EZRICHMOND

SchooloArts & Sciences University of Richmond
UR Scholarship Repository

Math and Computer Science Technical Report Math and Computer Science

Series

3-2003

Creating and Moditying Dynamic Animation
Sequences Using the TGT_Toolkit

Ross Gore

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-reports

b Part of the Computer Sciences Commons

Recommended Citation
Ross Gore. Creating and Modifying Dynamic Animation Sequences Using the TGT _Toolkit. Technical paper (TR-03-01). Math and

Computer Science Technical Report Series. Richmond, Virginia: Department of Mathematics and Computer Science, University of
Richmond, March, 2003.

This Technical Report is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Technical Report Series by an authorized administrator of UR Scholarship Repository. For more

information, please contact scholarshiprepository@richmond.edu.

http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Creating and M odifying Dynamic Animation Sequences Using the TGT_Toolkit
University of Richmond Math and Computer Science
Technical Report TR-03-01
Ross Gore
March, 2003
I ntroduction
Creating and modifying the dynamic animation sequences within the
TGT _Toolkit is not for the faint of heart. This report contains advice, guidelines and
refers to an example of how | went about constructing the dynamic animation sequences
within the Linked Lists Tutorial. | have identified three major areas of that seem to be
common to al dynamic animation sequences, but distinct from ssimply extending
TGT_Slide as most other slides do; these areas are: dynamically creating animation
configurations, providing "undo” and dlide saving functionality and sequencing saved
dides once they are properly configured. Inthese areas "dide saving" and "saved dlides’
individual steps that make up an animation sequence as opposed to a TGT_Slide instance.
The TGT_AnimatorBox is not necessarily a dynamic animation tool. In normal use,
TGT_Animator Box follows a fixed sequence of instructions from a configuration file

that moves the images around the screen. We chose to extend this functionality because

we felt static animation significantly limited user interaction.

Note: The following explanation assumes that you are not familiar with the Digital
Tapestry Tutoria on linked lists. If you are you can skip this description of the dides

containing dynamic animation:

Description of Linked List Tutorial Workshops

Adding new values is one of the basic tasks that all data structures support. The List
class presented to students in the tutoria gives us two fairly straightforward ways to add
anew vaueto our list: we can either insert at the front of the list or at the rear of the list.
The developers have created two interactive “workshops’ to alow studentsto try to
insert a new value at the beginning of the list and at the end of the list. Thereisa "Select
Action' list that contains a number of typical actions that students would use in
developing methods that manipulate linked structures; such as creating a new node,
changing the data value of a node, changing the “.next” field of anode, etc. The
student’s job is to build a sequence of these actions that will correctly insert a new value
at the front of the list shown at the bottom of the window. As the user selects each
action, he/she will be prompted for any further information needed, such as a name for
the new node reference. The Java code corresponding to the selected actionwill be
shown in a'Source Code' area to the right when al of the necessary information for the
actions has been collected. When students are satisfied with their source code, they can
click the 'Execute’ button to see the effect of their code on the example list. They can
click on the Undo button at the bottom to remove the last action added to the 'Source
Code' area. If they are stuck and want to see a correct solution, they can click on the

'Solution' button.

#+ Digital Tapestry - Linked Lists

_;‘-:cuu} P ['i-t.[}‘g} L‘:PMQ ']::11)

(e
3) Inserting New Values
Select Action Source Code

D‘:::::l-:n b L=al I"'-]:::-!:lr.:: raf arans o

1=w [ade

=T "u?'-:'l.]. st l‘lEf-:'l.C].

1

(104

Figure 1: The Practice Workshop within the linked list tutorial.

Overview of Creating and M odifying Dynamic Animation Sequences

The details of this document can be overwhelming without an end in sight. Below isan
outline of the procedure that this report documents. Being familiar with the structure of
the report will help keep the reader from getting lost in some of the technical details.

Steps to creating dynamic animation:

‘ An Overview of the Structure of a Dynamic Animation Sequence |

/ SHAeXEVY java \

1. Inthe TGT_Slide where the nser will make
chioices that affect the animation properly add
corfiguration data to S ppearance creations,
Lppearance coords, and
L ppearance connections.

2. In the same TGT Slide include a rethod that
saves the contents of Appearance creations,
L ppearance connections, Sppearance cords, by
making each of those vectors and element in
Appearance undoCreations,

/

L ppearance undoConnections,

& andd ppearahiee mhdoCoords. /
/ SldeX XYY more java

1. Create a file entitled Shide XXy more java. In the
file declare an extension of TGT _ArarmatorBox

2. InShdeXXEyy_more jova create an if staterment that
corpares Appearance i and undoCreations Jength.
In the body of the if, give the instance of the
declared extension of TGT_&nimataorBo, the
Lppearance ith vector of
L ppearanice undoCreations,
Lppearance undoConnections, and

\ Lppearance undoCoords.

Blide XYY _anim. dat \

Setup a configuration file with any
needed static animation. If no static
atitmation is needed, then just create
an empty file. & file (empty or not)
st exist!

/

P

In the .stf file for the tutorial include a \
TGT Shide XESlideyy more as a possihle
state. The slide should be sequenced
irnavediately after the slide that contains the
choices of the dymaric animation. The
Register Event for this slide a redo state

shold be inclnded that will point dirvectly

back to itself.

&

Figure 2: Overview of Dynamic Animation Structure

1. Set up aconfiguration file with any needed static animation. If no static

animation is needed, then just create an empty file. A file (empty or not) must

exist!

2. Inthe TGT_Slide where the user will make choices that affect the animation, add

the appropriate configuration data to Appearance.creations, Appearance.coords,

and Appearance.connections vectors.

3. Inthe same TGT_Slide include a method that saves the contents of

Appearance.creations, Appearance.connections, Appearance.cords, by making

each of those vectors elements in Appearance.undoCreations,
Appearance.undoConnections, and Appearance.undoCoords.

Create afile entitled SlideXXyy_morejava. In the file declare an instance of a
specific extension of TGT_AnimatorBox for the new “more” dide.

In SlideXXyy_more.java create an if statement that compares Appearance.i and
undoCreations.length. In the body of the if, give the instance of the declared
extension of TGT_AnimatorBox, the Appearance.i vector of
Appearance.undoCresations, Appearance.undoConnections, and
Appearance.undoCoords. Thisif statement will work like aloop since it will be
executed for each step of the users code. The vectors are passed to the specific
extension of the TGT_AnimatorBox in the XXSlideyy more.java dide.

In the .&tf file for the tutorial include a TGT_Slide XX Slideyy _more as a possible
dide. The dide should be sequenced immediately after the dide that contains the
choices of the dynamic animation. The Register_Event for the XX Slideyy.javais
aredo state will point directly back to itself.

In SlideXXyy _more.java add a setStateM anager method to override the usual
manager given to a TGT_Slide. The method will allow the dlide to have the redo
functionality that isin the .stf file. The code for the method will be almost

identical to:

/1l Since we are using a redo we have to override the
/1 stateManager for this particular slide
public void setStateManager (TGT_St at eManager sm) {
/1 Placenent of our “Step” button with redo functionality

i mgCl . addMbuselLi st ener (new TGT_St at eLi stener("redo", sm);

super. set St at eManager (sm ;
/1 Everytime we click “Step” we get a
/I new snapshot of the code.
Appear ance. i ++;
}
These snip bits of code are part of an example tutorial called Test Sprites. Test Sprites

can be downloaded from http://www.mathcs.richmond.edu/~lbarnett/TGT/index.php.

Dynamically Creating Configuration Data

When being used to create predefined animation the TGT_AnimatorBox reads in
information from a configuration file that specifies what sprites will exist and how they
will move. When being used dynamically the TGT_AnimatorBox begins the same as it
does in the predefined case by reading in the same information from a configuration file.
However, the TGT_AnimatorBox has the additional capability to add configuration
statements when a dide is being displayed at run-time by making additions to the
information stored in three vectors in Appearance.java. These vectors are:
Appearance.creations, Appearance.coords, and A ppearance.connections.
Appearance.creations corresponds to the name, type, height, width, primary and
secondary colors, and in and out connection points of a sprite. Appearance.coords
contains the placement and movement information for the sprites.

Appearance.connections corresponds to how the sprites “link up” to one another. For
example an entry in this vector might be “LNO1 hasQut goi ngConnection 0 to

LNO2 O with SpriteDOL”, where sprites LNO1 and LNO2 are TGT_ListNode
Sprites and SpriteDOL1 isa TGT_Connector Sprite. Within the file Appearance.java they

are declared as:

public static Vector creations;
public static Vector coords;

public static Vector connections;

For more information on the exact parameters of all sprites that will be placed in these
vectors please refer to the documentation of the TGT_Sprite class. The API
documentation for the TGT_Sprite class is located on the Internet at

http://www.mathcs.richmond.edu/~Ibarrett/ TGT/doc/. Here is an example of the smple

methods within a TGT_Slide that creates sprite animation at runtime.

public SlideTS05() {
/1 the nane of the slide
name = "SlideTS05";
/'l the background i mge

bg = "art/blue.gif";

TGT_Poi nt Layout pl = new TGT_Poi nt Layout () ;
this.setLayout (pl);
/1 The sprite we are going to create dynamcally
Appear ance. cr eati ons. addEl enent (
"Spritel O3 TGT_I mageSprite art/gol dcheckl.gif true 8");
/1 The rate, and novenent of the sprite we just created
Appear ance. coor ds. addEl enent (
"Spritel3 = 70,0:0,0:r5:0,0:70,70:r5:70,70:70,0:r5")
/1 There is only one sprite and it has no connections so
/1 Appear ance. connections renai ns enpty
/'l Create the extension of AnimatorBox with a configuration file
(ts_t/try_animf TSO5_start.dat) containing any
/1 static information, the Appearance vectors, the size of

/'l the size of the Ani mat orBox and whether we want it to

/1 be witten over.

anim = new TGT_Ani mat or Box_TS05

("ts_t/try_anim TSO5 start.dat", myRootDir, Appearance.creations,
Appear ance. coor ds, Appearance. connections, 400, 400, false);

/1 add the created Ani matorBox to the slide.

add(anim new Point (0, 0));

/'l Set it to play.

animsetPlay(true);

}

If a programmer wishes he or she can put al the configuration information in the file
(TSO5_start.dat), but the slide will not be able to interact with users. A programmer
could also take the other route and store al the information in the vector that is read at
runtime, however, it seems silly to put predefined information here, because the class
would have to be recompiled for every change to the state animation configuration
information. Below isthe maor body of the code for a specific extension of the
TGT_AnimatorBox that is able to support both runtime sprite additions using both the

TGT_Drawable sprites and previously created image sprites.

/1 read in the tokens fromthe vector and configuration //file
String tenp = st. next Token();
if (tenp.equals("=")){
String spritelngFile = st.nextToken();
if (myRootDir !'= null && nyRootDir.length() != 0) {
spritelnmgFile = nyRootDir + spritelngFile;
}

if (TGT_Tool kit. behavi or Fl ags. get (" DEBUG_| MAGELOAD")) {
Systemout.println("loading sprite imge from" +
spritelmgFil e);

}
/1 if its an image sprite add to the list of inmages
/1 to be |l oaded into the nmedia tracker the JMF uses
sprites.insertEl enent At (new TGT_I| nageSprite(spriteNane,
TGT_Tool ki t. getl mage(spritelngFile),
Tool ki t. get Defaul t Tool kit().getl mage(spritelnmgFile), st.nextToken(),
I nt eger. parsel nt (st.nextToken())), j); }
/1 if its not an image sprite identify the class and
/1 instantiate the class

el se {
Class ¢ = null;
Constructor ctor = null;
String spriteC assNane = tenp;
i f (DB_DAT) {
Systemout.println("spriteC assNane = " +
spriteCl assNane)
}
TGT_AbstractSprite sprite = null;
/1l try to find class nane
try{
c = Class.forName(spriteCl assNane);
catch (C assNot FoundException cnf){
Systemerr.printin("Couldn't find class " +
spriteCl assNane) ;

}

/ try to find class constructor

try{
ctor = c.getDecl aredConstructor(new C ass[]
{String.class, StringTokenizer.class});

} catch (NoSuchMet hodException nsm{

Systemerr.println("Couldn't find constructor for"
+spriteCl assNane);

}

/1l create the new i nstance of the drawable sprite

try{

sprite = (TGT_Abstract Sprite)

ctor.newl nstance(new Object[] {(Object) spriteNanme, (Object) st});

catch (Instantiati onException e)

{ Systemerr.println("Instantiati onException for " +
spriteCl assNane) ;

}

/1l catch all other errors our work may have caused
catch (111 egal Argunent Exception ire)
{Systemerr.printIn("lIllegal Arguenent Exception for
+ spriteCl assName);}
catch (111 egal AccessException i ae)
{Systemerr.printIn("Illegal AccessException for " +
spriteCl assNane); }
catch (lnvocati onTarget Exception ite)
{Systemerr.println("lnvocationTarget Exception for
+ spriteCl assNane);
ite.printStackTrace();

/! add drawable sprites to the sprite |ist
sprites.insertEl ement At (sprite, spriteCount+j);

/'l load all imge sprites using the nedia tracker
if (sprites.elenmentAt(spriteCount+j)
i nstanceof TGT_I nageSprite){
nt . addl mage(((TGT_I nageSprite)sprites. el ement At
(spriteCount+j)).getlmage(), 0);

We now describe the use of the Appearance vectors with sprites from the
TGT_Abstract_Sprite hierarchy. |If youchoose to develop using TGT_Image_Sprites, the
following descriptions can be ignored. Apperance.coords corresponds to the exact
placement and movement of each sprite within the animation sequence. It is particularly
difficult to anticipate how the users actions should be moved on the screen. In the linked
lists tutorial | only implemented movement in the standard solution that the slides offer.
The final vector the TGT_AnimatorBox reads from is Appearance.connections. Hereis
the idea behind this configuration: after each code choice the user makes, the program
stores the effects of that choice in the appropriate vector that the programmer has created
in the program. Once the programmer has recorded the users choice in the new vectors, it
be added to the Appearance vectors. If auser’s choice creates a new sprite, an addition to
Appearance.creations is made. If the user chooses to have the head pointer of the list
point to a new node, head's connections are changed in Appearance.connections. For use
in the list tutorials | used additional vectors to keep track of modifications made to the
origina animation and vectors to keep track of sprites the user would add. | abstracted
these vectors out into the file ListModToolsjava. The vectors origCreations,
origConnections, and origCoords are used to record the original animation sequence that
the dide begins with and the changes that may be made to them. The other vectors:
createdConnections, createdNodeNames, createdNodeV alues, createdNodeA ddresses,
createdNodeNextAddresses, and createdNodelnConns all are used to describe the user's
previous choices.

With these tools in hand actually manipulating the animation to correspond to the

user's code becomes more feasible. The simplest change occurs when no new sprites need

to be added into the sequence, a data value or some aspect of the appearance of the sprite
may only need to be changed. Begin by reading in the sprite the user wants to change,
then locating that sprite in the appropriate created or original sprites list and replacing the
information with the appropriate changes. The job of the programmer becomes more
difficult when adding sprites to the animation. Initially consider what the user wants
done, and what features the sprite needs. Next, based on these features add the
appropriate information to the corresponding createdNode Vectors. Finaly comes the
tricky part: "How is the rest of the list affected?" If a user wants a new node to point to
the head, then an inConnection point and some connection configuration information
needs to be added to the head to create and receive the connection. Begin by searching
the origCreations vector for the head node; then replace the element you find with an
element with one more incoming Connection Point. Now add the connection
configuration information to the createdConnections vector. All of these steps must be
done before the TGT_Animator_Box instance is created. Here is an example of the
inserting a new node at the front of the list in the insertAtFront method in
ListModToolsjava. Thisis the correct solution to the Linked List workshop animation.
Assume the head variables (headValue, headNode, headlnConns, headOutConns,
headAddr, and headNextAddr) have been globally declared and correctly maintained in

ListModTools.java.

public static void insertAtFront(String right){

/1 gather the appropriate strings to use in our searches
/1 bel ow

/1l just a string to make configuration statenents either to code
String listWhc = "75 40 OxFABA40 white";

/1 Find the position of the node

int rightlndex = creat edNodeNanes. i ndexOf (right);
/1 Based on that index make all nodifications

String rightlnConns = (String)
creat edNodel nConns. el ement At (ri ght | ndex) ;

String rightQutConns = (String)
creat edNodeQut Conns. el enent At (ri ght | ndex) ;

String rightvalue = (String)
creat edNodeVal ues. el ement At (ri ght | ndex);

String rightAddr = (String)
creat edNodeAddr esses. el enent At (ri ght | ndex);

String rightNextAddr = (String)
creat edNodeNext Addr esses. el enent At (ri ght | ndex);

/1 find old head info and replace the connections to correspond to the
/1 newmy inserted node

// find the index of the newly created sprite

int tI = Appearance.creations.indexOf (right +
" TGT_Li st NodeSprite " + listWic+ " " +rightlnConns +" "+ rightQutConns
+" " +rightvalue+ “ true " + rightAddr + " false " +"1 "+

ri ght Next Addr+ " fal se");

/1 set the element at the index we found above to the

/1 head of the |ist

Appear ance. creations. set El ement At (ri ght +

" TGT_Li st NodeSprite " + listWhc+ " " + headl nConns +" "+ rightQut Conns
+" " +rightvalue+ " true " + rightAddr + " false " +"1 "+

ri ght Next Addr+ " false", tl);

/1 We have correctly changed the Appearance.creations

/1l vector now we do the same thing for the connectors

t1 = Appearance.creations.indexOr("SpriteDO2 TGT_Rt Angl eConnector Sprite
5 5 "+"0xFABA40 white true 4 RI GHT_DOWN') ;

Appear ance. creati ons. set El enent At ("

SpriteDO2 TGI_Rt Angl eConnectorSprite 5 5 "+
"OxFABA40 white true 4 UP_RIGHT", tl);

/1 We have finished updating our created sprite now we
/1l must update the previous head

/! find the index of head

t1 = Appearance.creations.indexO (headNode+

" TGT_Li st NodeSprite " + listWhc+ " " + headlnConns +" "+ headQut Conns
+" " +headVal ue+" true " + headAddr + " false " +"1 "+headNextAddr+ "
fal se");

/'l change head’s configuration informtion
Appear ance. creati ons. set El enent At (headNode+ " TGT_Li st NodeSprite " +
[istwiec+ " " +"{ -5 20 10 -5 30 -5 25 50 }" +" "+ headQut Conns +" "

+headVal ue+" true " + headAddr + " false " +"1 "+headNext Addr+ "
fal se", tl);

/'l Update the previous head’'s connections
t1 = Appearance. connections.indexOr("SpriteHNO1 "+connectStr+" 0 to
"+headNode+" 1 with SpriteD2");

Appear ance. connecti ons. set El enent At (" SpriteHNO1 "+connectStr+" 0 to
;+ri ght+" 0 with SpriteD®2", tl);
Undo and Slide Saving Functionality

Since we want the student to be able to step forward and back we still need to
store the state our of dide so we can show the user what happened during the execution
of this particular code choice, and we need to be able to return to the previous states later
if the user chooses to undo several future steps. After each step of the animation, which
corresponds to a snapshot, is completed the programmer should assemble the appropriate
configuration from the original and created Sprite vectors and store the information in
Appearance.creations, Appearance.coords, and A ppearance.conns. Once the appropriate
configuration to recreate a specific snapshot of the user's code exists, we just have to save
it. The Apperance.creations, Appearance.coords, Appearance.conns vectors should be
placed in the separate vectors in Appearance.java :Apperance.undoCreations,
Appearance.undoCoords, and Appearance.undoConns. The ith element of these vectors

will contain the ith state of the student's code, or ith snapshot of the data structure the

user is programming. These stacks and the index "i" are declared in Appearance.java as.
public static Vector undoCreati onsStack;
public static Vector undoCoordsStack;
public static Vector undoConnecti onsStack;
public static int i;

Adding the individual elements into these vectors from the specified vectors is done by:

undoCr eat i ons[Appear ance. i |

undoCoor ds[Appear ance. i]

undoConnect i ons[Appear ance. i]

Appear ance. i ++;

Appear ance. creati ons;,
Appear ance. coor ds;

Appear ance. connecti ons;

When the user chooses to "undo” a step, the programmer "pops’ the top element off each

of these vectors.

Sequencing Slides once they are Saved and Properly Configured

Once we have captured all the different "snapshots" of student's code we need to

sequence the snapshots so they can be displayed. In the .stf file for the tutorial unit, a

more slide needs to added to go directly after the dide that provides an interface for code

entry.

Here is an example from the Linked Lists tutorial .stf file:

SlideLL09 {
Regi st er _Event
Regi st er _Event
Regi st er _Event
Regi st er _Event
Regi st er _Event
Regi st er _Event

}

Sl i deLLO9_nore {
Regi st er _Event
Regi st er _Event
Regi st er _Event
Regi st er _Event

Regi st er _Event

prev
next

nmenu

redo

optn

prev
next
menu
redo

optn

Sli deLLO8
SlideLL10
SlideLLO2
Sli deLLO9 _nore
Sli deLL09

TGT_OptionSlide

Sli deLL09
SlidelLL10
SlideLLO2
Sli deLLO9 nore

TGT_OptionSlide

A “more” dlide allows the programmer to present additional information related to a slide
inwithin atopic. Inthe case of an algorithm workshop we use Slidel L 09 to display the
code the user has input, and SlideLL09_more to show the snapshots of the users code at
each step of execution. After each snapshot the user will want to step to the next
snapshot of code. Thisisthe "redo" state in the shown above .tf file. “Redo” is atag that
corresponds to a specific state transition in both the TGT_StateManager and the .stf file
that serves as afinite state machine for the linked lists tutorial. The redo state goes to
itself but each time loads the next set of vectorsinto the TGT _AnimatorBox to create a
different snagpshot. The implementation of this"more" slide requires extending the
TGT_AnimatorBox to a TGT_AnimatorBox specific to the dlide. Thisis very smilar to

the way a dlide within atutorial extends TGT_Slide:
TGT_Ani mat or Box_LL09 extends TGT_Ani mat or Box() ;

The extended animator box has the capability of adding configuration statements to
create unique animation sequences at runtime. This specific animator box takes three
vectors as parameters; these three vectors are vectors of vectors should be the ith vectors
within Appearance.undoCreations, Appearance.undoConns, and
Appearance.undoCoords. Each displayed dide will have a step button, that will increase
the snapshot by one by invoking the "redo” state. Every time the button is clicked the
programmer only needs to increase the global index Apperance.i and then load a specific
new TGT_Animator_Box instance with the indexed elements in the undoVectors. Here

isan example:

/1 the loop part of this "if" statenent cones because this

/1l executed everytine the user chooses to "step" to the
/1 next snapshot
i f (Appearance.i <maxDi spl ayState)({

anim = new TGT_Ani mat or Box_LL09
("I'l _t/slide_animLLO9 start.dat", myRootDir,
undoCr eati ons[Appear ance.i], undoCoords[Appearance.i],
undoConnecti ons[Appear ance.i], 600, 330, false);
add(anim new Point (0, 0));
animsetPlay(true);

}

/1l Since we are using a redo we have to override the

/1 stateManager for this particular slide

public void setStateManager (TGT_St at eManager sm) {

/1 Placenent of our “Step” button with redo functionality
i rgCl . addMbuseli st ener (new TGT_St at eLi stener("redo", sm);
super. set St at eManager (sn ;

/1 where the |oop gets increnented, so now everytine we
/1l click “Step” we get a new snapshot of the code.

Appear ance. i ++;

}

Conclusion

The most difficult part of creating dynamic animation sequence is creating proper
configuration vectors to the user specifications. Limiting the number of times the user
can change original values, and thoroughly error checking all requests to make sure every
action involves a sprite that actually exists can make the programmer's job much easier.
Despite these warning by keeping proper organization the programmer can achieve

impressive dynamic results that significantly improve user interaction.

	University of Richmond
	UR Scholarship Repository
	3-2003

	Creating and Modifying Dynamic Animation Sequences Using the TGT_Toolkit
	Ross Gore
	Recommended Citation

	Tech_Report_03_14_03.PDF

