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BOUNDARY VALUES IN RANGE SPACES OF CO-ANALYTIC TRUNCATED
TOEPLITZ OPERATORS

ANDREAS HARTMANN & WILLIAM T. ROSS

ABSTRACT. Functions in backward shift invariant subspaces have nice analytic continuation
properties outside the spectrum of the inner function defining the space. Inside the spectrum
of the inner function, Ahern and Clark showed that under some distribution condition on the zeros
and the singular measure of the inner function, it is possible to obtain non-tangential boundary
values of every function in the backward shift invariant subspace as well as for their derivatives up
to a certain order. Here we will investigate, at least when the inner function is a Blaschke product,
the non-tangential boundary values of the functions of the backward shift invariant subspace after
having applied a co-analytic (truncated) Toeplitz operator. There appears to be a smoothing effect.

1. INTRODUCTION

LetH2 denote the Hardy space of the open unit diskD = {∣z∣ < 1} andL2 = L2(dθ/2π) denote
the classical Lebesgue space of the unit circleT = {∣z∣ = 1} with norm∥ ⋅ ∥. H2 is regarded as a
closed subspace ofL2 in the usual way via non-tangential boundary values. For an inner function
I, we letKI = H2 ⊖ IH2 be the well-known model space [Nik86].

The boundary behavior of functions inKI have been well studied. For example, every function
in KI has a meromorphic pseudo-continuation to the extended exterior disk [CR00, DSS70,
RS02]: For everyf ∈ KI , there is a meromorphic functionF on the extended exterior disk
whose non-tangential boundary values match those off almost everywhere. As another example
[Moe62], everyf ∈KI has an analytic continuation acrossT ∖ σ(I), where

σ(I) = {∣z∣ ≤ 1 ∶ lim
λ→z

∣I(λ)∣ = 0}
is the spectrum ofI. If I = BΛsµ, whereBΛ is the Blaschke factor with zerosΛ = {λn}n≥1 ⊂ D
(repeated according to multiplicity) andsµ is the singular inner factor with associated singular
measureµ onT, then

σ(I) = Λ− ∪ suppt(µ).
Note that every function inKI has a pseudo-continuation acrossT although, if the Blaschke
product has zeros which accumulate everywhere onT or if the support ofµ is all of T, for
example, functions inKI might not have an analytic continuation across any subarc ofT.
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2 ANDREAS HARTMANN & WILLIAM T. ROSS

Our starting point for this paper is a result of Ahern and Clark [AC70b] which examines the
non-tangential boundary behavior of functions inKI even closer by considering what happens
nearσ(I) where analytic continuation is not guaranteed. To state their result, we set a bit of
notation: LetPI be the orthogonal projection ofL2 ontoKI andAz ∶ KI → KI ,Azf = PI(zf)
be the compression of the shift (‘multiplication byz’ on H2) toKI .

Theorem 1.1 ([AC70b]). For an inner functionI = BΛsµ andζ ∈ T, the following are equivalent:

(1) Everyf ∈KI has a non-tangential limit atζ , i.e.,

f(ζ) ∶=∠ lim
λ→ζ

f(λ)
exists.

(2) For everyf ∈KI , f(λ) is bounded asλ→ ζ non-tangentially.
(3) PI1 ∈ Rng(Id−ζAz).
(4) (Id−λAz)−1PI1 is norm bounded asλ→ ζ non-tangentially.
(5) I has an angular derivative in the sense of Caratheodory atζ , i.e.,

∠ lim
λ→ζ

I(λ) = η ∈ T
and

∠ lim
λ→ζ

I ′(λ) exists.

(6) The following two conditions hold:

(1.2) ∑
n≥1

1 − ∣λn∣2∣ζ − λn∣2 <∞

(1.3) ∫
T

dµ(ξ)
∣ξ − ζ ∣2 <∞.

This is only a partial statement of the Ahern-Clark result. They went on further to charac-
terize the existence of non-tangential boundary limits of the derivatives (up to a given order) of
functions inKI .

Note that simple examples show that one can have an inner function I and aζ ∈ T such
that every function inKI has a non-tangential limit atζ without necessarily having an analytic
continuation to a neighborhood ofζ .

If one (and hence all) of the equivalent conditions of the Ahern-Clark theorem is satisfied,
then it makes sense to evaluate functionsf ∈ KI at ζ , and the corresponding point evaluation
functional can be represented bykI

ζ . That is to say that

f(ζ) = ⟨f, kI
ζ ⟩ ∀f ∈KI .

In this paper, we study the boundary values of functions inKI even further - beyond pseudo-
continuation, analytic continuation, or the above Ahern-Clark result - by replacing the function
PI1 in conditions (3) and (4) in the Ahern-Clark theorem withPIh whereh ∈H2.
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Let us take a closer look at(Id−λAz)−1PI1 from condition (4). Since(Az)ng = PIzng for any
g ∈KI , we get, for everyf ∈KI andλ ∈ D,

⟨f, (Id−λAz)−1PI1⟩ = ⟨f, ∞∑
n=0

λ
n(Az)nPI1⟩ = ⟨f, ∞∑

n=0

λ
n
znPI1⟩ = ⟨f, 1

1 − λzPI1⟩
= ⟨f, 1

1 − λz (PI1 − 1) + 1

1 − λz 1⟩ = ⟨f,
1

1 − λz 1⟩= f(λ).(1.4)

Thus(Id−λAz)−1PI1 is the reproducing kernelkI
λ for the model spaceKI and the Ahern-Clark

theorem gives a condition as to whenkI
λ

converges weakly to the boundary reproducing kernel
functionkI

ζ asλ→ ζ non-tangentially.

WhenPI1 is replaced byPIh, whereh ∈H2, an analogous calculation to the one in (1.4) gives
us, at least formally,

(1.5) ⟨f, (Id−λAz)−1PIh⟩ = (Ahf)(λ),
whereAhf = PI(hf) is the truncated Toeplitz operator onKI - which we assume to be bounded.
Note thatAh is initially densely defined on bounded functions onKI and, for certainh, can be
extended to be bounded onKI . Certainly ifh ∈ H∞, the bounded analytic functions onD, then
Ah is bounded onKI . However, there are unboundedh ∈ H2 which yield boundedAh. We will
discuss these details further in the next section. Truncated Toeplitz operators have been studied
quite a lot recently and we refer the reader to the seminal paper by Sarason which started it all
[Sar07].

By examining the weak convergence of the kernel functions

(1.6) kh
λ ∶= (Id−λAz)−1PIh

asλ → ζ (non-tangentially), we will determine the boundary behavior of functions inRngAh,
the range of the truncated Toeplitz operatorAh. SinceRngAh ⊂ KI , functions in this range
will have finite non-tangential limits at at all pointsζ ∈ T where conditions (1.2) and (1.3) are
satisfied. Certain choices ofh can force other pointsζ ∈ T to be points of finite non-tangential
limits. In the Section 5 of this paper, we will make a few remarks about the boundary behavior
of the functions

fh(λ) ∶= ⟨f, (Id−λAz)−1PIh⟩
(which is the left-hand side of (1.5)), where the truncated Toeplitz operatorAh is not necessarily
bounded andf ∈KI is not necessarily in the domain ofAh.

To state our main theorem, we introduce some notation. Forλ ∈ D, let

bλ(z) = z − λ
1 − λz

be the single Blaschke factor with zero atλ. For a Blaschke productBΛ = ∏λ∈Λ(∣λ∣/λ)bλ with
zerosΛ = {λn}n≥1, repeated accordingly to multiplicity, let the Takenaka-Malquist-Walsh func-
tions be defined by

γn(z) =
√
1 − ∣λn∣2
1 − λnz

n−1∏
k=1

bλk
(z).
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It is well known [Nik86, p. 117] [Tak25] that{γn ∶ n ∈ N} is an orthonormal basis forKBΛ
. In

fact, this basis was used in the proof of the Ahern-Clark theorem mentioned earlier. With our
notation set, our main result reads as follows.

Theorem 1.7. WhenI is a Blaschke product with zerosΛ = {λn}n≥1 andh ∈ H2 so thatAh is
bounded onKI , every function inRngAh has a finite non-tangential limit atζ ∈ T if and only if

(1.8) ∑
n≥1

∣(Ahγn)(ζ)∣2 <∞.

The alert reader might question whether or not(Ahγn)(ζ) in (1.8) actually exists. It is after all
the non-tangential boundary value of a function fromKI . However, as we will see in the proof
of this theorem,Ahγn will turn out to be a rational function whose poles lie outside ofD− and so
Ahγn can be evaluated atζ without any difficulty. Also observe that whenh = 1,

∑
n≥1

∣(Ahγn)(ζ)∣2 =∑
n≥1

∣γn(ζ)∣2 =∑
n≥1

1 − ∣λn∣2∣ζ − λn∣2 ,
giving us condition (1.2) in the Ahern-Clark theorem.

The proof of Theorem 1.7 will show that when condition (1.8) is satisfied then, asλ→ ζ non-
tangentially, the kernel functionskh

λ from (1.6) converge weakly to some functionkh
ζ ∈KI . This

function turns out to be sort of a reproducing kernel forRngAh at ζ in that

(Ahf)(ζ) = ⟨f, kh
ζ ⟩ ∀f ∈KI .

We will see from the proof of Theorem 1.7 that

∥kh
ζ ∥2 =∑

n≥1

∣(Ahγn)(ζ)∣2.
In Section 3 we will compute an explicit formula forAhγn(ζ) which turns out to be quite

cumbersome in the general case. Still, we are able to give some examples in Section 4 of when
the condition in (1.8) holds. We mention that whenI is an interpolating Blaschke product [Gar07,
Ch. VII], the condition in (1.8) becomes much simpler.

Theorem 1.9. If I is an interpolating Blaschke product with zerosΛ = {λn}n≥1 andh ∈ H2 such
thatAh is bounded onKI , then every function inRngAh has a finite non-tangential limit atζ ∈ T
if and only if

(1.10) ∑
n≥1

(1 − ∣λn∣2) ∣h(λn)
ζ − λn

∣2 <∞.

We will discuss an example in Section 4 which will show that this condition does, in ge-
neral, not apply to non-interpolating Blaschke products. In fact, it already fails when we take
a Blaschke product associated with a non-separated union oftwo interpolating sequences. Al-
though we do not develop this further here, the corresponding example will show how one can
obtain a condition for finite unions of interpolating Blaschke products.

Non-tangential boundary values of functions in spaces related to backward shift invariant sub-
spaces have been studied recently. We would like to mention in particular the results by Fricain
and Mashreghi dealing with de Branges-Rovnyak spacesH(b) [FM08a, FM08b] which are one
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way of generalizing the backward shift invariant subspaces. See Sarason’s book [Sar94] for re-
lations between the spacesM(a) ∶= TaH2 andH(b) whenb is non extreme (this guarantees that
there isa ∈ Ball(H∞) such that∣a∣2 + ∣b∣2 = 1). Our situation is somewhat different since we
consider Toeplitz operators not on the wholeH2 but only on the model spaceKI .

Finally, the first mentioned author has considered analyticcontinuation questions in weighted
backward shift invariant subspaces which appear naturallyin the context of kernels of Toeplitz
operators [Har]. We refer the reader to the survey [FH10] formore information.

The reader has probably noticed that we only discuss inner functionsI which are Blaschke
products, i.e.,I has no singular inner factor. We will make some comments at the end of the
paper as to the difficulties which arise in the the presence ofa singular inner factor.

A final word concerning numbering in this paper: in each section, we have numbered theo-
rems, propositions, lemmas, corollariesand equations consecutively.

2. PRELIMINARIES

For an inner functionI, letKI = H2 ⊖ IH2 be the model space corresponding toI. SinceH2

is a reproducing kernel Hilbert space with kernel

kλ(z) = 1

1 − λz ,
then so isKI with reproducing kernel

kI
λ(z) = (PIkλ)(z) = 1 − I(λ)I(z)

1 − λz ,

wherePI is the orthogonal projection ofL2 ontoKI . Note that these kernels are bounded func-
tions and finite linear combinations of them form a dense subset of KI . This enables us, for
ϕ ∈ L2, to define the operatorAϕ densely onKI by Aϕf = PI(ϕf). These operators, called
truncated Toeplitz operators, have many interesting properties [Sar07] which we won’t get into
here. We do, however, mention a few of them which will be important for our purposes.

First we note that the symbols which represent truncated Toeplitz operators are not unique. In
fact [Sar07, Thm. 3.1]

(2.1) Aϕ1
= Aϕ2

⇔ ϕ1 −ϕ2 ∈ IH2 + IH2.

Secondly, whenϕ is a bounded function then certainly the truncated ToeplitzoperatorAϕ extends
to be a bounded operator onKI with ∥Aϕ∥ ≤ ∥ϕ∥∞. However, there are bounded truncated
Toeplitz operators (i.e., ones which extend to be bounded onKI) which do not have a bounded
symbol [BCF+10].

In this paper, we focus our attention on the co-analytic truncated Toeplitz operatorAh, where
h ∈ H2. As mentioned earlier, whenh ∈ H∞, the bounded analytic functions onD, thenAh is
bounded onKI . Although by using (2.1) every boundedAh has an unbounded symbol, a well-
known result of Sarason [Sar67] says that if a co-analytic truncated Toeplitz operator is bounded,
then it can be represented by aboundedco-analytic symbol.
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The central step in the Ahern-Clark approach is to express the reproducing kernelkI
λ in terms

of the resolvent of a certain operator inλ applied to a fixed function:

kI
λ = (Id−λAz)−1PI1.

In this situation, the following lemma allows to deduce the existence of the boundary limits at a
point ζ ∈ T from the fact that(Id−ζAz) is injective andPI1 is in the range of this operator.

Lemma 2.2 ([AC70b]). Letξ ∈ T andL be a contraction on a Hilbert spaceH such that(Id−ξL)
is injective. Furthermore, let{λn}n≥1 be sequence of points inD tending non-tangentially toξ
asn →∞. Then, for a fixedy ∈ H, the sequence

wn = (Id−λnL)−1y
is uniformly bounded if and only ify belongs to the range of(Id−ξL), in which case,wn tends
weakly tow0 = (Id−ξL)−1y.

Remark 2.3. Below we will apply this lemma to the operatorAz onKI . ClearlyAz is a con-
traction onKI . To show that(Id−ξAz) is injective, observe, forf ∈KI , that

(Id−ξAz)f = 0⇔ PI((1 − ξz)f) = 0⇔ (1 − ξz)f ∈ IH2.

But sincez ↦ (1 − ξz) is an outer function, thenI divides the inner part off from which we get
f ∈ IH2 and so, sincef ∈KI =H2 ⊖ IH2, f ≡ 0.

As mentioned in (1.5), forh ∈H2, the function

kh
λ = (Id−λAz)−1PIh

serves as a reproducing kernel forRngAh in the sense that

(2.4) (Ahf)(λ) = ⟨f, kh
λ⟩, f ∈KI .

From this and the identity

(Ahf)(λ) = ⟨PI(hf), kλ⟩ = ⟨f,hkI
λ⟩ = ⟨f,PI(hkI

λ)⟩, ∀f ∈KI ,

we also deduce that

kh
λ = PI(hkI

λ).(2.5)

The next proposition, similar to Theorem 1.1, begins to get at the boundary behavior of func-
tions inRngAh. The proof is pretty much the same but we include it anyway forthe sake of
completeness.

Proposition 2.6. For an inner functionI, a pointζ ∈ T, and a functionh ∈ H2 so thatAh is
bounded onKI , the following are equivalent:

(1) Every function inRngAh has a finite non-tangential limit atζ .
(2) PIh ∈ Rng(Id−ζAz).
(3) kh

λ is norm bounded asλ→ ζ non-tangentially.

Proof. By (2.4), along with the uniform boundedness principle, we have (1) implies (3). State-
ment (3) is equivalent to (2) by Lemma 2.2. Statement (3) implies (1) follows from Lemma 2.2
and (2.4). ∎
Corollary 2.7. The following statements are equivalent:
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(1) Every function inRngAh has a finite non-tangential limit atζ .
(2) There existsu ∈H2 andk ∈KI which solve the following interpolation problem

(2.8) PIh = (1 − ζz)k + Iu.
Proof. Assuming statement (1) holds, we can use Proposition 2.6 along with Lemma 2.2 to say
thatkh

λ converges weakly to somekh
ζ ∈KI asλ→ ζ non-tangentially and moreover,

kh
ζ = (Id−ζAz)−1PIh.

Using the the general observationPI(zv) − zv = (PI − Id)(zv) ∈ KerPI = IH2 we see that

PIh = (Id−ζAz)kh
ζ

= kh
ζ − ζAzk

h
ζ

= kh
ζ − ζzkh

ζ + Iu, u ∈H2

= (1 − ζz)kh
ζ + Iu.

This shows that (1) implies (2). To show (2) implies (1), simply reverse the argument. ∎
The above proof also says the following.

Corollary 2.9. If Ahf has a finite non-tangential limit atζ for everyf ∈KI then

(Ahf)(ζ) = ⟨f, kh
ζ ⟩.

Proof. In this situation, using (2.5), we will have, for everyf ∈KI ,

⟨f, kh
ζ ⟩ = ∠ lim

λ→ζ
⟨f, kh

λ⟩ = ∠ lim
λ→ζ
⟨f,PI(hkλ)⟩ = ∠ lim

λ→ζ
⟨f,hkλ⟩ =∠ lim

λ→ζ
⟨hf, kλ⟩

= (Ahf)(ζ).
∎

3. THE MAIN RESULTS

Remark 3.1. Until we say otherwise, we will assume thath ∈H2 is chosen so thatAh is bounded
onKI . Furthermore, by (2.1),Ah = APIh

and so we will also assume thath ∈KI .

We will proceed as in [AC70b]. For a Blaschke productI with zero setΛ = {λn}n≥1, we have
already introduced the functions

γn(z) =
√
1 − ∣λn∣2
1 − λz

n−1∏
k=1

bλk
(z)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Bn−1(z)

which form an orthonormal basis forKI .

It turns out that the central point in the result is the behavior ofAhγn at a boundary point. This
is what we will determine now. Before proceeding though, we should justify that the expression(Ahγn)(ζ) is always defined. First observe thatγn belongs toKBn

, a finite dimensional subspace
of rational functions whose poles lie outsideD−. Moreover,Ahγn ∈ KBn

. This is because
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Ah acts onKBn
as the restriction of the co-analytic Toeplitz operatorTh, andThKBn

⊂ KBn
.

Consequently, we can evaluateAhγn at ζ ∈ T without any difficulty.

Proposition 3.2. letΛ be a Blaschke sequence andh ∈H2. Then, writing
n∏
l=1

(z − λl) = r∏
l=1

(z − µl)kl,
we have, for anyζ ∈ T,

(Ahγn)(ζ) = √1 − ∣λn∣2 r∑
l=1

1(kl − 1)!
dkl−1

dµkl−1
l

⎡⎢⎢⎢⎢⎣
h(µl)∏n−1

m=1(1 − λmµl)(1 − ζµl)∏r
j=1,j≠l(µl − µj)kj

⎤⎥⎥⎥⎥⎦.(3.3)

Proof. SinceAh = Th∣KI andThKBn
⊂KBn

we get, forλ ∈ D,

(Ahγn)(λ) = (Thγn)(λ) = (P+hγn)(λ).
This last quantity is now equal to

⟨hγn, kλ⟩ =√1 − ∣λn∣2⟨kλn
Bn−1, hkλ⟩.

We thus have to compute

⟨kλn
Bn−1, hkλ⟩ = ∫

T

1

1 − λnz

n−1∏
l=1

z − λl

1 − λlz
h(z) 1

1 − λzdm(z).
Passing to the conjugate expression and then replacing the measuredm = dθ/(2π) by dz/(2πiz)
we get

⟨kλn
Bn−1, hkλ⟩ = 1

2πi
∫
T

1

1 − zλn

n−1∏
l=1

1 − λlz

z − λl

h(z) 1

1 − λz
dz

z

= 1

2πi
∫
T

1

z − λn

n−1∏
l=1

1 − λlz

z − λl

h(z) 1

1 − λzdz
= 1

2πi
∫
T

n∏
l=1

1

z − λl

⎡⎢⎢⎢⎢⎣
h(z)∏n−1

j=1 (1 − λjz)
1 − λz

⎤⎥⎥⎥⎥⎦dz.(3.4)

Now let∏n
l=1(z − λl) = ∏r

l=1(z − µl)kl whereµl are thedifferentzeros ofBn andkl are their
corresponding multiplicities. Then from the residue theorem we obtain:

⟨kλn
Bn−1, hkλ⟩ = r∑

l=1

1(kl − 1)!
dkl−1

dµkl−1
l

⎡⎢⎢⎢⎢⎣
h(µl)∏n−1

m=1(1 − λmµl)(1 − λµl)∏r
j=1,j≠l(µl − µj)kj

⎤⎥⎥⎥⎥⎦ .
This expression is perfectly well behaved forλÐ→ ζ , so that by conjugating back and multiply-
ing by the normalization constant

√
1 − ∣λn∣2, we obtain the desired result. ∎

In the situation of simple zeros we get a much nicer formula that we will use in the example
at the end of this paper.

Corollary 3.5. LetΛ be a Blaschke sequence with simple zeros. Then we have, for each ζ ∈ T,

(Ahγn)(ζ) = √1 − ∣λn∣2 n∑
l=1

h(λl)
1 − λlζ

1

(Bn)λl
(λl)

1 − ∣λl∣2
1 − λlλn
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where

(Bn)λl
= n∏

k=1,k≠l

bλk
.

The interesting observation here is that the expression∣(Bn)λl
(λl)∣ measures, in a sense, the

deviation ofΛ from an interpolating sequence. This will be very useful in our Example 4.9.

Proof. Starting from the computation (3.4) the residue theorem nowgives:

⟨kλn
Bn−1, hkλ⟩ = n∑

l=1

h(λl)∏n−1
j=1 (1 − λjλl)
1 − λλl

n∏
j=1,j≠l

1

λl − λj

.

We split the above sum in two piecesl ≤ n − 1 andl = n and do some regrouping to get

n∑
l=1

h(λl)∏n−1
j=1 (1 − λjλl)
1 − λλl

n∏
j=1,j≠l

1

λl − λj

= n−1∑
l=1

h(λl)∏n−1
j=1 (1 − λjλl)
1 − λλl

n∏
j=1,j≠l

1

λl − λj

+ h(λn)∏n−1
j=1 (1 − λjλn)
1 − λλn

n−1∏
j=1

1

λn − λj

.

Now

n−1∏
j=1

(1 − λjλl) n∏
j=1,j≠l

1

λl − λj

= 1 − ∣λl∣2
λl − λn

n−1∏
j=1,j≠l

1 − λjλl

λl − λj

= 1 − ∣λl∣2
λl − λn

⎛
⎝

n−1∏
j=1,j≠l

1 − λjλl

λl − λj

⎞
⎠
1 − λnλl

1 − λnλl

= 1 − ∣λl∣2
1 − λnλl

1(Bn)λl
(λl) .

Also,
n−1∏
j=1

(1 − λjλn) n−1∏
j=1

1

λn − λj

= 1(Bn)λn
(λn) =

1 − ∣λn∣2
1 − λnλn

1(Bn)λn
(λn) .

Hence

n∑
l=1

h(λl)∏n−1
j=1 (1 − λjλl)
1 − λλl

n∏
j=1,j≠l

1

λl − λj

= n−1∑
l=1

h(λl)(1 − λjλl)
1 − ∣λl∣2
1 − λnλl

1

(Bn)λl
(λl) +

h(λn)(1 − λjλn)
1 − ∣λn∣2
1 − λnλn

1

(Bn)λn
(λn)

which concludes the proof. ∎
Remark 3.6. It is worth reminding the reader again that we are assumingh ∈ KI andAh is
bounded onKI .

Proof of Theorem 1.7.By Corollary 2.7 the existence of finite non-tangential boundary limits of
all functions inRngAh is equivalent to the interpolation problem of findingkh

ζ ∈KI such that

(1 − ζz)kh
ζ − h ∈ IH2,(3.7)

whereI is now a Blaschke product.
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Let us use some ideas from [AC70b]. If there is a functionkh
ζ ∈KI satisfying (3.7) then there

are complex coefficientscn such that

(3.8) kh
ζ =∑

n≥1

cnγn

with ∑n≥1 ∣cn∣2 <∞. In particular,

cn = ⟨γn, kh
ζ ⟩.

But sinceγn ∈KI we can use Corollary 2.9 to get

⟨γn, kh
ζ ⟩ = (Ahγn)(ζ)

which proves the necessity.

Let us now prove the sufficiency.

Assuming∑n≥1 ∣(Ahγn)(ζ)∣2 <∞, we can define the function

u =∑
n≥1

(Ahγn)(ζ)γn(3.9)

in KI . In order to verify the interpolating condition in (3.7), itis sufficient to check that

u − h

1 − zζ
vanishes to the right order, meaning that at each pointλ ∈ Λ these differences vanish with order
corresponding to the multiplicity ofλ. The reader might observe that these differences are not
necessarily inH2. However, it is clear thath(z)/(1 − ζz) is controlled by1/(1 − ζz)3/2 so that
we can write the interpolation condition as

u − h

1 − zζ ∈ IHp

for p < 2/3, but we will not really use this formulation.

The proof of the interpolating condition will be very technical in the general case. However,
if the zeros aresimple, which we assume to be the case for the moment, then the formula for
Ahγn(ζ) in Corollary 3.5 simplifies the argument considerably. In this situation, we have

(Ahγn)(ζ) = √1 − ∣λn∣2 n∑
l=1

h(λl)
1 − λlζ

1

(Bn)λl
(λl)

1 − ∣λl∣2
1 − λlλn

.

Hence using Fubini’s theorem we get, for eachN ∈ N,

u(λN) = N∑
n=1

(Ahγn)(ζ)γn(λN)
= N∑

n=1

√
1 − ∣λn∣2 n∑

l=1

h(λl)
1 − λlζ

1(Bn)λl
(λl)

1 − ∣λl∣2
1 − λnλl

√
1 − ∣λn∣2

1 − λnλN

Bn−1(λN)
= N∑

l=1

h(λl)
1 − λlζ

N∑
n=l

1 − ∣λl∣2
1 − λnλl

1 − ∣λn∣2
1 − λnλN

Bn−1(λN)(Bn)λl
(λl)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=∶ αl,N

.(3.10)
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So, in order to show the interpolation conditionu(λN) = h(λN)/(1 − ζλN) it suffices to show
that

αl,N = { 1 if l = N
0 if l < N.

Clearly, if l = N thenαN,N = 1 (observe in particular thatl = n = N and(BN)λN
= BN−1).

Now let krξ(z) = 1/(1 − rξz) be the reproducing kernel forH2 at rξ for any ξ ∈ T. Let
PBN

be the orthogonal projection ontoKBN
which can be written explicitly using the Takenaka-

Malmquist-Walsh basis so that

vr ∶= PBN
krξ = n∑

n=1

⟨krξ, γn⟩γn = N∑
n=1

γn(rξ)γn.
Sincevr − krξ ∈ kerPBN

= BNH2 we getvr(λn) = krξ(λn) for n = 1, . . . ,N . All functions
involved are rational function with no poles onD− so that we can pass to the limit asr → 1− so
that

v(λn) = lim
r→1−

vr(λn) = 1

1 − ξλn

, n = 1,2, . . . ,N.

Notice also that

v = N∑
n=1

γn(ξ)γn = N∑
n=1

(A1γn)(ξ)γn.
Replacing the functionh by 1 in (3.10), we obtain

v(λN) = N∑
l=1

1

1 − λlξ

N∑
n=l

1 − ∣λl∣2
1 − λnλl

1 − ∣λn∣2
1 − λnλN

Bn−1(λN)(Bn)λl
(λl)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶= αl,N

,

and sincev(λN) = 1/(1 − ζλN) andαN,N = 1, we get
N−1∑
l=1

1

1 − λlξ
αl,N = 0

for everyξ. The reproducing kernels for differentξ are linearly independent, so that the coeffi-
cientsαl,N must necessarily vanish forl = 1,2, . . . ,N − 1, which finishes the proof for simple
zeros.

The reader might observe that the explicit form ofαl,N is not really of importance (well, it is,
of course...). The central point is thatαN,N = 1. We will now generalize this argument to the
case of arbitrary Blaschke products. As to be expected, the proof is more technical.

For the proof in the general situation, letµ = λN+1 be any point of the sequence such that
µ ≠ λl for everyl ≤ N . It is the first time we meet this zero. Suppose also thatµ has multiplicity
k0. We have to show that for every1 ≤ k ≤ k0,

u(k−1)(µ) = ( h

1 − ζz)
(k−1) (µ).

Let us compute the derivatives ofu. Let∏N+k
n=1 (z −λn) =∏r

l=1(z −µl)kl whereµr = µ andkr = k
(and notk0). Evaluating the(k −1)-st derivative of the functionu, as defined in (3.9), atµ needs
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only to take into account the firstN + k terms of the sum since forn ≥ N + k + 1, γn has a zero
of sufficiently high order atµ thatγ(k−1)n (µ) = 0. Thus from (3.4) we get

u(k−1)(µ) = N+k∑
n=1

(Ahγn)(ζ)γ(k−1)n (µ)
= N+k∑

n=1

(1 − ∣λn∣2) r∑
l=1

1

(kl − 1)!
dkl−1

dµkl−1
l

⎡⎢⎢⎢⎢⎣
h(µl)∏n−1

m=1(1 − λmµl)(1 − ζµl)∏r
j=1,j≠l(µl − µj)kj

⎤⎥⎥⎥⎥⎦ [kλn
Bn−1]

(k−1)
(µ)

= N+k∑
n=1

(1 − ∣λn∣
2
)

r∑
l=1

1

(kl − 1)!
kl−1∑
p=0

(

kl − 1
p
)

dp

dµ
p

l

[

h(µl)

1 − ζµl

] ×
× dkl−1−p

dµ
kl−1−p

l

⎡
⎢
⎢
⎢
⎢
⎣

∏n−1
m=1(1 − λmµl)

(1 − λµl)∏r
j=1,j≠l(µl − µj)

kj

⎤
⎥
⎥
⎥
⎥
⎦

[kλn
Bn−1]

(k−1)
(µ).

We will now apply Fubini’s theorem. In order to do this, we observe that the double sum∑r
l=1∑kl−1

p=0 runs exactly through the zerosλn, n = 1,2, ...,N + k. Let us define a function in
two variables by

σ(l, p) = (p + 1) + l−1∑
j=1

kl

which is a bijection of a disjoint union of setsτl = {0,1 . . . , kl − 1}, l = 1, . . . , r to the set
{1,2, . . . ,N + k}. Hence

u(k−1)(µ) = N+k∑
n=1

(Ahγn)(ζ)γ
(k−1)
n (µ)

= r∑
l=1

1

(kl − 1)!
kl−1∑
p=0

(

kl − 1
p
)

dp

dµ
p

l

[

h(µl)

1 − ζµl

] ×
× N+k∑

n=σ(l,p)

(1 − ∣λn∣
2
)

dkl−1−p

dµ
kl−1−p

l

[

∏n−1
m=1(1 − λmλl)∏r

j=1,j≠l(µl − µj)
kj
] [kλn

Bn−1]
(k−1)
(µ).(3.11)

Let us investigate the term we are particularly interested in for the interpolation problem. It
corresponds to the very last term:l = r andp = kr − 1 = k − 1. In this situation,n = σ(r, k − 1) =
N + k. We compute the last factor:

[kλn
Bn−1]

(k−1)
(µ) = k−1∑

p=0

(

k − 1
p
)k
(p)

λN+k
B
(k−1−p)

N+k−1 (µ).

Now BN+k−1 = bk−1µ ∏r−1
l=1 b

kl
µl

so that all derivatives up to orderk − 2 of this product evaluated at
µ will vanish and

B
(k−1)

N+k−1(µ) = (bk−1µ )
(k−1)
(µ)

r−1∏
l=1

bklµl
(µ).

It is well known, and easy to verify (e.g. using once again theLeibniz rule), that

(bk−1µ )
(k−1)
(µ) = (k − 1)!

(1 − ∣µ∣2)k−1 .
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Hence

[kλn
Bn−1]

(k−1)
(µ) = kµ(µ) (k − 1)!

(1 − ∣µ∣2)k−1
r−1∏
l=1

bklµl
(µ) = (k − 1)!

(1 − ∣µ∣2)k
r−1∏
l=1

bklµl
(µ).

We are now in a position to compute the coefficient of the termd
k−1

dµk−1

h(µ)

1 − ζµ (corresponding to

l = r, kl = k, p = k − 1, and hence, as already seen,n = σ(l, p) = N + k, λN+k = µ). It is given by

1

(k − 1)!(
k − 1
k − 1)(1 − ∣µ∣2)

dk−1−p

dµk−1−p
[

∏n−1
m=1(1 − λmµ)∏r

j=1,j≠l(µ − µj)
kj
] [kλn

Bn−1]
(k−1)
(µ)

= 1

(k − 1)!(1 − ∣µ∣2)[∏
r−1
m=1(1 − µmµ)km(1 − ∣µ∣2)k−1

∏r−1
j=1(µ − µj)

kj
]

(k − 1)!
(1 − ∣µ∣2)k

r−1∏
l=1

bklµl
(µ)

= 1.(3.12)

Hence we are led to show that the remaining sum adds up to 0. Forthis, it is sufficient to show
that for everyl = 1, ..., r − 1, p = 0, ..., kl − 1 and forl = r, p = 0, ..., k − 2, we have

N+k∑
n=σ(l,p)

(1 − ∣λn∣
2
)

dkl−1−p

dµ
kl−1−p

l

[

∏n−1
m=1(1 − λmλl)∏r

j=1,j≠l(µl − µj)
kj
] [kλn

Bn−1]
(k−1)
(µ) = 0.(3.13)

The trick is the same as for simple zeros: redo all the computations from above for the caseh = 1
for which we will deduce (3.13) from the interpolating property.

For this, letξ ∈ T and0 < r < 1. Set

vr(z) = N+k∑
n=1

(A1γn)(rξ)γn(z) = N+k∑
n=1

γn(rξ)γn(z).

Let us first check thatvr interpolates what it should (while this is of course contained in [AC70b]
we add here a proof for completeness). To this end, as before,let krξ be theH2 reproducing
kernel atrξ ∈ D. Also letPBN+k

be the orthogonal projection onto the spaceKBN+k
. Using the

Takenaka-Malmquist-Walsh functions we obtain

PBN+k
krξ = N+k∑

n=0

⟨krξ, γn⟩γn = N+k∑
n=0

γn(rξ)γn = vr.
Hence

vr − krξ ∈ kerPBN+k
= BN+kH

2.

Now all these functions are rational functions with no polesin D so that we can pass to the limit
r → 1− to obtain forµ and1 ≤ k ≤ k0 (same meaning of these parameters as in the first part of
the proof),

v(k−1)(µ) = k(k−1)ξ (µ) = dk−1

dµk−1
kξ(µ).

(Note that again the differencev − kξ is not inH2 sincekξ is not.)
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Exactly as in (3.11) we obtain

v(k−1)(µ) = N+k∑
n=1

(A1γn)(ξ)γ
(k−1)
n (µ)

= r∑
l=1

1

(kl − 1)!
kl−1∑
p=0

(

kl − 1
p
)

dp

dµ
p

l

[

1

1 − ξµl

] ×
× N+k∑

n=σ(l,p)

(1 − ∣λn∣
2
)

dkl−1−p

dµ
kl−1−p

l

[

∏n−1
m=1(1 − λmλl)∏r

j=1,j≠l(µl − µj)
kj
] [kλn

Bn−1]
(k−1)
(µ).

The leading coefficient forl = r andp = kr − 1 = k − 1 has already been computed in (3.12) to be
1. Hence subtracting the term corresponding to the leading coefficient, we obtain (splitting the
sum into the terms forl ∈ {1,2, . . . , r − 1} andl = r)

0 = r−1∑
l=1

1

(kl − 1)!
kl−1∑
p=0

(

kl − 1
p
)

dp

dµ
p

l

[

1

1 − ξµl

]×
× N+k∑

n=σ(l,p)

(1 − ∣λn∣
2
)

dkl−1−p

dµ
kl−1−p

l

[

∏n−1
m=1(1 − λmµl)∏r

j=1,j≠l(µl − µj)
kj
] [kλn

Bn−1]
(k−1)
(µ)

+ 1

(k − 1)!
k−2∑
p=0

(

k − 1
p
)

dp

dµp
[

1

1 − ξµ] ×
× N+k∑

n=σ(l,p)

(1 − ∣λn∣
2
)

dkl−1−p

dµ
kl−1−p

l

[

∏n−1
m=1(1 − λmµl)∏r−1
j=1(µ − µj)

kj
] [kλn

Bn−1]
(k−1)
(µ).

The above formula is valid for everyξ ∈ T. Now, observe that the functions

ξ z→
dp

dµ
p

l

[

1

1 − ξµl

]

form a linearly independant family forl = 1, ..., r−1, p = 0, ..., kl −1 and forl = r, p = 0, ..., k −2,
implying that the coefficients

N+k∑
n=σ(l,p)

dkl−1−p

dµ
kl−1−p

l

[

∏n−1
m=1(1 − λmµl)

∏r−1
j=1(µ − µj)

kj
] [kλn

Bn−1]
(k−1)
(µ)

have to vanish in the required ranges of the parameters ofl, p. ∎
Remark 3.14. From the identitykh

λ
= PI(hk

I
λ
) from (2.5), and the fact that{γn ∶ n ∈ N} forms

an orthonormal basis forKI , we see that

∥kh
λ∥

2 = ∥PI(hk
I
λ)∥

2 =∑
n≥1

∣⟨PI(hk
I
λ), γn⟩∣

2 =∑
≥1

∣⟨kI
λ, hγn⟩∣

2

= ∑
≥1

∣(Ahγn)(λ)∣
2.

From (3.8) it follows that

∥kh
ζ ∥

2 =∑
n≥1

∣(Ahγn)(ζ)∣
2.
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Proof of Theorem 1.9.Instead of deriving this result from our main theorem, the idea is to use
directly the interpolation property as in [AC70b]. The existence of the boundary limits is as
before equivalent to the existence of the functionkh

ζ . And from the interpolation condition (3.7)
the existence of the functionkh

ζ is equivalent to the solution of the problem

kh
ζ (λn) = h(λn)

1 − ζλn

, n ≥ 1.
From Shapiro-Shields [SS61], this is equivalent to

∑
n≥1

(1 − ∣λ∣2) ∣h(λn)

ζ − λn

∣

2 <∞.

This proves the result. ∎
4. SOME EXAMPLES

Recall that a truncated Toeplitz operators with co-analytic symbolh is just the restriction of
the regular Toeplitz operator with symbolh to a model spaceKI . Let us discuss some simple
examples which illustrate the smoothing effects of applying Toeplitz operators to functions in
KI or evenH2.

Example 4.1. The following general fact is well known for functionsf in H2 :

∣f(z)∣ = O ⎛
⎝

1
√

1 − ∣z∣
⎞

⎠

.(4.2)

It can actually be shown that this growth condition can be replaced in a non-tangential approach
region by a little-oh condition:

∣f(λ)∣ = o⎛
⎝

1
√

1 − ∣λ∣
⎞

⎠

, λ
∠

Ð→ ζ ∈ T.(4.3)

The notationz
∠

Ð→ ζ means thatz tends non tangentially toζ . As a consequence, we observe

that if ϕ is anaytic and∣ϕ(z)∣ ≤ √1 − ∣z∣ asz
∠

Ð→ ζ — which is for instance the case when
ϕ(z) = √ζ − z — then every function in the range of theanalyticToeplitz operatorTϕf , where
actuallyf ∈H2, will have a boundary limit (zero) atζ .

Example 4.4. The situation is more intricate when considering co-analytic symbols. A simple
observation is the following: Ifh(z) = 1 − z, then for every functionf ∈H2,

Thf(z) = T1−zf(z) = f(z) − f(z) − f(0)z
= f(z)(z − 1)

z
− f(0)

z

which tends in fact to−f(0) (and which is in general not 0) whenz
∠

Ð→ 1 (we have used (4.2)).

Example 4.5. In this example we use Theorem 1.9 to show that the natural multiplier
√

1 − z,
which makes every function inH2 vanish non-tangentially at 1 (as observed in Example 4.1), is
not sufficient for co-analytic Toeplitz operators.
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LetΛ = (1− 1
2n
)n≥1, I be the Blaschke product with these zeros, andhε(z) = (1−z)1/2+ε. Then

every functionf ∈ RngAhε
has non-tangential limit in 1, if and only if the condition in(1.10) is

fulfilled. Now observe that

∑
n≥1

(1 − ∣λn∣
2
) ∣

hε(λn)

1 − λn

∣

2 ≃∑
n≥1

2−n ∣
1/2n(1/2+ε)

1/2n
∣

2 =∑
n≥1

2−2nε

which converges if and only ifε > 0. So we need the symbolh to decrease faster than
√

1 − z to
ensure existence of the boundary limits of functions inRngAh.

It is possible to consider a decrease closer to
√

1 − z, for example

h(z) = log 2
√

1 − z
(− log(1 − z))

(for whichh(λn) = 1/(n2n/2)), but we can never reach
√

1 − z.

Example 4.6. In this next proposition, we see that Theorem 1.9 is not true for non-interpolating
Blaschke sequences.

Proposition 4.7. There exists a pointζ ∈ T, a Blaschke productI whose zerosΛ ⊂ D satisfy the
condition(1.10)at ζ , a functionh ∈KI such thatAh is bounded onKI . Still there are functions
in AhKI which do not have finite non-tangential boundary limits atζ .

Proof. The proof of this result relies on a result concerning interpolation on finite unions of inter-
polating sequences [BNØ96, Har96]. LetΛ1 = {λ1

n}n≥1 = {1−1/2n}n≥1, which is an interpolating
sequence [Gar07] and letΛ2 = {λ2

n}n≥1 satisfy∣bλ1
n
(λ2

n)∣ = 1/n. The sequenceΛ2 is a sufficiently
small perturbation ofΛ1 such thatΛ2 will also be interpolating. Also note that the sequence
Λ ∶= Λ1 ∪Λ2 accumulates non tangentially atζ = 1. Let

v1n = 1

n2n/2
, v2n = 0.

The central result used here is the following: a sequence of values(wk
n)n≥1;k=1,2 is a trace of a

functionf ∈H2 (orKI) if and only if [BNØ96, Har96]

∑
n≥1

(1 − ∣λ1
n∣

2
)

⎡
⎢
⎢
⎢
⎢
⎣

∣w1
n∣

2 + ∣w2
n −w1

n

bλ1
n
(λ2

n)
∣

2⎤
⎥
⎥
⎥
⎥
⎦

<∞.(4.8)

For the valueswi
n = vin that we have given above, we get:

∑
n≥1

(1 − ∣λ1
n∣

2
)

⎡
⎢
⎢
⎢
⎢
⎣

∣v1n∣
2 + ∣ v2n − v1n

bλ1
n
(λ2

n)
∣

2⎤
⎥
⎥
⎥
⎥
⎦

≃∑
n≥1

1

2n

⎡
⎢
⎢
⎢
⎢
⎣

(

1

n2n/2
)

2 + ∣1/(n2n/2)
1/n

∣

2⎤
⎥
⎥
⎥
⎥
⎦

<∞,

and so that there is a functionh in H2 or in KI taking the valuesvin atλi
n.

Next we check the condition (1.10). Note that sinceh(λ2
n) = v2n = 0, we only have to sum over

Λ1. Indeed we get

∑
n≥1

(1 − ∣λ1
n∣

2
) ∣

h(λ1
n)

1 − λ1
n

∣

2 ≃∑
n≥1

1

2n
∣

1/(n2n/2)

1/2n
∣

2 =∑
n≥1

1

n2
<∞.
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Let us check that the sequence defined by

wi
n ∶= h(vin)

ζ − λi
n

, n ≥ 1, i = 1,2,
cannot be realized by a function inKI so thatkh

ζ does not exist and hence there are functions in
AhKI that do not admit boundary limits inζ = 1. In order to do so, we have to check that this
sequence does not satisfy the condition (4.8). We compute toget

∑
n≥1

(1 − ∣λ1
n∣

2
)

⎡
⎢
⎢
⎢
⎢
⎣

∣w1
n∣

2 + ∣w2
n −w1

n

bλ1
n
(λ2

n)
∣

2⎤
⎥
⎥
⎥
⎥
⎦

≃ ∑
n≥1

1

2n

⎛

⎜

⎝

∣

1/(n2n/2)

1/2n
∣

2 +
R
R
R
R
R
R
R
R
R
R
R
R
R

1/(n2n/2)

1/2n
− 0

1/n

R
R
R
R
R
R
R
R
R
R
R
R
R

2
⎞

⎟

⎠

= ∑
n≥1

(

1

n2
+ 1) = +∞

so that this value sequence cannot be realized by a function in KI .

We finally have to check thatAh is bounded onKI . For this, note thatKI is anl2-sum ofKBn

whereBn is the finite Blaschke product with zeros{λ1
n, λ

2
n} (see [Nik02, Theorem C3.2.14]). By

this we mean that everyf ∈KI can be written as

f =∑
n≥1

fn, fn ∈KBn
, ∥f∥2 ≍∑

n≥1

∥fn∥
2.

We use the Takenaka-Malmquist-Walsh system to generateKBn
:

γn,1(z) =
√

1 − ∣λ1
n∣

2

1 − λ1
nz

, γn,2(z) =
√

1 − ∣λ2
n∣

2

1 − λ2
nz

z − λ1
n

1 − λ1
nz

.

So, every functionf ∈KI can be written as

f =∑
n≥1

(αn,1γn,1 +αn,2γn,2)

with ∥f∥2 ≃∑n≥1 ∣αn,1∣
2+ ∣αn,2∣

2 <∞. Apply nowAh to this sum (we could start with finite sums
and check that we have a uniform norm control). Clearly

Ahγn,1 = h(λ1
n)γn,1.

The action ofAhγn,2 can be deduced from Corollary 3.5. We obtain

(Ahγn,2)(z) =√1 − ∣λ2
n∣

2

⎡
⎢
⎢
⎢
⎢
⎣

h(λ1
n)

1 − λ1
nz

1

bλ2
n
(λ1

n)

(1 − ∣λ1
n∣

2
)

1 − λ1
nλ

2
n

+ h(λ2
n)

1 − λ1
nz

1

bλ1
n
(λ2

n)

⎤
⎥
⎥
⎥
⎥
⎦

.

Note thath(λ2
n) = v2n = 0, and hence

(Ahγn,2)(z) =√1 − ∣λ2
n∣

2
h(λ1

n)

1 − λ1
nz

1

bλ2
n
(λ1

n)

(1 − ∣λ1
n∣

2
)

1 − λ1
nλ

2
n

= βnγn,1,

where

βn =
√

1 − ∣λ2
n∣

2
√

1 − ∣λ1
n∣

2

1 − λ1
nλ

2
n

h(λ1
n)

bλ2
n
(λ1

n)

.
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In view of the explicit values ofλi
n, h(λi

n) and ∣bλ2
n
(λ1

n)∣, the sequence{βn}n≥1 is bounded (it
actually tends to zero quickly). We thus get

Ahf =∑
n≥1

(αn,1h(λ1
n)γn,1 +αn,2βnγn,1) =∑

n≥1

(αn,1h(λ1
n) + αn,2βn)γn,1

and hence, sinceh is also bounded onΛ1 (actually decreasing very fast to 0),

∥Ahf∥
2 =∑

n≥1

∣h(λ1
n)αn,1 + βnαn,2∣

2 ≲ ∑
n≥1

∣αn,1∣
2 + ∣αn,2∣

2 ≃ ∥f∥2.
∎

Note how in this exampleB does not have non-tangential limit atζ = 1. Indeed,B vanishes
at its zeros and, in the middle between two successive pairs{λ1

n, λ
2
n} and{λ1

n+1, λ
2
n+1}, we are

far from the elements of the two interpolating sequencesΛ1 andΛ2. ThusB will be big at these
points.

The second remark is that forh(z) = 1−z we have already seen that every function inRngA1−z

will have a limit atζ = 1. Choosing, as mentioned in Example 4.5,h(z) = log 2√1 − z/(− log(1−
z)) (which gives exactlyh(λ1

n) = 1/(n2n/2)) andwi
n = h(λi

n), it can be checked that (4.8) is true
so that for this functionh, everyf ∈ AhKI has non tangential limit atζ = 1. If the reader prefers
a function inKI , it is sufficient to projecth intoKI which does not change the values onΛ.

The arguments given in the proof of Proposition 4.7 indicatehow to adapt the construction to
generalize Theorem 1.9 to finite unions of interpolating sequences.

Example 4.9. In this final example, we apply Theorem 1.7 to a sequence whichis not a finite
union of interpolating sequences. Fixβ ∈ (1/2,1). Let

λn = 1 − 1

2n
β
,

and letB be the Blaschke product associated with the sequenceΛ = {λn}n. Since the conver-
gence of this sequence to1 is sub-exponential, there will be dyadic intervals[1−1/2n,1−1/2n+1]
in the radius[0,1) containing arbitrarily big numbers of elements ofΛ so that the associated
measure∑n≥1(1 − ∣λn∣

2
)δλn

cannot be Carleson (see [Gar07] for more information on Carleson
measures).

Let us first estimate∣Bλn
(λn)∣whereBλn

is the Blaschke product associated with the sequence
Λ ∖ {λn}. In order to do these estimates, we will consider

log ∣Bλn
(λn)∣

−1 = ∑
k≠n

log ∣bλk
(λn)∣

−1 = ∑
k≠n

log ∣
1/2n

β − 1/2kβ
1/2n

β + 1/2kβ − 1/2kβ+nβ
∣

−1

= ∑
k≠n

log ∣
2n

β + 2kβ − 1
2n

β − 2kβ ∣ .
We can suppose thatn is large enough so that we do not have to worry about the−1 which occurs
in the last numerator. We will now split the summation (in theindexk) into 4 (or 2) pieces.

Case 1:Considern + 1 ≤ k ≤ n + n1−β . Then

∣

2n
β + 2kβ

2n
β − 2kβ ∣ ≃ ∣

2k
β

2n
β − 2kβ ∣ =

2k
β

2k
β − 2nβ

= 1

1 − 2nβ−kβ
.
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Note that

0 ≥ nβ − kβ ≥ nβ − (n + n1−β
)
β = nβ − nβ

(1 + n−β)β
= nβ − nβ

(1 + β/nβ + o(1/nβ
))

= −β + o(1).(4.10)

So,−1 < − ln 2 < −β ln 2 ≲ (ln 2)(nβ − kβ
) ≤ 0 (where the “≲” is asymptotically, forn → ∞, a

“≤”), and hence
2n

β
−kβ = e(ln 2)(nβ

−kβ) ≃ 1 + (ln 2)(nβ − kβ
),

so that

∣

2n
β + 2kβ

2n
β − 2kβ ∣ ≃

1

1 − 2nβ−kβ
≃ 1

ln2(kβ − nβ
)

Now, settingk = n + l with l ∈ {1,2, . . . , n1−ε
} we get

(n + l)β − nβ = nβ
(1 + l

n
)
β − nβ ≃ βl

n1−β
.

Hence
n+n1−β∑
k=n+1

log ∣bλk
(λn)∣

−1 ≃ n1−β∑
l=1

log
n1−β

βl ln 2
.

And switching back to the product we get

n+n1−β∏
k=n+1

∣bλk
(λn)∣

−1 ≃ ( n1−β

β ln 2
)

n1−β

1

(n1−β
)!
.

Using Stirling’s formula
NN

N !
≃ eN
√

2πN
,

we obtain withN = n1−β ,

n+n1−β∏
k=n+1

∣bλk
(λn)∣

−1 ≃ ( e

β ln 2
)

n1−β

1
√

2πn1−β
≲ ecn1−β

(4.11)

for some suitable constantc.

Case 2:Suppose now thatk ≥ n + n1−β . Observe

∣

2n
β + 2kβ

2n
β − 2kβ ∣ = ∣1 + 2

2n
β

2k
β − 2nβ

∣ .

Then
2n

β

2k
β − 2nβ

≤ 2n
β

2(n+n
1−β)β − 2nβ

= 1

2(n+n
1−β)β−nβ − 1 ,

which, by similar computations as in (4.10), is controlled by

1

2β − 1 .
This enables us now to write

log ∣1 + 2 2n
β

2k
β − 2nβ

∣ ≃ 2

2k
β−nβ − 1 ≲

2n
β

2k
β
.
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Using the estimate

∫ ∞

M
e−x

β

dx ≃M1−βe−M
β

,

we can compute

∑
k≥n+n1−β

log ∣1 + 2 2n
β

2k
β − 2nβ

∣ ≲ 2nβ ∑
k≥n+n1−β

1

2k
β
≃ 2nβ

(n + n1−β
)
1−β 1

2(n+n
1−β)β

≃ n1−β

so that we also get

∏
k≥n+n1−β

∣bλk
(λn)∣

−1 ≤ ecn1−β

for some suitable constantc.

We will also include a brief discussion of the cases 3 —(n − n1−ε
) ≤ k ≤ n − 1 — and 4 —

1 ≤ k ≤ (n − n1−ε
)— which are treated in essentially the same way.

Case 3:Considern − n1−β ≤ k ≤ n − 1. Then

∣

2n
β + 2kβ

2n
β − 2kβ ∣ ≃ ∣

2n
β

2n
β − 2kβ ∣ =

1

1 − 2kβ−nβ
.

Now
0 ≥ kβ − nβ ≥ (n − n1−β

)
β − nβ ≃ −β + o(1)

as in (4.10). So,−1 < − ln 2 < −β ln 2 ≲ (ln 2)(kβ − nβ
) ≤ 0 (where the “≲” is asymptotically, for

n→∞, a “≤”), and we can conclude as in the case 1 to obtain

n−1∏
k=n−n1−β

∣bλk
(λn)∣

−1 ≃ ( e

β ln 2
)

n1−β

1
√

2πn1−β
≲ ecn1−β

for some suitable constantc.

Case 4:Suppose now thatk ≤ n − n1−β . Observe

∣

2n
β + 2kβ

2n
β − 2kβ ∣ = ∣1 + 2

2k
β

2n
β − 2kβ ∣ .

Then
2k

β

2n
β − 2kβ =

1

2n
β−kβ − 1 ≤

1

2n
β−(n−n1−β)β − 1

which, by similar computations as in (4.10), is controlled by

1

2β − 1 .
This enables us now to write

log ∣1 + 2 2k
β

2n
β − 2kβ ∣ ≃ 2

2k
β

2n
β − 2kβ ≲

2k
β

2n
β
.

Using

∫ M

1
ex

β

dx ≃M1−βeM
β
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we can estimate

∑
k≤n−n1−β

log ∣1 + 2 2n
β

2k
β − 2nβ

∣ ≲ 1

2n
β ∑

k≤n−n1−β

2k
β ≃ 1

2n
β
(n − n1−β

)
1−β2(n−n

1−β
)
β ≃ n1−β

so that we also get
∏

k≤n−n1−β

∣bλk
(λn)∣

−1 ≤ ecn1−β

for some suitable constantc.

Putting this all together we obtain

δn ∶= ∣Bλn
(λn)∣ ≥ e−cn1−β

for some suitable constantc.

Let us now return to our problem of estimating∣Ahγn(ζ)∣. From Proposition 3.5, we have

(Ahγn)(ζ) =√1 − ∣λn∣
2

n∑
l=1

h(λl)

1 − λlζ

1

(Bn)λl
(λl)

1 − ∣λl∣
2

1 − λlλn

Our Blaschke product constructed above accumulates atζ = 1 and contains only points in(0,1).
Let h(z) = (1 − z)1−ε. Then

∣(Ahγn)(ζ)∣ ≲√1 − λn

n∑
l=1

(1 − λl)
1−ε

1 − λl

1

∣(Bn)λl(λl)∣

1 − λl

1 − λl

≲√1 − λn

n∑
l=1

(1 − λl)
−ε

δl

Recall thatλn = 1 − 1

2n
β andδn ≥ e−cn1−β . Hence

∣(Ahγn)(ζ)∣ ≲ 1

2n
β/2

n∑
l=1

2εl
β

e−cl
1−β
≲ 1

2n
β/2

n2εn
β

ecn
1−β = n2εnβ

+c ln 2n1−β
−nβ
/2

which is square summable as long asε < 1/2 andβ > 1/2.

Note that again our zeros are contained in the radius(0,1) and the functionh has to go slightly
faster to zero than the square root as in the situation whenΛ was an interpolating Blaschke
sequence in(0,1).

Note also that in this example ∠ lim
λ→1

B(λ) = 0.
5. UNBOUNDED OPERATORS

For anyh ∈ H2 the truncated Toeplitz operatorAh turns out to be a closed, densely defined
operator onKI with a domainD(Ah) which containsKI ∩H∞ [Sar08]. If one looks closely at
the proof of the two main theorems of this paper (Theorem 1.7 and Theorem 1.9), one realizes
that the sufficiency parts still hold but withRngAh defined asAhD(Ah).

Furthermore, the conditions given in these theorems are still sufficient for everyh ∈ H2 when
RngAh, as defined in the previous paragraph, is replaced by the linear manifold{fh ∶ f ∈ KI},
wherefh is defined by the left-hand side of (1.5), i.e.,

fh(λ) ∶= ⟨f, (Id−λAz)
−1PIh⟩.
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Repeating the argument in (1.4), we can also write

fh(λ) = ⟨f, kλPIh⟩.

Note that the linear manifold{fh ∶ f ∈KI} is not necessarily a subset ofKI . However,

fh(λ) = ∫
T

f(ξ)(PIh)(ξ)

1 − ξλ dm(ξ)

is a Cauchy transform of the finite measurefPIhdm. Since Cauchy transforms of finite measures
on the circle are known to belong to all the Hardy classesHp for 0 < p < 1 [CMR06, p. 43], we
know that the non-tangential limits offh exist almost everywhere. Theorems 1.7 and 1.9 give
sufficient conditions when these non-tangential limits exist at specific points of the circle.

6. OPEN QUESTIONS

Conspicuously missing from this paper is a discussion of what happens toRngAh whenI
is a general inner functionI = Bsµ and not necessarily a Blaschke product as was discussed
here. In this case, if we are aiming for a similar characterization as in Theorems 1.7 and 1.9,
we would need a different orthonormal basis than{γn ∶ n ∈ N}. So suppose that{ϕn ∶ n ∈ N}
is an orthonormal basis forKI for a general inner functionI. Some examples can be found in
[AC70a]. Then Proposition 2.6 still holds and so the non-tangential boundary values at a fixed
point ζ ∈ T will exist for all functions fromRngAh if and only if the kernel functionskh

λ remain
bounded wheneverλ → ζ non-tangentially. The exact same computation as in Remark 3.14 will
show that

∥kh
λ∥

2 =∑
n≥1

∣(Ahϕn)(λ)∣
2.

At this point, two problems stand in our way. The first is to prove that(Ahϕn)(ζ) exists as it
did so nicely for(Ahγn)(ζ). Recall thatAhγn is a rational function whose poles are off ofD−.
Is Ahϕn such a nice function so we can compute(Ahϕn)(ζ) without any difficulty? The second
problem, assuming we can overcome the first, is to show that perhaps the natural choice of kernel
function

k ∶=∑
n≥1

(Ahϕn)(ζ)ϕn

satisfies the interpolation condition in Corollary 2.7.

One could also ask whether or not one could extend our resultsto determine, as in Ahern-
Clark, when thederivatives(of certain orders) of functions inRngAh, have non-tangential limits
at ζ ∈ T.
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