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C∗-algebras generated by truncated Toeplitz op-
erators

Stephan Ramon Garcia, William T. Ross and Warren R. Wogen

Dedicated to the memory of William Arveson.

Abstract. We obtain an analogue of Coburn’s description of the Toeplitz al-
gebra in the setting of truncated Toeplitz operators. As a byproduct, we pro-
vide several examples of complex symmetric operators which are not unitarily
equivalent to truncated Toeplitz operators having continuous symbols.

Mathematics Subject Classification (2000). 46Lxx, 47A05, 47B35, 47B99.

Keywords. C∗-algebra, Toeplitz algebra, Toeplitz operator, model space, trun-
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1. Introduction

In the following, we let H denote a separable complex Hilbert space and B(H)
denote the set of all bounded linear operators on H. For each X ⊆ B(H), let
C∗(X ) denote the unital C∗-algebra generated by X . Since we are frequently
interested in the case where X = {A} is a singleton, we often write C∗(A) in
place of C∗({A}) in order to simplify our notation.

Recall that the commutator ideal C (C∗(X )) of C∗(X ) is the smallest norm
closed two-sided ideal which contains the commutators [A,B] := AB−BA, where
A and B range over all elements of C∗(X ). Since the quotient algebra

C∗(X )/C (C∗(X ))

is an abelian C∗-algebra, it is isometrically ∗-isomorphic to C(Y ), the set of all
continuous functions on some compact Hausdorff space Y [12, Thm. 1.2.1]. If we

The first named author was partially supported by National Science Foundation Grant DMS-
1001614.
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agree to denote isometric ∗-isomorphism by ∼=, then we may write

C∗(X )

C (C∗(X ))
∼= C(Y ). (1)

This yields the short exact sequence

0 −→ C (C∗(X ))
ι

−→ C∗(X )
π

−→ C(Y ) −→ 0, (2)

where ι : C (C∗(X )) → C∗(X ) is the inclusion map and π : C∗(X ) → C(Y ) is
the composition of the quotient map with the map which implements (1).

The Toeplitz algebra C∗(Tz), where Tz denotes the unilateral shift on the
classical Hardy space H2, has been extensively studied since the seminal work of
Coburn in the late 1960s [10, 11]. Indeed, the Toeplitz algebra is now one of the
standard examples discussed in many well-known texts (e.g., [3, Sect. 4.3], [13,
Ch. V.1], [14, Ch. 7]). In this setting, we have C (C∗(Tz)) = K , the ideal of
compact operators on H2, and Y = T (the unit circle), so that the short exact
sequence (2) takes the form

0 −→ K
ι

−→ C∗(Tz)
π

−→ C(T) −→ 0. (3)

In other words, C∗(Tz) is an extension of K by C(T). In fact, one can prove that

C∗(Tz) = {Tϕ +K : ϕ ∈ C(T),K ∈ K }

and that each element of C∗(Tz) enjoys a unique decomposition of the form Tϕ+K
[3, Thm. 4.3.2]. Indeed, it is well-known that the only compact Toeplitz operator
is the zero operator [3, Cor. 1, p. 109]. We also note that the surjective map
π : C∗(Tz) → C(T) in (3) is given by π(Tϕ +K) = ϕ.

The preceding results have spawned numerous generalizations and variants
over the years. For instance, one can consider C∗-algebras generated by matrix-
valued Toeplitz operators or by Toeplitz operators which act upon other Hilbert
function spaces (e.g., the Bergman space [4,25]). As another example, if X denotes
the space of functions on T which are both piecewise and left continuous, then a
fascinating result of Gohberg and Krupnik asserts that C (C∗(X )) = K and
provides the short exact sequence

0 −→ K
ι

−→ C∗(X )
π

−→ C(Y ) −→ 0,

where Y is the cylinder T×[0, 1], endowed with a certain nonstandard topology [21].
Along different lines, we seek here to replace Toeplitz operators with truncated

Toeplitz operators, a class of operators whose study has been largely motivated by
a seminal 2007 paper of Sarason [26]. Let us briefly recall the basic definitions
which are required for this endeavor. We refer the reader to Sarason’s paper or to
the recent survey article [18] for a more thorough introduction.

For each nonconstant inner function u, we consider the model space

Ku := H2 ⊖ uH2,

which is simply the orthogonal complement of the standard Beurling-type subspace
uH2 of H2. Letting Pu denote the orthogonal projection from L2 := L2(T) onto
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Ku, for each ϕ in L∞(T) we define the truncated Toeplitz operator Auϕ : Ku → Ku
by setting

Auϕf = Pu(ϕf)

for f in Ku. The function ϕ in the preceding is referred to as the symbol of the
operator Auϕ.

1 In particular, let us observe that Auϕ is simply the compression of the

standard Toeplitz operator Tϕ : H2 → H2 to the subspace Ku. Unlike traditional
Toeplitz operators, however, the symbol of a truncated Toeplitz is not unique. In
fact, Auϕ = 0 if and only if ϕ belongs to uH2 + uH2 [26, Thm. 3.1].

In our work, the compressed shift Auz plays a distinguished role analogous to
that of the unilateral shift Tz in Coburn’s theory. In light of this, let us recall that
the spectrum σ(Auz ) of A

u
z coincides with the so-called spectrum

σ(u) :=

{
λ ∈ D

− : lim inf
z→λ

|u(z)| = 0

}
(4)

of the inner function u [26, Lem. 2.5]. In particular, if u = bΛsµ, where bΛ is a
Blaschke product with zero sequence Λ = {λn} and sµ is a singular inner function
with corresponding singular measure µ, then

σ(u) = Λ− ∪ suppµ.

With this terminology and notation in hand, we are ready to state our main
result, which provides an analogue of Coburn’s description of the Toeplitz algebra
in the truncated Toeplitz setting.

Theorem 1. If u is an inner function, then

(i) C (C∗(Auz )) = K , the algebra of compact operators on Ku,

(ii) C∗(Auz )/K is isometrically ∗-isomorphic to C(σ(u) ∩ T),

(iii) For ϕ in C(T), Auϕ is compact if and only if ϕ(σ(u) ∩ T) = {0},

(iv) C∗(Auz ) = {Auϕ +K : ϕ ∈ C(T),K ∈ K },

(v) For ϕ in C(T), σe(A
u
ϕ) = ϕ(σe(A

u
z )),

(vi) For ϕ in C(T), ‖Auϕ‖e = sup{|ϕ(ζ)| : ζ ∈ σ(u) ∩ T},

(vii) Every operator in C∗(Auz ) is of the form normal plus compact.

Moreover,

0 −→ K
ι

−→ C∗(Auz )
π

−→ C(σ(u) ∩ T) −→ 0

is a short exact sequence and thus C∗(Auz ) is an extension of the compact operators

by C(σ(u) ∩ T). In particular, the map π : C∗(Auz ) → C(σ(u) ∩ T) is given by

π(Auϕ +K) = ϕ|σ(u)∩T.

1It is possible to consider truncated Toeplitz operators with symbols in L
2(T), although we have

little need to do so here.
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The proof of Theorem 1 is somewhat involved and requires a number of
preliminary lemmas. It is therefore deferred until Section 3. However, let us remark
now that the same result holds when the hypothesis that f belongs to C(T) is
replaced by the weaker assumption that f is in Xu, the class of L∞ functions
which are continuous at each point of σ(u)∩T. In fact, given f in Xu, there exists
a g in C(T) so that

Auf ≡ Aug (mod K ).

Thus one can replace Auf with Aug when working modulo the compact operators

and adapt the proof of Theorem 1 so that C(T) is replaced by Xu.
Using completely different language and terminology, some aspects of Theo-

rem 1 can be proven by triangularizing the compressed shift Auz according to the
scheme discussed at length in [24, Lec. V]. For instance, items (vi) and (iii) of the
preceding theorem are [1, Cor. 5.1] and [1, Thm. 5.4], respectively (we should also
mention related work of Kriete [22, 23]). From an operator algebraic perspective,
however, we believe that a different approach is desirable. Our approach is similar
in spirit to the original work of Coburn and forms a possible blueprint for vari-
ations and extensions (see Section 4). Moreover, our approach does not require
the detailed consideration of several special cases (i.e., Blaschke products, singular
inner functions with purely atomic spectra, etc.) as does the approach pioneered
in [1, 2]. In particular, we are able to avoid the somewhat involved computations
and integral transforms encountered in the preceding references.

2. Continuous symbols and the TTO-CSO problem

Recall that a bounded operator T on a Hilbert space H is called complex sym-

metric if there exists a conjugate-linear, isometric involution J on H such that
T = JT ∗J . It was first recognized in [16, Prop. 3] that every truncated Toeplitz
operator is complex symmetric (see also [15] where this is discussed in great detail).
This hidden symmetry turns out to be a crucial ingredient in Sarason’s general
treatment of truncated Toeplitz operators [26].

A significant amount of evidence is mounting that truncated Toeplitz opera-
tors may play a significant role in some sort of model theory for complex symmetric
operators. Indeed, a surprising and diverse array of complex symmetric operators
can be concretely realized in terms of truncated Toeplitz operators (or direct sums
of such operators). The recent articles [7, 8, 19, 27] all deal with various aspects of
this problem and a survey of this work can be found in [18, Sect. 9].

It turns out that viewing truncated Toeplitz operators in the C∗-algebraic
setting can shed some light on the question of whether every complex symmetric
operator can be written in terms of truncated Toeplitz operators (the TTO-CSO

Problem). Corollaries 2 and 3 below provide examples of complex symmetric op-
erators which are not unitarily equivalent to truncated Toeplitz operators having
continuous symbols. To our knowledge, this is the first negative evidence relevant
to the TTO-CSO Problem which has been obtained.
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Corollary 2. If A is a noncompact operator on a Hilbert space H, then the operator

T : H⊕H → H⊕H defined by

T =

(
0 A
0 0

)

is a complex symmetric operator which is not unitarily equivalent to a truncated

Toeplitz operator with continuous symbol.

Proof. Since T is nilpotent of degree two, it is complex symmetric by [20, Thm. 2].
However, T is not of the form normal plus compact since [T, T ∗] is noncompact.
Thus T cannot belong to C∗(Auz ) for any u by (vii) of Theorem 1. �

Corollary 3. If S denotes the unilateral shift, then T =
⊕∞

i=1(S ⊕ S∗) is a com-

plex symmetric operator which is not unitarily equivalent to a truncated Toeplitz

operator with continuous symbol.

Proof. First note that the operator S ⊕ S∗ is complex symmetric by [17, Ex. 5]
whence T itself is complex symmetric. Since [S, S∗] has rank one, it follows that
[T, T ∗] is noncompact. Therefore T is not of the form normal plus compact whence
T cannot belong to C∗(Auz ) for any u by (vii) of Theorem 1. �

Unfortunately, the preceding corollary sheds no light on the following appar-
ently simple problem.

Problem 1. Is S ⊕ S∗ unitarily equivalent to a truncated Toeplitz operator? If so,
can the symbol be chosen to be continuous?

3. Proof of Theorem 1

To prove Theorem 1, we first require a few preliminary lemmas. The first lemma
is well-known and we refer the reader to [24, p. 65] or [6, p. 84] for its proof.

Lemma 1. Each function in Ku can be analytically continued across T\σ(u).

The following description of the spectrum and essential spectrum of the com-
pressed shift can be found in [26, Lem. 2.5], although portions of it date back to
the work of Livšic and Moeller [24, Lec. III.1]. The essential spectrum of Auz was
computed in [1, Cor. 5.1].

Lemma 2. σ(Auz ) = σ(u) and σe(A
u
z ) = σ(u) ∩ T.

Although the following must certainly be well-known among specialists, we
do not recall having seen its proof before in print. We therefore provide a short
proof of this important fact.

Lemma 3. Auz is irreducible.
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Proof. LetM be a nonzero reducing subspace of Ku for the operatorAuz . In light of
the fact thatM is invariant under the operator I−Auz (A

u
z )

∗ = k0⊗k0 [26, Lem. 2.4],
it follows that the nonzero vector k0 belongs to M. Since k0 is a cyclic vector for
Auz [26, Lem. 2.3], we conclude that M = Ku. �

Lemma 4. If ϕ ∈ C(T), then Auϕ is compact if and only if ϕ|σ(u)∩T ≡ 0.

Proof. (⇐) Suppose that ϕ|σ(u)∩T ≡ 0. Let ε > 0 and pick ψ in C(T) such that ψ
vanishes on an open set containing σ(u)∩T and ‖ϕ−ψ‖∞ < ε. Since ‖Auϕ−A

u
ψ‖ ≤

‖ϕ− ψ‖∞ < ε, it suffices to show that Auψ is compact. To this end, we prove that
if fn is a sequence in Ku which tends weakly to zero, then Auψfn → 0 in norm.

Let K denote the closure of ψ−1(C\{0}) and note that K ⊂ T \σ(u). By
Lemma 1, we know that each fn has an analytic continuation across K from
which it follows that fn(ζ) = 〈fn, kζ〉 → 0, where

kζ(z) =
1− u(ζ)u(z)

1− ζz

denotes the reproducing kernel corresponding to a point ζ in K [26, p. 495]. Since
u is analytic on a neighborhood of the compact set K we obtain

|fn(ζ)| = |〈fn, kζ〉| ≤ ‖fn‖|u
′(ζ)|

1
2 ≤ sup

n
‖fn‖ sup

ζ∈K
|u′(ζ)|

1
2 = C <∞

for each ζ in K. By the dominated convergence theorem, it follows that

‖Auψfn‖
2 = ‖Pu(ψfn)‖ ≤ ‖ψfn‖

2 =

∫

K

|ψ|2|fn|
2 → 0

whence Auψfn tends to zero in norm, as desired.

(⇒) Suppose that ϕ belongs to C(T), ξ belongs to σ(u) ∩ T, and Auϕ is compact.
Let

Fλ(z) :=
1− |λ|2

1− |u(λ)|2

∣∣∣∣∣
1− u(λ)u(z)

1− λz

∣∣∣∣∣

2

,

which is the absolute value of the normalized reproducing kernel for Ku. Observe
that Fλ(z) ≥ 0 and

1

2π

∫ π

−π

Fλ(e
it) dt = 1

by definition.
By (4) there is sequence λn in D such that |u(λn)| → 0. Suppose that ξ = eiα

and note that if |t− α| ≥ δ, then

Fλn
(eit) ≤ Cδ

1− |λn|
2

1− |u(λn)|2
→ 0. (5)

This is enough to make the following approximate identity argument go through.
Indeed, ∣∣∣∣ϕ(ξ) −

1

2π

∫ π

−π

ϕ(eit)Fλn
(eit) dt

∣∣∣∣
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≤
1

2π

∫

|t−α|≤δ

|ϕ(ξ)− ϕ(eit)|Fλn
(eit) dt

+
1

2π

∫

|t−α|≥δ

|ϕ(ξ)− ϕ(eit)|Fλn
(eit) dt.

This first integral can be made small by the continuity of ϕ. Once δ > 0 is fixed,
the second term goes to zero by (5). �

Remark 1. We would like to thank the referee for suggesting this elegant nor-
malized kernel function proof of the (⇒) direction of this lemma. Our original
argument was somewhat longer.

Lemma 5. For each ϕ, ψ ∈ C(T), the semicommutator AuϕA
u
ψ − Auϕψ is compact.

In particular, the commutator [Auϕ, A
u
ψ] is compact.

Proof. Let p(z) =
∑

i piz
i and q(z) =

∑
j qjz

j be trigonometric polynomials on T

and note that

AupA
u
q −Aupq =

∑

i,j

piqj(A
u
ziA

u
zj −Auzi+j ).

We claim that the preceding operator is compact. Since all sums involved are finite,
it suffices to prove that AuziA

u
zj −Auzi+j is compact for each pair (i, j) of integers.

If i and j are of the same sign, then Au
zi
Au
zj
−Au

zi+j = 0 is trivially compact. If
i and j are of different signs, then upon relabeling and taking adjoints, if necessary,
it suffices to show that if n ≥ m ≥ 0, then the operatorAuznA

u
zm−Auzn−m is compact

(the case n ≤ m ≤ 0 being similar). In light of the fact that

AuznA
u
zm −Auzn−m = Auzn−m(AuzmA

u
zm − I),

we need only show that AuzmA
u
zm − I is compact for each m ≥ 1. However, since

AuzA
u
z − I has rank one [26, Lem. 2.4], this follows immediately from the identity

AuzmA
u
zm − I =

m−1∑

ℓ=0

Auzℓ(A
u
zA

u
z − I)Auzℓ .

Having shown that AupA
u
q − Aupq is compact for every pair of trigonometric

polynomials p and q, the desired result follows since we may uniformly approximate
any given ϕ, ψ in C(T) by their respective Cesàro means. �

Remark 2. For Toeplitz operators, it is known that the semicommutator TϕTψ −
Tϕψ is compact under the assumption that one of the symbols is continuous, while
the other belongs to L∞ [3, Prop. 4.3.1], [13, Cor. V.1.4]. Though not needed for
the proof of our main theorem, the same is true for truncated Toeplitz operators.
This was kindly pointed out to us by Trieu Le. Here is his proof: For f in L∞,
define the Hankel operator Hu

f : Ku → L2 by Hu
f := (I − Pu)Mf and note that

(Hu
f )

∗ = PuMf (I − Pu). For ϕ, ψ in L∞ a computation shows that

Auϕψ −AuϕA
u
ψ = (Hu

ϕ)
∗Hu

ψ. (6)
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If f belongs to L∞, then setting ϕ = f and ϕ = f , we have

(Hu
f )

∗Hu
f = Au

ff
−Au

f
Auf .

For continuous f it follows from the previous Lemma that (Hu
f )

∗Hu
f and hence

Hu
f is compact whenever f is continuous. From (6) we see that if one of ϕ or ψ is

continuous then Auϕψ −AuϕA
u
ψ is compact.

Proof of Theorem 1. Before proceeding further, let us remark that statement (iii)
has already been proven (see Lemma 4). We first claim that

C∗(Auz ) = C∗({Auϕ : ϕ ∈ C(T)}), (7)

noting that the containment ⊆ in the preceding holds trivially. Since (Auz )
∗ = Auz ,

it follows that Aup belongs to C∗(Auz ) for any trigonometric polynomial p. We may
then uniformly approximate any given ϕ in C(T) by its Cesàro means to see that
Auϕ belongs to C∗(Auz ). This establishes the containment ⊇ in (7).

We next prove statement (i) of Theorem 1, which states that the commutator
ideal C (C∗(Auz )) of C∗(Auz ) is precisely K , the set of all compact operators on
the model space Ku:

C (C∗(Auz )) = K . (8)

The containment C (C∗(Auz )) ⊆ K follows easily from (7) and Lemma 5. On the
other hand, Lemma 3 tells us that Auz is irreducible, whence the algebra C∗(Auz )
itself is irreducible. Since [Auz , A

u
z ] 6= 0 is compact, it follows that C∗(Auz ) ∩ K 6=

{0}. By [12, Cor. 3.16.8], we conclude that K ⊆ C (C∗(Auz )), which establishes
(8).

We now claim that

C∗(Auz ) = {Auϕ +K : ϕ ∈ C(T),K ∈ K }, (9)

which is statement (iv) of Theorem 1. The containment ⊆ in the preceding holds
because the right-hand side of (9) is a C∗-algebra which contains Auz (mimic the
first portion of the proof of [3, Thm. 4.3.2] to see this). On the other hand, the
containment ⊇ in (9) follows because C∗(Auz ) contains K by (8) and contains
every operator of the form Auϕ with ϕ in C(T) by (7).

The map γ : C(T) → C∗(Auz )/K defined by

γ(ϕ) = Auϕ + K

is a homomorphism by Lemma 5 and hence γ(C(T)) is a dense subalgebra of
C∗(Auz )/K by (7). In light of Lemma 4, we see that

ker γ = {ϕ ∈ C(T) : ϕ|σ(u)∩T ≡ 0}, (10)

whence the map

γ̃ : C(T)/ ker γ → C∗(Auz )/K (11)

defined by

γ̃(ϕ+ ker γ) = Auϕ + K
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is an injective ∗-homomorphism. By [13, Thm. I.5.5], it follows that γ̃ is an iso-
metric ∗-isomorphism. Since

C(T)/ ker γ ∼= C(σ(u) ∩ T) (12)

by (10), it follows that

σe(A
u
ϕ) = σC(σ(u)∩T)(ϕ) = ϕ(σ(u) ∩ T) = ϕ(σe(A

u
z )),

where σC(σ(u)∩T)(ϕ) denotes the spectrum of ϕ as an element of the Banach algebra
C(σ(u) ∩ T). This yields statement (v). We also note that putting (11) and (12)
together shows that C∗(Auz )/K is isometrically ∗-isomorphic to C(σ(u)∩T), which
is statement (ii).

We now need only justify statement (vii). To this end, recall that a seminal
result of Clark [9] asserts that for each α in T, the operator

Uα := Auz +
α

1− u(0)α
k0 ⊗ Ck0 (13)

on Ku is a cyclic unitary operator and, moreover, that every unitary, rank-one
perturbation of Auz is of the form (13). A complete exposition of this important
result can be found in the text [5]. Since

Uα ≡ Auz (mod K ),

it follows that

ϕ(Uα) ≡ Auϕ (mod K ) (14)

for every ϕ in C(T). This is because the norm on B(Ku) dominates the quotient
norm on B(Ku)/K and since any ϕ in C(T) can be uniformly approximated by
trigonometric polynomials. Since K ⊆ C∗(Auz ), it follows that

C∗(Uα) + K = C∗(Auz ),

which yields the desired result. �

4. Piecewise continuous symbols

Having obtained a truncated Toeplitz analogue of Coburn’s work, it is of interest
to see if one can also obtain a truncated Toeplitz version of Gohberg and Krup-
nik’s results concerning Toeplitz operators with piecewise continuous symbols [21].
Although we have not yet been able to complete this work, we have obtained a
few partial results which are worth mentioning.

Let PC := PC(T) denote the ∗-algebra of piecewise continuous functions on
T. To get started, we make the simplifying assumption that u is inner and that

σ(u) ∩ T = {1}.

For instance, u could be a singular inner function with a single atom at 1 or a
Blaschke product whose zeros accumulate only at 1. Let

A
u
PC = {Auϕ : ϕ ∈ PC}
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denote the set of all truncated Toeplitz operators on Ku having symbols in PC.
The following lemma identifies the commutator ideal of C∗(A u

PC).

Lemma 6. C (C∗(A u
PC)) = K .

Proof. Let

χ(eiθ) := 1−
θ

2π
, 0 ≤ θ < 2π, (15)

and notice that χ belongs to PC and satisfies

χ+(1) := lim
θ→0

χ(eiθ) = 1, χ−(1) := lim
θ→2π

χ(eiθ) = 0.

If ϕ is any function in PC, then it follows that

ϕ− ϕ+(1)χ− ϕ−(1)(1− χ)

is continuous at 1 and assumes the value zero there. By the remarks following
Theorem 1 in the introduction, we see that

Auϕ ≡ αAuχ + βI (mod K ), (16)

where α = ϕ+(1)− ϕ−(1) and β = ϕ−(1). In light of (16) it follows that

[Aϕ, Aψ] ≡ 0 (mod K )

for any ϕ, ψ in PC whence C (C∗(A u
PC)) ⊆ K . Since Auz belongs to A u

PC , we
conclude that C (C∗(A u

PC)) contains the nonzero commutator [Auz , A
u
z ] whence

C∗(A u
PC) is irreducible by Lemma 3. Moreover, By [12, Cor. 3.16.8] we conclude

that K ⊆ C (C∗(A u
PC)) which concludes the proof. �

Lemma 7. C∗(A u
PC) = C∗(Auχ) + K .

Proof. The containment ⊇ is clear from (16) since C∗(A u
PC)) contains K . Con-

versely, the containment ⊆ follows immediately from (16). �

From the discussion above and [13, Cor. I.5.6] we know that

C∗(A u
PC)

C (C∗(A u
PC))

=
C∗(Auχ) + K

K

∼=
C∗(Auχ)

C∗(Auχ) ∩ K
.

is a commutative C∗-algebra. Unfortunately, we are unable to identify the alge-
bra C∗(Auχ) in a more concrete manner. This highlights the important fact that
truncated Toeplitz operators such as Auχ, whose symbols are neither analytic nor
coanalytic, are difficult to deal with.

Problem 2. Suppose that σ(u) = {1}. Give a concrete description of C∗(Auχ) where
χ denotes the piecewise continuous function (15).

Problem 3. Provide an analogue of the Gohberg-Krupnik result for A u
PC . In other

words, give a description of C∗(A u
PC) analogous to that of Theorem 1.
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