dkfl
v () = kE D () = duk_lkg(u)-

(Note that again the differenae- . is not in H? sincek is not.)




14 ANDREAS HARTMANN & WILLIAM T. ROSS

Exactly as in[(3.1]1) we obtain

N+k

p D (1) = Z (Ar) AW ()

i 1>' Z (klz; )%[ﬁ]

N+k dki-1-p nfl (1 )\_)\1) o1
ST Ao b [ [, B ] ().
n—oz(;,p) dp kl o j 1j¢l(:ul :uj) * '

The leading coefficient far=r andp = k. — 1 = k — 1 has already been computed[in (3.12) to be
1. Hence subtracting the term corresponding to the leadedficient, we obtain (splitting the
sum into the terms fare {1,2,...,r -1} andl =)

) k;—1\ dpr 1
0= Z(kl 1)'2( p )d_u‘}”ll—gmlx
B -y | Gt 0

n—o’(lp) d kl ! P ] 1]#1(/"” II"LJ)k

NOE 1)'2( p )du”[l—l@]x

Nk db [T (1= Au) k-1
S =) [ ner (L= dmtn) | g0 )
n—crz(;,p) ,Ukl o H]:%(:u - :uj)kj

The above formula is valid for everye T. Now, observe that the functions

dp 1
S d_ﬂfll—gm]

form a linearly independant family fér=1,....,7r—1,p=0,....k;—1andforl=r,p=0, ..., k-2,
implying that the coefficients

b dhte [Hz_ﬁ(l = Amfit)
neotlpy iy~ L Tl (= )
have to vanish in the required ranges of the parametédr of [ ]

Remark 3.14. From the identityc} = P;(hk]) from (2.5), and the fact thdty,, : n € N} forms
an orthonormal basis fdk;, we see that

[EXZ = PRk = le(Pz(hk‘i),% Zlk hy) P

> (4pm) P

] ler, Bt (1)

From (3.8) it follows that
1612 = 32 I(Az3) (O

n>1
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Proof of Theorerh 119Instead of deriving this result from our main theorem, theaids to use
directly the interpolation property as in [AC70b]. The égisce of the boundary limits is as
before equivalent to the existence of the funct:h?n And from the interpolation conditiof (3.7)

the existence of the functidfi? is equivalent to the solution of the problem

()= )
1-CA\,
From Shapiro-Shield$ [SS61], this is equivalent to
() [
1-\P) | <00
;( ) =
This proves the result. [

4. SOME EXAMPLES

Recall that a truncated Toeplitz operators with co-analgyimbol is just the restriction of
the regular Toeplitz operator with symbilto a model spacés;. Let us discuss some simple
examples which illustrate the smoothing effects of apgylioeplitz operators to functions in
K; or evenH?.

Example4.1. The following general fact is well known for functiorfsin H? :

1 -]

It can actually be shown that this growth condition can béagdl in a non-tangential approach
region by a little-oh condition:

(4.2) 7(2)] = O( ! )

1
VI-[A

The notation: — ¢ means that tends non tangentially t6. As a consequence, we observe

that if o is anaytic andy(z)| < +/1-|z| asz — ¢ — which is for instance the case when
¢(z) = /¢ — z — then every function in the range of th@alytic Toeplitz operatof’, f, where
actually f € H2, will have a boundary limit (zero) at

(4.3) |f()\)|:o( ) A—(CeT.

Example 4.4. The situation is more intricate when considering co-amakymbols. A simple
observation is the following: Ik(z) = 1 - z, then for every functiorf € H?,

f(z)-f0) _f()-1)  f(0)

z z

Tif(2) = T=f(2) = f(2) -

which tends in fact te- £(0) (and which is in general not 0) when-— 1 (we have used(4.2)).

Example 4.5. In this example we use Theorém 1.9 to show that the naturdiphet /1 - z,
which makes every function i vanish non-tangentially at 1 (as observed in Exarnple 451), i
not sufficient for co-analytic Toeplitz operators.
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Let A = (1- 5= )ns1, I be the Blaschke product with these zeros, Ar(d) = (1-z)'/?*¢. Then
every functionf e Rng Az~ has non-tangential limitin 1, if and only if the condition@.10) is

fulfilled. Now observe that

2. (1= I)

n>1

1/2n(1/2+€)
1/

~ ) 27"

n>1

Z 2—2n6

n>1

which converges if and only i > 0. So we need the symbalto decrease faster thafil — z to
ensure existence of the boundary limits of functionRirg A;.

It is possible to consider a decrease closey'1o- z, for example
VI-z

(—log(1-2))

(for which h(),,) = 1/(n27/2)), but we can never reacif1 - z.

Example 4.6. In this next proposition, we see that Theolfleni 1.9 is not tou@dn-interpolating
Blaschke sequences.

h(z) =log?2

Proposition 4.7. There exists a point € T, a Blaschke product whose zerod c D satisfy the
condition(L.10)at ¢, a functionh € K such thatA is bounded ory;. Still there are functions
in A7 K which do not have finite non-tangential boundary limitg at

Proof. The proof of this result relies on a result concerning indéapon on finite unions of inter-
polating sequences [BN@96, Har96]. let= {\.},>1 = {1-1/2"},51, which is an interpolating
sequence [Gar07] and lat = {2}, satisfy|b,; (A\2)[ = 1/n. The sequenca; is a sufficiently
small perturbation of\; such thatA, will also be interpolating. Also note that the sequence
A := Ay u A, accumulates non tangentially@t 1. Let

1
! 02 =0.

Up = non/2 n

The central result used here is the following: a sequenceloeg(w?),»1..-12 IS a trace of a
function f € H? (or K;) if and only if [BN@96, Har96]

2

] oo

For the values?, = v? that we have given above, we get:

2 ) oni2
gl [543

2
< 00,
n>1
and so that there is a functidnin H? or in K, taking the values! at \:.

Next we check the condition (1.10). Note that sin€a? ) = v2 = 0, we only have to sum over
A;. Indeed we get

> (=P

n>1

wl

ba ()\2)

n>1

(4.8) > (L= A )[kvnF

1
~Un

b (AQ)

h()\l)
1-AL

1/(n2n?) |
1/2n

1
F-

n>1

=) — <oo.

2
n>1 n
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Let us check that the sequence defined by
w! = ?(_U;L\;, n>1,1=1,2,

cannot be realized by a function ix; so thatk;g does not exist and hence there are functions in
A7 K that do not admit boundary limits i = 1. In order to do so, we have to check that this
sequence does not satisfy the condition](4.8). We compugetto
9 2
Lyl
n>1 2n
1
Z(ﬁ +1) = +o0
so that this value sequence cannot be realized by a functiin.i
We finally have to check that; is bounded orf;. For this, note thai(; is ani?-sum of K 5,
whereB,, is the finite Blaschke product with zerda!l A2} (seel[NikO2, Theorem C3.2.14]). By

2 | L@

127
1/n

w2 —w)

bas (A2)

1/(n2n/?)
1/2"

> (=P [Iwil2 +
n>1

n>1
n’ n

this we mean that every ¢ K; can be written as

f:me anKan ”f”2x Z“fnnz

n>1 n>1

We use the Takenaka-Malmquist-Walsh system to genéfgte

( ) V 1 - |)\711|2 ( ) V 1 - |)\%L|2 Z_)\}L
ni(Z) = ———, n2(%2) = — —.
Tt 1-Az Tn2 1-Xz 1-Alz

So, every functiory € K; can be written as

f = Z(O‘n,I’Yn,l + an,27n,2)

n>1

With | f]? = ¥ s | 12 + ]2 < 0o. Apply now A;- to this sum (we could start with finite sums
and check that we have a uniform norm control). Clearly

A = h(A}z)%,l-
The action of4;+, » can be deduced from Corolldry 8.5. We obtain

AL 1 AP RO L
Arvn2)(2) =1 —|A2]2 — = T
(A7 n2)(2) m 1-Azbya(AL) 1-A0N2  1-ALz by (A2)

Note thath(\2) = v2 = 0, and hence

e (AL 1T (A-[AP)
A—n Z)= 1—)\%2 e — = Pn’In,1,
( RV 2)( ) | | 1_)\71126)\%()\111) 1_)\711)\% By 1

where

CVI-2PVI-ALR RV

B 1-ALxz bya (AL)
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In view of the explicit values ol h(\;) and|by: (A})], the sequencép,, },1 is bounded (it
actually tends to zero quickly). We thus get

Arf=> (amlm%m + anﬁﬁn%,l) =y (@n,lm + @n,zﬁn) Yn,1

n>1 n>1

and hence, sinckis also bounded on; (actually decreasing very fast to 0),
[AZFI? = Y RO ang + Branal? $ ) loma* + o2 = [ ]

n>1 n>1

Note how in this examplé3 does not have non-tangential limit@t 1. Indeed,B vanishes
at its zeros and, in the middle between two successive pajrs\2} and{\!,,,\2,,}, we are

far from the elements of the two interpolating sequenteandA,. ThusB will be big at these
points.

The second remark is that fbfz) = 1-z we have already seen that every functioRifny A7—
will have a limit at¢ = 1. Choosing, as mentioned in Example|46;) =log 2v/1 - z/(-log(1-
2)) (which gives exacthy(\L) = 1/(n2%?)) andw?, = h()\), it can be checked thdi(4.8) is true
so that for this functiork, every f € A;-K; has non tangential limit & = 1. If the reader prefers
a function inK7, it is sufficient to project into K; which does not change the values/n

The arguments given in the proof of Proposition 4.7 inditete to adapt the construction to
generalize Theorem 1.9 to finite unions of interpolatinguseges.

Example 4.9. In this final example, we apply Theordm 1.7 to a sequence wkidbt a finite
union of interpolating sequences. Fix (1/2,1). Let

1
- o

Ap =1

and letB be the Blaschke product associated with the sequaneg )\, },,. Since the conver-
gence of this sequence tas sub-exponential, there will be dyadic intervpls-1/27,1-1/2+1]

in the radius[0, 1) containing arbitrarily big numbers of elements ofso that the associated
measurey, ., (1 - |A\,|?)d,, cannot be Carleson (see [Gar07] for more information oneSari
measures).

Let us first estimatg3,, (\,,)| whereB, is the Blaschke product associated with the sequence
A~ {)\,}. In order to do these estimates, we will consider

1/2n" —1/2+

log |B>\n()‘n)|71 1/2nﬁ N 1/2kﬁ _ 1/2k6+nﬁ

Y- log by, (M) = ) log

k+n k+n
2 4+ 2k 1

Z log | —————

k#n

on’ — ok?
We can suppose thatis large enough so that we do not have to worry aboutthehich occurs
in the last numerator. We will now split the summation (in theéex k) into 4 (or 2) pieces.

Case 1Considem +1 <k <n+n'bf. Then
on’ 4 ok”
P _ ok

ok’

7 _ k"

2k’ 1

~

k7 —gnf 1 — gnf-kP’
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Note that
0 > n-kP>nf—(n+n PP =nf —nf(1+nP)P~
= nf —nP(1+p/n” +0(1/nP))
(4.10) = _B+o(1).

So,-1<-In2<-3In2 < (In2)(n” — k%) < 0 (where the ¥” is asymptotically, forn - oo, a
“<"), and hence

on K (2 k) o 1 4 (In2)(nf - kP),
so that
o’ 4 Ok”
2n6 _ 2k6

1 N 1
1 -2k~ In2(kP —nP)
Now, settingk =n + [l with € {1,2,... ,n'"¢} we get

~

[
(n+1)% —nP :n5(1+£)5—n5 ~ ? .
n ni-P
Hence
n+nl=P nl-8 1-8
n
log|by, (\)|F = 1 .
kzzm ogba, (An)l ZZ; 8 g
And switching back to the product we get
n+n!'=8 ) nlfﬁ n'=? 1
by, (A\p)| 7 = —_—
Tmoor-(55) o
Using Stirling’s formula
NN eN
NI V2rN’
we obtain withN = n!-8,
n+nl=P e nl’B 1
(4.11) by, (A :( ) sen™”
kzl_[ml | k( )| ﬁan /7271'7]/1_6
for some suitable constaant
Case 2Suppose now thdt > n + n'-#. Observe
2n5 kB nf
A2 2 |
on’ — ok kP — 9n®
Then
on” on” 1

ks _ onf < 9(n+nl=F)8 _ ons - 9(n+nl=F)f-nf _ 1’
which, by similar computations as in_(4/10), is controllgd b
1
26 -1

This enables us now to write

1+2 22k57n5_1'\'27'

log

k7 _ n”
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Using the estimate

B B
f e dr ~ M Pe M
M

we can compute

> log

k>n+nl-8

so that we also get

5
n B 1 B B\
$20 ) gEE2(nent)o

k>n+nl-8

1
~ 1B

1+2 Sy

k7 _ n”

H |b>\k()‘n)|71 < ecnl_ﬁ

k>n+nl-8

for some suitable constaat

We will also include a brief discussion of the cases {r—n') <k <n-1—and 4 —
1 <k < (n-n'"*)—which are treated in essentially the same way.

Case 3Considem - nt 8 <k<n-1. Then

on’ 4 ok? 2n”
on? — ok | | onf _ 9k?

1
S 1-2kn

~

Now
0>k -nf>(n-n"P) -nf~-B+o0(1)

asin[4.10). So;1<-In2<-FIn2 < (In2)(k# —nP) <0 (where the £ is asymptotically, for

n — oo, a “<”), and we can conclude as in the case 1 to obtain

ni=P

n-1 1 1B

b,Anlz( ¢ ) Se
k:nnnl—/s o2 ()l BIn2 V2rnl-p
for some suitable constant

Case 4Suppose now thdt < n —n'-#. Observe

on” 4 ok
on? — ok”

kB
1+2

on? _ ok7

Then
28 ] 1
2nﬁ _ 2k5 - 2n6—k6 -1 < 2715_(”_”1*5)5 -1
which, by similar computations as in_(4/10), is controllgd b
1

26 -1

This enables us now to write

kB
1+2

log

on? k7 |~
Using
M B B
f e dr =~ M BeM
1
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we can estimate

> log

k<n-nl-8

so that we also get

b
S 2% D 2+ 2%(” —pl BB 16

k<n-nl-8

1+ 27%5 o

H |b>\k()‘n)|71 < ecnl_ﬁ

k<n-nl-8

for some suitable constant

Putting this all together we obtain
1-8

Oy 1= By, (An)[ 2 e
for some suitable constant

Let us now return to our problem of estimatip:v,,(¢)|. From Propositiof 3]5, we have
2 h(N) 1 IEDVIE
(Az7)(€) = V1Al —
" l; L=NC(Bp)a (M) L= N,

Our Blaschke product constructed above accumulatés dtand contains only points if0, 1).
Leth(z) = (1-2)'¢. Then

(4Ol s VTR S R e i VT, 3

=N BN T=N
Recall that\, = 1 - # andg, > e-*'"”. Hence

n B
(A (O] S sy 32—y § = eneon'™ = pgensetnan'™ ol
R in > onb 2 g o—cl 7 oA /2 =

which is square summable as longsas1/2 andj > 1/2.

Note that again our zeros are contained in the radius) and the functiork has to go slightly
faster to zero than the square root as in the situation whevas an interpolating Blaschke
sequence irf0, 1).

Note also that in this example
2 lAiH} B(\) =0.

5. UNBOUNDED OPERATORS

For anyh ¢ H? the truncated Toeplitz operatek- turns out to be a closed, densely defined
operator onk’; with a domainD(A;) which containsik’; n > [Sar08]. If one looks closely at
the proof of the two main theorems of this paper (Thedrem ad7 Eheoreni 119), one realizes
that the sufficiency parts still hold but wiltng Ay defined asi;D(A4;).

Furthermore, the conditions given in these theorems dtsusfficient for everyh € H? when
Rng Ay, as defined in the previous paragraph, is replaced by tharlmenifold{ f;, : f € K},
wheref;, is defined by the left-hand side ¢f (1L.5), i.e.,

fh()‘) = (f7 (Id _XA2)71PIh>'
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Repeating the argument in (1L.4), we can also write

fu(A) = (f, kaPrh).
Note that the linear manifoldlf;, : f € K} is not necessarily a subset &f. However,

) (Prh)(§)
N - [LOENE,
) = [T dmee)
is a Cauchy transform of the finite measufite hdm. Since Cauchy transforms of finite measures
on the circle are known to belong to all the Hardy clas§edor 0 < p < 1 [CMRO0G, p. 43], we

know that the non-tangential limits gf, exist almost everywhere. Theorems|1.7 1.9 give
sufficient conditions when these non-tangential limitseat specific points of the circle.

6. OPEN QUESTIONS

Conspicuously missing from this paper is a discussion oftwla@pens td&ing A; when/
is a general inner functioh = Bs, and not necessarily a Blaschke product as was discussed
here. In this case, if we are aiming for a similar characédian as in Theoremis 1.7 ahd 11.9,
we would need a different orthonormal basis tHan : n € N}. So suppose thdtp, : n € N}
is an orthonormal basis fdk; for a general inner functiolh. Some examples can be found in
[AC70e]. Then Proposition 2.6 still holds and so the norgtantial boundary values at a fixed
point¢ € T will exist for all functions fromRng A;; if and only if the kernel functions’ remain
bounded whenever — ( non-tangentially. The exact same computation as in Remark\ill

show that
[K3]1% = le(Awn)(A)I?-
At this point, two problems stand in our way. The first is toyeahat( Az, )(() exists as it
did so nicely for(A;v,)(¢). Recall thatd;, is a rational function whose poles are offlbf.
Is A7, such a nice function so we can comptg-,,)(¢) without any difficulty? The second
problem, assuming we can overcome the first, is to show thiatps the natural choice of kernel
function
k=) (Azpn)(Q)pn
n>1

satisfies the interpolation condition in Corollary|2.7.

One could also ask whether or not one could extend our resutlsetermine, as in Ahern-
Clark, when thelerivativeqof certain orders) of functions iRng A, have non-tangential limits
at( eT.

REFERENCES

[AC70a] P.R. Ahernand D. N. Clarkgn functions orthogonal to invariant subspagc@sta Math.124 (1970),
191-204. MR 0264385 (41 #8981a)

, Radial limits and invariant subspacesmer. J. Math92 (1970), 332-342. MR 0262511
(41 #7117)

[BCF*10] A. Baranov, |. Chalendar, E. Ficain, J. Mashreghi, andiBotin, Bounded symbols and reproduc-
ing kernel thesis for truncated Toeplitz operatatsFunct. Anal259 (2010), 2673—-2701.

[BN@96] J. Bruna, A. Nicolau, and K. @yma# note on interpolation in the Hardy spaces of the unit disc
Proc. Amer. Math. Sod24 (1996), no. 4, 1197-1204. MR 1307499 (969:30066)

[AC70b]




BOUNDARY VALUES IN RANGE SPACES OF CO-ANALYTIC TRUNCATED TE@PLITZ OPERATORS 23

[CMRO6]

[CROO]

[DSS70]

[FH10]

[FMO08a]

[FMO8b]

[Gar07]
[Har]

[Har96]

[Moe62]

[Nik86]

[Nik02]

[RSO2]
[Sar67]

[Sar94]

[Sar07]
[Sar08]
[SS61]

[Tak25]

J. A. Cima, A. L. Matheson, and W. T. Roskhe Cauchy transformMathematical Surveys and
Monographs, vol. 125, American Mathematical Society, Rtence, RI, 2006. MR 2215991
(2006m:30003)

J. A. Cimaand W. T. Ros%¥he backward shift on the Hardy spas#athematical Surveys and Mono-
graphs, vol. 79, American Mathematical Society, ProvidgRi, 2000. MR 1761913 (2002f:47068)
R. G. Douglas, H. S. Shapiro, and A. L. Shiel@gclic vectors and invariant subspaces for the
backward shift operatorAnn. Inst. Fourier (Grenoble€)0 (1970), no. fasc. 1, 37-76. MR 0270196
(42 #5088)

E. Fricain and A. Hartmaniegularity on the boundary in spaces of holomorphic fumstion the
unit disk Hilbert spaces of analytic functions, CRM Proc. Lecturgdsovol. 51, Amer. Math. Soc.,
Providence, RI, 2010, pp. 91-119. MR 2648869

E. Fricain and J. MashreghBoundary behavior of functions in the de Branges-Rovnyakep
Complex Anal. Oper. Theor® (2008), no. 1, 87-97. MR 2390675 (2009a:46054)

, Integral representation of the-th derivative in de Branges-Rovnyak spaces and the norm
convergence of its reproducing kerp@inn. Inst. Fourier (Grenoble&8 (2008), no. 6, 2113-2135.
MR 2473631 (2009k:46050)

J. Garnett3ounded analytic functionfirst ed., Graduate Texts in Mathematics, vol. 236, Springe
New York, 2007. MR 2261424 (2007e:30049)

A. Hartmann,Some remarks on analytic continuation in backward shifairant subspacesto
appear, Arch. Math.

, Une approche de l'interpolation libre &yréraliste par la tteorie des oprateurs et car-
acterisation des tracedi”|, J. Operator TheonB5 (1996), no. 2, 281-316. MR 1401691
(97k:47013)

J. W. MoellerOn the spectra of some translation invariant spacedMath. Anal. Appl4 (1962),
276-296. MR 0150592 (27 #588)

N. K. Nikol’skii, Treatise on the shift operatp6rundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], vé8,5pringer-Verlag, Berlin, 1986, Spec-
tral function theory, With an appendix by S. V. Hrus€evYSKhrushchév] and V. V. Peller, Trans-
lated from the Russian by Jaak Peetre. MR 827223 (87i:47042)

N. K. Nikolski, Operators, functions, and systems: an easy reading. \(oM&hematical Sur-
veys and Monographs, vol. 93, American Mathematical Spcitovidence, RI, 2002, Model op-
erators and systems, Translated from the French by Andregsinn and revised by the author.
MR 1892647 (2003i:47001b)

W. T. Ross and H. S. Shapif@eneralized analytic continuatiotniversity Lecture Series, vol. 25,
American Mathematical Society, Providence, RI, 2002. MR5E24 (2003h:30003)

D. SarasonGeneralized interpolation inf*°, Trans. Amer. Math. Socl27 (1967), 179-203.
MR 0208383 (34 #8193)

, Sub-Hardy Hilbert spaces in the unit djsidniversity of Arkansas Lecture Notes in the
Mathematical Sciences, 10, John Wiley & Sons Inc., New Yag84, A Wiley-Interscience Publi-
cation. MR 1289670 (96k:46039)

, Algebraic properties of truncated Toeplitz operatd@per. Matriced (2007), no. 4, 491—
526. MR 2363975 (2008i:47060)

, Unbounded Toeplitz operatgimtegral Equations Operator The®¥ (2008), no. 2, 281—
298. MR 2418122 (2010c:47073)

H. S. Shapiro and A. L. Shield®n some interpolation problems for analytic functipAsner. J.
Math. 83 (1961), 513-532. MR 0133446 (24 #A3280)

S. TakenakaQn the orthonormal functions and a new formula of interpiolat Jap. J. Math2
(1925), 129-145.

INSTITUT DE MATHEMATIQUES DEBORDEAUX, UNIVERSITE BORDEAUX |, 351 COURS DE LALIBERATION,
33405 TALENCE, FRANCE



24 ANDREAS HARTMANN & WILLIAM T. ROSS

DEPARTMENT OFMATHEMATICS AND COMPUTERSCIENCE, UNIVERSITY OF RICHMOND, VA 23173, USA

E-mail addresshar t mann@rat h. u- bor deaux. fr, woss@ i chnond. edu



	University of Richmond
	UR Scholarship Repository
	2012

	Boundary Values in Range Spaces of Co-Analytic Truncated Toeplitz Operator
	William T. Ross
	Andreas Hartmann
	Recommended Citation


	1. Introduction
	2. Preliminaries
	3. The main results
	4. Some examples
	5. Unbounded operators
	6. Open questions
	References

