
University of Richmond University of Richmond

UR Scholarship Repository UR Scholarship Repository

Honors Theses Student Research

Spring 2013

Difference sets in non-abelian groups of order 256 Difference sets in non-abelian groups of order 256

Taylor Applebaum
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

 Part of the Set Theory Commons

Recommended Citation Recommended Citation
Applebaum, Taylor, "Difference sets in non-abelian groups of order 256" (2013). Honors Theses. 2.
https://scholarship.richmond.edu/honors-theses/2

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/184?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/2?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Difference Sets in Non-Abelian Groups of Order 256

Taylor Applebaum

Honors Thesis∗

Department of Mathematics & Computer Science

University of Richmond

∗Under the direction of Dr. James A. Davis

The signatures below, by the thesis advisor, the departmental reader, and the honors coordinator

for mathematics, certify that this thesis, prepared by Taylor Applebaum, has been approved, as to

style and content.

(Dr. James Davis, thesis advisor)

(Dr. Della Dumbaugh, departmental reader)

(Dr. Lester Caudill, honors coordinator)

Abstract

This paper considers the problem of determining which of the 56092 groups of order 256

contain (256, 120, 56, 64) difference sets. John Dillon at the National Security Agency commu-

nicated 724 groups which were still open as of August 2012. In this paper, we present a con-

struction method for groups containing a normal subgroup isomorphic to Z4 × Z4 × Z2. This

construction method was able to produce difference sets in 643 of the 649 unsolved groups

with the correct normal subgroup. These constructions elimated approximately 90% of the open

cases, leaving 81 remaining unsolved groups.

Contents

1 Introduction 1

2 Building Sets 6

3 Non-Abelian Groups 18

4 GAP 22

5 Results 34

6 Addendum 37

1 Introduction

A (v, k, λ, n) difference set in G is defined as a k-element subset of a finite multiplicative group G

of order v such that the “differences” {d1d−12 |d1, d2 ∈ D, d1 6= d2} form a multiset that contains

each nonidentity element of G precisely λ times. The fourth parameter n is the value k − λ. For

example, consider Z7 =< x|x7 = 1 >. Then the set D = {x, x2, x4} is a (7, 3, 1, 2) difference set

since x = x2x−1, x2 = x4(x2)−1, x3 = x4x−1, x4 = x(x4)−1, x5 = x2(x4)−1, x6 = x(x2)−1. In a

similar manner, it can be verified that {y, x, xy, xy2, x2y, x3y3} is a (16, 6, 2, 4) difference set in the

group Z2
4 =< x, y|x2 = y2 = 1 >.

Applications of difference sets can be found in both theoretical and applied contexts. For exam-

ple, there is a natural connection between the study of difference sets and design theory since a

(v, k, λ, n) difference set is equal to a (v, k, λ, n)−design with a regular automorphism group G.

Difference sets are also extremely useful in the field of cryptography, the mathematical study of

methods of secure commucation of information in the presence of adversaries.

Much work on difference sets is being done at the National Security Agency (NSA) under Dr. John

Dillon. Specifically, Dr. Dillon has been working to exhaustively determine which of the 56092

nonisomorphic groups of order 256 contain (256, 120, 56, 64)− difference sets. [3] This project has

been underway since the 1990s. Its completion has the capability to serve as a model for analogous

projects in other large 2-groups.

At the beginning of this work, we contacted Dr. Dillon and recieved the status of the project: Of

the 56092 nonisomorphic groups of order 256, the existence or nonexistence of a (256, 120, 56, 64)

difference set was unknown in 724 of those groups. Thus, in the broadest sense, the goal of this

work is to contribute to Dr. Dillon’s project by finding difference sets in some subset of those 724

groups.

We will use character theory as a tool for determining whether a subset of a group is a difference set.

We define a character of an abelian group G to be a homomorphism χ : G→ C, where the image of

1

G is a cyclic multiplicative group of complex roots of unity of order n generated by ω = e
2πi
n . The

set of all characters of a group G, denoted G∗ forms a group under pointwise multiplication that is

isomorphic to G. (We are exclusively concerned with finite groups, particularly those of order 256.)

The identity of G∗ is the principal character on G, denoted χ0, which is the character that maps

every element of G to 1C. Accordingly, the remaining elements of G∗ are nonprincipal characters

on G. That is, they do not map all elements of G to 1.

Example 1. Let G = Z2
4 =< (1, 0), (0, 1) > and define a character χ by χ(1, 0) = i, χ(0, 1) = −1. The

character χ is a nonprincipal character on G.

The following concept of character sums is central to our method of determining whether a set of

G is a difference set: Let S be a subset of G (it is possible that S is a multiset). The character sum of

S for a particular character χ, denoted χ(S) is the sum of the image of each element of S under χ.

That is, χ(S) =
∑

s∈S χ(s). The following properties of character sums will be useful in our work:

Lemma 2. If χ0 is the principal character on a group G, then χ0(G) = |G|.

Proof: The following computation proves the lemma: χ0(G) =
∑

g∈G χ0(g) =
∑

g∈G 1 = |G|.

Lemma 3. If A is a multiset of elements of a group G such that A = cG (A contains each element of

G precisely c times), then χ(A) = 0 for every character χ nonprincipal on G.

Proof: Let χ be a character nonprincipal on a group G = {g1, g2, . . . , gv}. We will first show that

χ(G) = 0. To see this let gk ∈ G satisfy χ(gk) 6= 1. By cancellation, if i 6= j then gkgi 6= gkgj . Thus,

the set {gkg1, gkg2, . . . , gkgv} contains v distinct elements in G. It follows that G = {g1, g2, ...gv} =

{gkg1, gkg2, . . . , gkgv}. Now, by the structure preserving properties of homomorphisms we get

χ(gk)χ(G) = χ(gk){χ(g1)+ . . .+χ(gv)} = χ(gk)χ(g1)+ . . .+χ(gk)χ(g1) = χ(gkg1)+ . . .+χ(gkgv) =

χ(G). Thus χ(gk)χ(G) = χ(G). Since we assumed that χ(gk) 6= 1, it follows that χ(G) = 0.

Now, χ(A)= χ(cG) = χ(G) + χ(G) + . . .+ χ(G)︸ ︷︷ ︸
c times

= 0 + 0 + . . .+ 0 = 0.

2

The following example illustrates the first two lemmas.

Example 4. Let G = Z8, the cyclic group of order 8 under addition. Written additively, G =< 1 >.

Let χ0 denote the principal character on G. By definition, χ0(g) = 1 for all g ∈ G. Thus, we get

χ(G) = 1+ ...+1 = 8 = |G|, as claimed. Now for a more interesting example: Define χ1 by χ1(1) = i.

(Since χ1(1) 6= 1, χ1 is nonprincipal on G.) This forces χ1(2) = −1, χ1(3) = −i, χ1(4) = 1, χ1(5) =

i, χ1(6) = −1, χ1(7) = −i. (χ1(0) = 1 since the identity of G must be mapped to the identity of C.) Now

χ1(G) = χ1(0)+χ1(1)+χ1(2)+χ1(3)+χ1(4)+χ1(5)+χ1(6)+χ1(7) = 1+i+−1+−i+1+i+−1+−i =

0. Also note that if we take the character sum over 5Z8, the multiset that contains each element of

Z8 5 times, we simply get χ1(5Z8) = χ1(Z8) + χ1(Z8) + χ1(Z8) + χ1(Z8) + χ1(Z8) = 5χ1(Z8) =

5(1 + i+−1 +−i+ 1 + i+−1 +−i) = 5(0) = 0.

I claim that this property of Lemma 2 is bidirectional. However, before we can show this, we must

first consider the following:

Lemma 5. Let g ∈ G. The sum over all the characters χ(g) is |G| if g = e and 0 otherwise. That is,

∑
χ∈G∗ χ(g) =

 |G| for g = e

0 for g 6= e
.

Proof: In the case that g = e, χ(g) = 1 for all possible characters χ on G by the properties of

homomorphisms. Thus, each element of G∗ contributes 1 to the sum
∑

χ∈G∗ χ(G). It follows that∑
χ∈G∗ χ(G) = |G∗|. Since G ≈ G∗,

∑
χ∈G∗ χ(G) = |G|. Now, let’s consider the case in which g 6= e.

There exists a χk ∈ G∗ = {χ1, χ2, . . . , χv} such that χk(g) 6= 1. By cancellation, if i 6= j then χkχi 6=

χkχj . Thus, the set {χkχ1, χkχ2, . . . , χkχv} contains v distinct elements in G∗. It follows that G∗ =

{χ1, χ2, . . . , χv} = {χkχ1, χkχ2, . . . , χkχv}. We get that
∑

χ∈G∗ χ(g) = χ1(g)+χ2(g)+ . . .+χv(g) =

χk(g)χ1(g)+χk(g)χ2(g)+. . .+χk(g)χv(g) = χk(g)[χ1(g)+χ2(g)+. . .+χv(g)] = χk(g)
∑

χ∈G∗ χ(g).

Since
∑

χ∈G∗ χ(g) = χk(g)
∑

χ∈G∗ χ(g) and χk(g) 6= 1, it follows that
∑

χ∈G∗ χ(g) = 0.

Now we are prepared to prove the converse of Lemma 3:

Lemma 6. If for every character χ nonprincipal on a group G, χ(A) = 0 then A = cG for some

constant c.

3

Proof: Suppose that A is a multiset of elements from a group G such that χ(A) = 0 for all non-

principal χ in G∗. If G = g1, g2, ...gv, then let ci denote the number of times the element gi appears

in A. For example, if c2 = 5 then there are 5 copies of g2 in A. We wish to show that ci = c for

i = 1, ..., v and some constant c. That is, each element of G appears the same number of times in

A. Now, let gm ∈ G. We want to determine the value of cm. In the following calculations, g−1m A =

{g−1m a|a ∈ A}. Now, |A| = |g−1m A| = χ0(g
−1
m A) =

∑
χ∈G∗ χ(g

−1
m A) (the assumption χ(A) = 0 for

every nonprincipal character χ implies that χ(g−1m A) = χ(g−1m)χ(A) = 0 for every nonprincipal

character χ). Now
∑

χ∈G∗ χ(g
−1
m A) =

∑
χ∈G∗

∑
i=1,...,v ciχ(g

−1
m gi) =

∑
i=1,...,v ci

∑
χ∈G∗ χ(g

−1
m gi).

By Lemma 5,
∑

χ∈G∗ χ(g
−1
m gi) is nonzero only when g−1m gi = e, or equivalently when gi = gm.

Thus,
∑

i=1,...,v ci
∑

χ∈G∗ χ(g
−1
m gi) = cm

∑
χ∈G∗ χ(e) = cm|G|. We are left with |A| = cm|G|, or

equivalently cm = |A|
|G| . Thus, each element of G appears c = |A|

|G| times in A.

The property that for a χ nonprincipal on G, χ(cG) = 0 (Lemma 3) will be extremely useful to us.

We wish to determine an analogous property for when we have a χ nonprincipal on a group G but

principal on a subgroup U of G. We will achieve this with the following theorem:

Theorem 7. If χ is a character nonprincipal on a group G but principal on a subgroup U of G, there

exists a character ψ induced by χ that is nonprincipal on G/U .

Proof: Suppose χ is a character nonprincipal on a group G but principal on a subgroup U of G.

Now define a mapping ψ : G/U → C by ψ(gU) = χ(g). To see that ψ is a homomorphism, let

g1U, g2U ∈ G/U and observe ψ(g1Ug2U) = ψ(g1g2U) = χ(g1g2) = χ(g1)χ(g2) = ψ(g1U)ψ(g2U).

Also, ψ is well-defined: If g1U = g2U , then g1 = g2u for some u ∈ U . (Since g1U = g2U ,

g1g
−1
2 U = U . Thus g1g−12 e = u for some u ∈ U , and we get g1 = g2u.) So ψ(g1U) = χ(g1) =

χ(g2u) = χ(g2)χ(u) = χ(g2)(1) = ψ(g2U). Since χ is nonprincipal on G, there exists a g ∈ G such

that χ(g) 6= 1. So if we take ψ(gU) = χ(g) 6= 1. Thus, ψ is nonprincipal on G/U .

We now have at our disposal the following property: If we have a G,U and χ with the theorem

assumptions as properties, and we let ψ be our induced character, then ψ(cG/U) = 0 for some

4

constant c. The following is an example of this property:

Example 8. As in Example 3, we will use G = Z8, the cyclic group of order 8 under addition and

the character defined by χ(1) = i, which forces χ(2) = −1, χ(3) = −i, χ(4) = 1, χ(5) = i, χ(6) =

−1, χ(7) = −i. χ is nonprincipal on G but is principal on U =< 4 >. Thus, we know there is an

induced nonprincipal character ψ on G/U defined by ψ(gU) = χ(g). To see that it is nonprincipal on

G/U , notice ψ(2U) = χ(2) = −1 6= 1. Futhermore, ψ(Z8/ < 4 >) = 0.

From now on, we will say that a character sum on some subset S has modulus m if |χ(S)| = m. We

will now employ this definition to connect character theory and difference sets:

Lemma 9. A subset D of an abelian group G, such that |D| = k and |G| = v is a (v, k, λ, n) difference

set in G if and only if the character sum over D has modulus
√
n, that is |χ(D)| =

√
n, for all

nonprincipal characters χ of G.

Proof: First, suppose that D is a (v, k, λ, n) difference set in G and let χ ∈ G∗. Now, let D(−1) =

{d−1|d ∈ D}. Additionally, let χ(D) = {χ(d)|d ∈ D}, where χ(d) is the complex conjugate of χ(d).

I claim that χ(D(−1)) = χ(D). It suffices to show that for d ∈ D, χ(d−1) = χ(d). By the properties

of homomorphisms, χ(d−1) = (χ(d))−1. Now, since χ(d) is simply a root of unity, χ(d) = a+ bi for

some a, b ∈ R such that a2 + b2 = 1. Now consider χ(d)χ(d) = (a+ bi)(a− bi) = a2 + b2 = 1. Thus,

(χ(d))−1 = χ(d). It follows that χ(D(−1)) = χ(D). Now, |χ(D)|2 = χ(D)χ(D) = χ(D)χ(D(−1)) =

χ(D)χ(D) = χ(DD(−1)) = χ(λ(G/e) + ke) = χ(λG+ (k − λ)e) = χ(λG) + χ((k − λ)e) = 0 + (k −

λ)χ(e) = k − λ = n. It follows that |χ(D)| =
√
n.

Now to see the converse, suppose that D is a subset of G such that |χ(D)| =
√
n. This implies

that n = |χ(D)|2 = χ(D)χ(D) = χ(D)χ(D(−1)) = χ(DD(−1)). Equivalently, χ(DD(−1)) − n =

χ(DD(−1))−χ(ne) = χ(DD(−1)−ne) = 0. From Lemma 6, we know this implies DD(−1)−ne = cG

or DD(−1) = cG + ne for some constant c. We can write cG + ne = cG/{e} + (c + n)e. The set

DD(−1) = {did−1j |di, dj ∈ D} contains precisely |D| = k copies of e. (did−1j = e only when i = j.

This occurs for i = 1, . . . , |D|.) This implies the following equality: k = c + n or c = k − n = λ.

Combining these results, we get DD(−1) = λG/{e}+ ke. By definition, D is a (v, k, λ, n) difference

5

set in G.

2 Building Sets

In order to apply character theory to our construction of difference sets, we must introduce the

concept of building sets. The material in the section on building sets is based on previous work

done by Davis and Jedwab. [1]

Before we are able to define building sets, we must first define a building block:

Definition. A building block in a group G with modulus m to be a subset B of G such that all non-

principal character sums over the subset have modulus either 0 or m. That is, for every χ nonprincipal

on G, |χ(B)| = 0 or m.

Example 10. Consider kU , a coset of a subgroup U of G with coset representative k. Note that a

nonprincipal character χ of G is either nonprincipal on U or principal on U . We will first consider the

nonprincipal characters of G that are also nonprincipal on U = {u1, u2, . . . , un}. We now compute

the character sum of kU , taking advantage of the structure preserving properties of homomorphisms:

χ(kU) = χ(ku1)+χ(ku2)+ . . .+χ(kun) = χ(k)χ(u1)+χ(k)χ(u2)+ . . .+χ(k)χ(un) = χ(k)(χ(u1)+

χ(u2) + . . . + χ(un)) = χ(k)χ(U) = χ(k)(0) = 0. (χ(U) = 0 since χ is nonprincipal on U .) Thus,

|χ(kU)| = |0| = 0. Second, we consider a character χ that is nonprincipal on G but principal on U .

Following the same calculations as before, we get |χ(kU)| = |χ(k)χ(U)| = |χ(k)||χ(U)| = |χ(k)||U | =

|U |. (Since χ is principal on U , |χ(U)| = |U | and since χ(k) is just a root of unity |χ(k)| = 1. Thus,

all characters on kU have either modulus 0 or |U |, and by definition, kU is a building block of G with

modulus |U |.

We will now consider building blocks in a larger context:

Definition. For positive integers a, t, a (a,m,t) building set (BS) on a group G relative to a subgroup U

is a set of t building blocks {B1, B2, . . . , Bt} in G with modulus m (not necessarily an integer), where

6

each block contains a elements such that for every nonprincipal character χ of G, the following two

properties hold:

1. if χ is nonprincipal on U , precisely one building block has nonzero character sum

2. if χ is principal on U , no building block has nonzero character sum

Example 11. To illustrate an example of a building set, we will introduce hyperplanes. A hyperplane

U of an n-dimensional space V is an (n-1)-dimensional subspace of V . Consider G ≈ Z2
2. This is a

2-dimensional vectorspace over Z2, and we can write G = {(a1, a2)|ai ∈ Z2}. The three hyperplanes

can be represented as follows: H0 =< (1, 0) >,H1 =< (0, 1) >,H2 =< (1, 1) >. I claim that the set

{H2, H3} forms a (2, 2, 2) building set relative to U = H1. First note that H2, H3 are both building

blocks with modulus 2. (Since H1, H2 are just subgroups, if χ is principal on Hi, then |χ(Hi)| = 2

and if χ is nonprincipal on Hi, then |χ(Hi)| = 0). Now, let χ be a character nonprincipal on G. Since

the maximum order of g ∈ G is 2, χ must be a 2−to−1 mapping onto C = {±1}. Since the three

hyperplanes are the only subgroups of G of order 2, one, say Hi, must be the kernel of χ. Thus, χ is

principal on Hi and nonprincipal on the the remaining 2 hyperplanes. If i 6= 1, then χ is nonprincpal

on U = H1. Then the block Hi has a nonzero character sum (χ(Hi) = |Hi| = 2). The second block

has a character sum of 0 since χ is nonprincipal on it. If i = 1, then χ is principal on U = H1 and

nonprincipal on H2, H3. Thus, both blocks have character sum zero. By definition, {H2, H3} is a

(2, 2, 2) building set relative to U = H1.

We now define a variation on a building set:

Definition. For integers a ≥ 0,m ≥ 1 and h ≥ 1, a (a, m, h, ±) extended building set (EBS) on

a group G with respect to a subgroup U is a collection of h building blocks in G with modulus m, of

which h − 1 contain a elements and one contains a ±m elements (+ or − determined by the fourth

parameter of the EBS), such that for every nonprincipal character χ of G, the following two properties

hold:

1. if χ is principal on U , precisely one building block has nonzero character sum

7

2. if χ is nonprincipal on U , no building block has nonzero character sum

Note that unlike in the definition of a building set, the value of m must be an integer, because

the size of one of the blocks is a ± m. Also, the two enumerated conditions in the building set

and extended building set are somewhat reversed. To illustrate this, let {B1, B2, . . . , Bn} be a

building set on some group G relative to a subgroup U , let {D1, D2, . . . , Dm} be an extended

building set with respect to U , and let χ be a character nonprincipal on G. If χ is nonprincipal on

U then precisely one Bi has a nonzero character sum and no Dj has a nonzero character sum. If

χ is principal on U then precisely one Di has a nonzero character sum and no Bj has a nonzero

character sum. This reciprocal-like property will be useful to us.

In the case that for each nonprincipal character on G, precisely one building block has nonzero

character sum, we will call the EBS covering.

Example 12. We will again use hyperplanes to illustrate an example. Suppose that we have G ≈ Z3
2.

This can be thought of as a 3-dimensional vectorspace over Z2, and we can write G = {(a1, a2, a3)|ai ∈

Z2}. The 7 hyperplanes can be represented as follows:

• H2 =< (0, 1, 0), (0, 0, 1) >

• H3 =< (1, 0, 0), (0, 0, 1) >

• H4 =< (1, 0, 0), (0, 1, 0) >

• H5 =< (1, 1, 0), (0, 0, 1) >

• H6 =< (1, 0, 1), (0, 1, 0) >

• H7 =< (0, 1, 1), (1, 0, 0) >

• H8 =< (1, 1, 0), (0, 1, 1) >

Now consider a character χ nonprincipal on G. Since the maximum order of g ∈ G is 2, the order

of χ(g) is at most 2. This requires χ to be a 4−to−1 mapping onto C = {±1}, and thus χ has

8

a kernel of size 4. Since the seven hyperplanes are the only subgroups of G of order 4, one, say

Hi, must be the kernel of χ. Thus, χ is principal on Hi and nonprincipal on the the remaining 6

hyperplanes. Viewing these hyperplanes as subgroups (and hence groups), from a previous result,

we know χ(Hi) = 4, χ(Hj) = 0, j 6= i. By definition, {H1, H2, H3, H4, H5, H6, H7, H8} forms a

(4, 4, 8,−) covering EBS on G, where H1 is the empty set with 4− 4 = 0 elements.

We will finally establish the connection between building sets and difference sets in the following

theorem:

Theorem 13. A (a,m, 1,±) covering EBS on a group G is equivalent to a (|G|, a±m, a±m−m2,m2)

difference set in G.

Proof: Suppose we have a (a,m, 1,±) covering EBS on a group G. Recall that this is a collection

of 1 building block(s) in G with modulus m of which 0 contains a elements and one contain

a ±m elements. Let D denote this block. Now, since the EBS is covering, we know that for each

nonprincipal character on G, precisely one building block has a nonzero character sum. Since D

is the only block and has modulus m, this implies that for all nonprincipal characters χ on G,

|χ(D)| = m. By Lemma 9, D is a (|G|, a±m, a±m−m2,m2) difference set in G.

We are now prepared to establish a broader result:

Theorem 14. Given a (a,m, h,±) covering EBS on a group G, there exists a (h|G|, ah±m, ah±m−

m2,m2) difference set in any abelian group G′ containing G as a subgroup of index h.

Proof: In order to apply Theorem 13, we must show that we can use a (a,m, h,±) covering EBS on

a groupG to obtain a (ah,m, 1,±) covering EBS onG′ relative toG. To see this, let {B1, B2, . . . , Bh}

be our (a,m, h,±) covering EBS on a group G, where B1 is the block containing a ±m elements.

Let g′1, g
′
2, . . . , g

′
h be the coset representatives of G in G′. Now define D =

⋃
i=1,...,h g

′
iBi. Let χ be a

character nonprincipal on G′. There are two cases to consider: 1) χ is principal on G and 2) χ is

nonprincipal onG. In the first case, we compute χ(D) =
∑

i=1,...,h χ(g
′
iBi) =

∑
i=1,...,h χ(g

′
i)χ(Bi) =

9

∑
i=1,...,h χ(g

′
i)|Bi| (since Bi ⊂ G and χ is principal on G) = (a ± m)χ(g′1) + a

∑
i=2,...,h χ(g

′
i) =

a
∑

i=1,...,h χ(g
′
i) ± mχ(g′1). Now, recall that since χ is nonprincipal on G′ and principal on G,

there is an induced nonprincipal character ψ : G′/G → C defined by ψ(g′iG) = χ(g′i). Thus,∑
i=1,...,h χ(g

′
i) =

∑
i=1,...,h ψ(g

′
iG) = ψ(G′/G) = 0 (a nonprincipal character on a group has a

character sum 0 over that group). Thus, χ(D) = a
∑

i=1,...,h χ(g
′
i) ± mχ(g′1) = ±mχ(g′1), and so

|χ(D)| = |±mχ(g′1)| = |±m||χ(g′1)| = m. In the case the χ is nonprincipal on G we consider χ(D).

Since the blocks Bi form a covering EBS and χ is nonprincipal on G, precisely one block, say Bj

has a nonzero character sum under χ and |χ(Bj)| = m. Thus χ(D) = χ(g′1B1) + χ(g′2B2) + . . . +

χ(g′hBh) = χ(g′1)χ(B1) + χ(g′2)χ(B2) + . . . + χ(g′h)χ(Bh) collapses to χ(D) = χ(g′j)χ(Bj). Since

χ(g′j) is simply a root of unity, |χ(g′j)| = 1, and it follows that |χ(D)| = |χ(Bj)| = m. For every

nonprincipal character χ of G′, exactly one buiding block (in this case, the only building block)

has nonzero character sum. It follows immediately that D is a (h|G|, ah ± m, ah ± m − m2,m2)

difference set in G′.

Example 15. To see an application of Theorem 13, we will produce a (256, 120, 56) difference set in

a abelian group G of order 256 containing a subgroup U ≈ Z4
2. We will again turn to hyperplanes

as a starting point. By now it should be apparent that the construction of building sets and extended

building sets out of hyperplanes seems to be the default example. This is not a coincidence. Hyperplanes

prove to be rather useful in these constructions because a hyperplane H of size n is a building block

with modulus n with the rather handy property that it is also a subgroup (and thus a group). Thus,

given a character χ, χ(H) = 0 if χ is nonprincipal on H and χ(H) = n if χ is principal on H. Now,

returning to the task at hand, we use the 15 hyperplanes of U , denoted H2, ...,H16, and the empty

set denoted H1 as the blocks in a (8, 8, 16,−) covering EBS {H1, H2, . . . ,H16}, where the 16th block is

the empty set with 16 − 16 = 0 elements. To see that the hyperplanes form a covering EBS, it suffices

to note that the kernel of χ must be precisely one hyperplane. This argument is identical to that of

Example 12. Let g1, g2, . . . , g16 represent the coset representataives from the elements in G/U . Now, by

Theorem 14 D =
⋃16
i=1 giHi is a (256, 120, 56) difference set in a G. This particular use of hyperplanes

to construct difference sets was developed by McFarland and modified by Dillon. [4] [2]

10

Our conclusion that a (a,m, h,±) covering EBS on a group G can be used to obtain a (ah,m, 1,±)

covering EBS in a group G′ containing G as a subgroup of index h can be generalized as follows:

Theorem 16. A (a,m, h,±) covering EBS on an abelian groupG guarantees a (as,m, h/s,±) covering

EBS in an abelian group G′ containing G as a subgroup of index s.

Accordingly, the argument used to show this will be a generalization of the one just completed.

Proof: Let {B1, B2, . . . , Bh} be our (a,m, h,±) covering EBS on G, where B1 is the building block

containing a ± m elements. Now suppose G′ is an abelian group that contains G as a subgroup

of index s, and let g′1, g
′
2, . . . , g

′
s be the coset representatives of G in G′. Define the following

subset of G′: Dj =
⋃s
i=1 g

′
iBi+(j−1)s for j = 1, 2, . . . , h/s. Let χ be a character nonprincipal on G′.

Now χ is either principal or nonprincipal on G. We will first consider the case that χ is principal

on G and compute χ(Dj) =
∑s

i=1 χ(g
′
iBi+(j−1)s) =

∑s
i=1 χ(g

′
i)|Bi+(j−1)s)| = χ(g′1)|B1+(j−1)s)| +∑s

i=2 χ(g
′
i)|Bi+(j−1)s)| = χ(g′1)(|B1+(j−1)s|−a)+a

∑s
i=1 χ(g

′
i). By Theorem 7, since χ is nonprincial

on G′ and principal on G, there is a nonprincipal character induced by χ on G/G′. This implies∑s
i=1 χ(g

′
i) = 0. So we get χ(Dj) = χ(g′1)(|B1+(j−1)s)| − a), and |χ(Dj)| = |(|B1+(j−1)s)| − a)|.

Recall that |B1| = a − m and |Bi| = m for i 6= 1. Thus, |χ(Dj)| is equal to m for j = 1 and 0

for j > 1. Now suppose that χ is nonprincipal on G. Then by the definition of a covering EBS,

χ(Bk) is nonzero for precisely one value of k. The block Di are define so that Bk appears in Di for

one particular i. Thus χ(Di) is nonzero for this particular i, and zero for all others. By definition,

{D1, D2, . . . , Dh/s} is a (as,m, h/s,±) covering EBS in a group G′

Example 17. As an illustrative example, we will use the (4, 4, 8,−) covering EBS in G = Z3
2 from

Example 12 to construct a (8, 4, 4,−) covering EBS inG′ = Z4×Z2
2. Recall that (4, 4, 8,−) covering EBS

on G consisted of the empty block, B1, and the 7 hyperplanes of G, Bi, i = 2, . . . , 8. Notice that G′/G =

{(0, 0, 0) +G, (1, 0, 0) +G}. Now we construct Di according to the construction method given above:

D1 = B1
⋃
(1, 0, 0)+B5, D2 = B2

⋃
(1, 0, 0)+B6, D3 = B3

⋃
(1, 0, 0)+B7, and D4 = B4

⋃
(1, 0, 0)+

B8. (The presence of the coset representative (0, 0, 0) is implicit when it is the coset representative

attached to the blocks Bi, i = 1, 2, 3, 4). The previous argument tells us that {D1, D2, D3, D4} is a

11

(8, 4, 4,−) covering EBS in G′ = Z4 × Z2
2.

Now, with the previous theorems and examples in mind, our goal will be to construct a (16, 8, 8,−)

covering EBS in the group H = Z2
4×Z2. By Theorem 14, this covering EBS will be used to construct

a (256, 120, 56) difference set in any abelian group G which contains H as a subgroup of index 8.

We will proceed in a recursive manner, first showing that a (16, 8, 4,−) EBS on H with respect

to U =< (0, 2, 0) > and a (16, 8, 4) building set on H relative to U can be used to construct our

(16, 8, 8,−) covering EBS. Then we will take the steps necesary to obtain a (16, 8, 4,−) EBS on H

with respect to U and a (16, 8, 4) building set on H relative to U .

Suppose we have a (16, 8, 4,−) EBS {C1, C2, C3, C4} onH with respect to U and a (16, 8, 4) building

set on H, denote it {C5, C6, C7, C8}, relative to U . Suppose we have a χ nonprincipal on G and

principal onH. Then by the definition of an EBS, exactly one of {C1, C2, C3, C4} has a nonzero char-

acter sum, and by the definition of a building set none of {C5, C6, C7, C8} has a nonzero character

sum. Now suppose χ is nonprincipal onH. By the definition of an EBS, none of {C1, C2, C3, C4} has

a nonzero character sum, and by the definition of a building set, precisely one of {C5, C6, C7, C8}

has a nonzero character sum. In either case, for a character χ nonprincipal on G, precisely one

{C1, C2, . . . , C8} has a nonzero character sum. By definition, this is a (16, 8, 8,−) covering EBS on

H.

We will first obtain our (16, 8, 4,−) EBS on H with respect to U . I claim that the existence of

(8, 4, 4,−) covering EBS on H/U implies the existence of a (16, 8, 4,−) EBS on H relative to U .

To see this suppose we have an (8, 4, 4,−) covering EBS on H/U where U =< (0, 2, 0) >. Let

{B′1, B′2, B′3, B′4} be our (8, 4, 4,−) covering EBS onH/U , whereB′1 is our block containing 8−4 = 4

elements. Define Bi = {h ∈ H|hU ∈ B′i}. That is, Bi is the pre-image of B′i in the mapping

φ : H → H/U defined by φ(h) = hU for h ∈ H. For example if B′2 = {h1U, h2U, . . . , h8U}, then

B2 = h1U
⋃
h2U

⋃
. . .

⋃
h8U . Thus, |Bi| = |U ||B′i| = 2|B′i|. Concretely, |B1| = 8 and |B2| = |B3| =

|B4| = 16. Now, let χ be a character nonprincipal on H, and consider χ(Bi) =
∑

hjU∈B′i
χ(hjU).

As always, we must consider whether χ is principal on U . If χ is nonprincipal on U , we know

that χ(hjU) = χ(hj)χ(U) = χ(hj)(0) = 0. Thus |χ(hjU)| = 0 for all j, and χ(Bi) = 0 for all i.

12

If χ is principal on U , we will again employ our induced nonprincipal character on G/H, where

ψ : H/U → C is defined by ψ(hU) = χ(h). Now, by the definition of a covering EBS, ψ(B′k) is

nonzero for precisely one B′k and |ψ(B′k)| = 4. We now compute χ(Bi) =
∑

hjU∈B′i
χ(hjU) =∑

hjU∈B′i
χ(hj)|U | = |U |

∑
hjU∈B′i

ψ(hjU) = |U |ψ(B′i) = 2ψ(B′i). Thus, χ(Bi) is nonzero only when

i = k and |χ(Bk)| = |2||ψ(B′k)| = 8. By definition, {B1, B2, B3, B4} is a (16, 8, 4,−) EBS on H

relative to U .

We will now give an example of this construction. Our most recent example left us with a (8, 4, 4,−)

covering EBSD1, D2, D3, D4 inG′ = Z4×Z2
2. We definedD1 = B1

⋃
(1, 0, 0)+B5, D2 = B2

⋃
(1, 0, 0)+

B6, D3 = B3
⋃
(1, 0, 0) + B7, and D4 = B4

⋃
(1, 0, 0) + B8 where B1 is the empty block, and

Bi, i = 2, . . . 8 are the 7 hyperplanes of G = Z3
2 inside of G’. Explicitly:

• D1 = {∅
⋃
(1, 0, 0)+ < (2, 1, 0), (0, 0, 1) >} =

{(1, 0, 0), (3, 1, 0), (1, 0, 1), (3, 1, 1)}

• D2 =< (0, 1, 0), (0, 0, 1) >
⋃
(1, 0, 0)+ < (2, 0, 1), (0, 1, 0) >=

{(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (3, 0, 1), (1, 1, 0), (3, 1, 1)}

• D3 =< (2, 0, 0), (0, 0, 1) >
⋃
(1, 0, 0)+ < (0, 1, 1), (2, 0, 0) >=

{(0, 0, 0), (2, 0, 0), (0, 0, 1), (2, 0, 1), (1, 0, 0), (1, 1, 1), (3, 0, 0), (3, 1, 1)}

• D4 =< (2, 0, 0), (0, 1, 0) >
⋃
(1, 0, 0)+ < (2, 1, 0), (0, 1, 1) >=

{(0, 0, 0), (2, 0, 0), (0, 1, 0), (2, 1, 0), (1, 0, 0), (3, 1, 0), (1, 1, 1), (3, 0, 1)}

Now, we will use this (8, 4, 4,−) covering EBS in H/U ≈ Z4 × Z2
2 to construct a (16, 8, 4,−) EBS

on H = Z2
4 × Z2 relative to U =< (0, 2, 0) > according to the method above. Note that to remain

consistent with the notation from the previous example, the notation in this construction differs

from that in the argument above. Here Di is used in place of B′i and Ci is used in place of Bi.

• C1 =
⋃
d∈D1

d+ U = {(1, 0, 0), (1, 2, 0), (3, 1, 0), (3, 3, 0), (1, 0, 1), (1, 2, 1), (3, 1, 1), (3, 3, 1)}

• C2 =
⋃
d∈D2

d+ U = {(0, 0, 0), (0, 2, 0), (0, 1, 0), (0, 3, 0), (0, 0, 1), (0, 2, 1), (0, 1, 1), (0, 3, 1),

(1, 0, 0), (1, 2, 0), (3, 0, 1), (3, 2, 1), (1, 1, 0), (1, 3, 0), (3, 1, 1), (3, 3, 1)}

13

• C3 =
⋃
d∈D3

d+ U = {(0, 0, 0), (0, 2, 0), (2, 0, 0), (2, 2, 0), (0, 0, 1), (0, 2, 1), (2, 0, 1), (2, 2, 1),

(1, 0, 0), (1, 2, 0), (1, 1, 1), (1, 3, 1), (3, 0, 0), (3, 2, 0), (3, 1, 1), (3, 3, 1)}

• C4 =
⋃
d∈D4

d+ U = {(0, 0, 0), (0, 2, 0), (2, 0, 0), (2, 2, 0), (0, 1, 0), (0, 3, 0), (2, 1, 0), (2, 3, 0),

(1, 0, 0), (1, 2, 0), (3, 1, 0), (3, 3, 0), (1, 1, 1), (1, 3, 1), (3, 0, 1), (3, 2, 1)}

We will now construct our (16, 8, 4) building set on H relative to U . To facilitate our construction

we will introduce a new notation. We will write H =< X,Y, z|X4 = Y 4 = z2 = 1 > and U =<

Y 2 >. This construction process will follow a similar building up pattern as the construction of our

(16, 8, 4,−)EBS. We will use the (2, 2, 2) BS constructed in Example 11 as our starting point. Using

our new notation, if we let G1 =< x, y|x2 = y2 = 1 >≈ Z2 × Z2 we have a (2, 2, 2) building set on

G1 relative to < y > composed of the blocks:

• B1 =< x >

• B2 =< xy >

Now, let G2 =< x, Y |x2 = Y 4 = 1 >. We can use our building set on G1 to construct a (4, 2, 1)

building set on G2 relative to < Y 2 > consisting of the block:

• < x >
⋃
Y < xY 2 >

The following theorem justifies the claim:

Theorem 18. Given a (a,m, h) BS on a group G relative to a subgroup U , there exists a (ah,m, 1) BS

on a group G′ relative to U , where G′ is any group containing G as a subgroup of index h.

Proof: Suppose G′ is a group containing G as a subgroup of index h, and let {B1, B2, . . . , Bh} be

a (a,m, h) BS on G relative to a subgroup U . Let g′1, g
′
2, . . . , g

′
h ∈ G′ be the coset representatives

of G in G′. Now define as subset of G′ B =
⋃h
i=1 g

′
iBi. I claim that {B} is our (ah,m, 1) in G′.

To see this, let χ be a nonprincipal character of G′. Now compute χ(
⋃h
i=1 g

′
iBi) =

∑h
i=1 χ(g

′
iBi) =

14

∑h
i=1 χ(g

′
i)χ(Bi). We must consider the value of χ(B) in the following three cases: 1) χ is non-

principal on G′ and principal on G 2) χ is nonprincipal on G (and hence nonprincipal on G′) and

principal on U and 3) χ is nonprincipal on U . Suppose χ is nonprincipal on G′ and principal on

G (case 1). Now, χ(B) =
∑h

i=1 χ(g
′
i)χ(Bi) =

∑h
i=1 χ(g

′
i)|Bi| =

∑h
i=1 χ(g

′
i)|Bi| = a

∑h
i=1 χ(g

′
i) =

aψ(G/U), where ψ is the character nonprincipal on G/U guaranteed by Theorem 7. We have that

χ(B) = aψ(G/U) = a(0) = 0. Now, suppose that χ is nonprincipal on G and principal on U (case

2). By the definition of a building set, since χ is principal on U , χ(Bi) = 0 for all i. Now we

compute χ(B) =
∑h

i=1 χ(g
′
i)χ(Bi) =

∑h
i=1 χ(g

′
i)(0) = 0. Finally, suppose that χ is nonprincipal on

U (case 3). Then by the definition of building set, χ(Bi) has non-zero character sum for precisely

one value of i, say when i = j. Now χ(B) =
∑h

i=1 χ(g
′
i)χ(Bi) = χ(g′j)χ(Bj) 6= 0. In summary,

when χ is nonprincipal on U (case 3), precisely one building block (in this case, the only block

B) has nonzero character sum. When χ is principal on U (cases 1 and 2), no building block has

nonzero character sum. Thus {B} satisfies the definition of a (ah,m, 1) building set in G′.

So, we now have a (4, 2, 1) building set on G2 relative to < Y 2 >. There are two steps remaining

in our construction of a (16, 8, 4) building set. The first step is to use our (4, 2, 1) building set on G2

relative to < Y 2 > to construct a (8, 4, 2) building set on G3 =< X,Y |X4 = Y 4 = 1 > relative to

< Y 2 >. The second and final step will be to use our (8, 4, 2) building set on G3 from step one to

construct a (16, 8, 4) building set on H =< X,Y, z|X4 = Y 4 = z2 = 1 > relative to U =< Y 2 >.

These two steps are based on the same argument and construction method, which is presented in

the following proof:

Theorem 19. Let G be a group of order 4a for some a ∈ Z+ containing a subgroup Q ≈ Z2
2. Let

H0, H1, H2 be the subgroups of G of order 2 corresponding to hyperplanes viewed as subgroups of Q.

Given a (a,
√
at, t) BS on G/Hi relative to Q/Hi for i = 1, 2, there exists a (2a, 2

√
at, 2t) BS on G

relative to H0.

Proof: Suppose we have a group G of order 4a with a subgroup Q ≈ Z2
2, and let H0, H1, H2

be the subgroups of G of order 2 corresponding to hyperplanes viewed as subgroups of Q. Let

15

{B′11, B′12, . . . , B′1t} be a (a,
√
at, t) BS on G/H1 relative to Q/H1 and {B′21, B′22, . . . , B′2t} be a

(a,
√
at, t) BS on G/H2 relative to Q/H2. Define B1j = {g ∈ G|gH1 ∈ B′1j} and B2j = {g ∈

G|gH2 ∈ B′2j}. Thus, Bij is the union of |B′ij | = a distinct cosets of Hi for i = 1, 2, which

implies that |Bij | = 2a. Let χ be a character nonprincipal on G, and compute χ(Bij) for i = 1, 2

and j = 1, . . . , t: χ(Bij) =

 0 if χ nonprincipal on Hi

2ψ(B′ij) if χ principal on Hi

, where ψ is the nonprincipal

character induced by χ on G/Hi. Applying the definition of a building set, for i = 1, 2, if χ is

nonprincipal on Q/Hi, then ψ(B′ij) is nonzero with modulus
√
at for one value of j, and if χ is

principal on Q/Hi then ψ(B′ij) = 0 for all j.

We have three cases to consider: 1) χ is principal on Hk for either k = 1 or k = 2 and nonprincipal

on Hi, i 6= k 2) χ is principal on H0 and nonprincipal on H1, H2, and 3) χ is nonprincipal on Q.

We now consider the first case. Suppose χ is principal on Hk for either k = 1 or k = 2 and

nonprincipal on Hi, i 6= k. Then χ(Bij) = 0 for i 6= k and χ(Bij) = 2ψ(B′ij) for i = k. Since χ is

nonprincipal on Hk, χ is nonprincipal on Q and thus ψ is nonprincipal on Q/Hk. Therefore, ψ(B′kj)

is nonzero with modulus
√
at for a particular j. Now, consider the second case: χ is principal on

H0 and nonprincipal on H1, H2. For i = 1, 2, χ(Bij) = 0. Finally, consider the third case, when χ

is nonprincipal on Q. This implies that χ is principal on H0, H1, and H2. Thus, χ(Bij) = 2ψ(B′ij)

for i = 1, 2. By definition, ψ is principal on Q/Hi. This implies ψ(B′ij) = 0 for all i, j. Thus, by

definition, the set {Bij |i = 1, 2, j = 1, . . . , t} is a (2a, 2
√
at, 2t) BS on G relative to H0.

Now we can apply this result to construct a (8, 4, 2) building set on G3 =< X,Y |X4 = Y 4 = 1 >

relative to < Y 2 >. Let Q =< X2, Y 2 > where the hyperplanes of Q are H0 =< Y 2 >,H1 =<

X2 >,H2 =< X2Y 2 >. Since G3/Hi ≈ G2 with Q/Hi ≈< Y 2 > for i = 1, 2, we can use our (4, 2, 1)

building set on G2 to construct (8, 4, 2) building set on G3 consisting of the following blocks:

• < X >
⋃
Y < XY 2 >

• < XY >
⋃
Y < XY 3 >

16

In the same manner, we can construct a (16, 8, 4) building set onH =< X,Y, z|X4 = Y 4 = z2 = 1 >

relative to U =< Y 2 > using our (8, 4, 2) building set on G3. To satisfy the assumptions of Theorem

19, we let Q =< Y 2, z >, where the hyperplanes of Q are H0 =< Y 2 >,H1 =< z >,H2 =< Y 2z >.

Our resulting building set on H consists of the following blocks:

• < X >
⋃
Y < XY 2 >

⋃
z < X >

⋃
Y z < XY 2 >

• < XY >
⋃
Y < XY 3 >

⋃
z < XY >

⋃
Y z < XY 3 >

• < X >
⋃
Y < XY 2 >

⋃
Y 2z < X >

⋃
Y 3z < XY 2 >

• < XY >
⋃
Y < XY 3 >

⋃
Y 2z < XY >

⋃
Y 3z < XY 3 >

Using the same notation as our EBS, we write our (16, 8, 4) building set on H =< X,Y, z|X4 =

Y 4 = z2 = 1 > additively in the following manner:

• C5 = {(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (0, 1, 0), (1, 3, 0), (2, 1, 0), (3, 3, 0), (0, 0, 1), (1, 0, 1),

(2, 0, 1), (3, 0, 1), (0, 1, 1), (1, 3, 1), (2, 1, 1), (3, 3, 1)}

• C6 = {(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (0, 1, 0), (1, 3, 0), (2, 1, 0), (3, 3, 0), (0, 2, 1), (1, 2, 1),

(2, 2, 1), (3, 2, 1), (0, 3, 1), (1, 1, 1), (2, 3, 1), (3, 1, 1)}

• C7 = {(0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 3, 0), (0, 1, 0), (1, 0, 0), (2, 3, 0), (3, 2, 0), (0, 0, 1), (1, 1, 1),

(2, 2, 1), (3, 3, 1), (0, 1, 1), (1, 0, 1), (2, 3, 1), (3, 2, 1)}

• C8 = {(0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 3, 0), (0, 1, 0), (1, 0, 0), (2, 3, 0), (3, 2, 0), (0, 2, 1), (1, 3, 1),

(2, 0, 1), (3, 1, 1), (0, 3, 1), (1, 2, 1), (2, 1, 1), (3, 0, 1)}

We now combine our (16, 8, 4,−) EBS on H = Z2
4 × Z2 with our (16, 8, 4) building set on H =<

X,Y, z|X4 = Y 4 = z2 = 1 > to obtain our (16, 8, 8,−) covering EBS on H relative to U =< Y 2 >

(or written additively U =< (0, 2, 0) >), consisting of the following blocks:

• C1 = {(1, 0, 0), (1, 2, 0), (3, 1, 0), (3, 3, 0), (1, 0, 1), (1, 2, 1), (3, 1, 1), (3, 3, 1)}

17

• C2 = {(0, 0, 0), (0, 2, 0), (0, 1, 0), (0, 3, 0), (0, 0, 1), (0, 2, 1), (0, 1, 1), (0, 3, 1), (1, 0, 0), (1, 2, 0),

(3, 0, 1), (3, 2, 1), (1, 1, 0), (1, 3, 0), (3, 1, 1), (3, 3, 1)}

• C3 = {(0, 0, 0), (0, 2, 0), (2, 0, 0), (2, 2, 0), (0, 0, 1), (0, 2, 1), (2, 0, 1), (2, 2, 1), (1, 0, 0), (1, 2, 0),

(1, 1, 1), (1, 3, 1), (3, 0, 0), (3, 2, 0), (3, 1, 1), (3, 3, 1)}

• C4 = {(0, 0, 0), (0, 2, 0), (2, 0, 0), (2, 2, 0), (0, 1, 0), (0, 3, 0), (2, 1, 0), (2, 3, 0), (1, 0, 0), (1, 2, 0),

(3, 1, 0), (3, 3, 0), (1, 1, 1), (1, 3, 1), (3, 0, 1), (3, 2, 1)}

• C5 = {(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (0, 1, 0), (1, 3, 0), (2, 1, 0), (3, 3, 0), (0, 0, 1), (1, 0, 1),

(2, 0, 1), (3, 0, 1), (0, 1, 1), (1, 3, 1), (2, 1, 1), (3, 3, 1)}

• C6 = {(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (0, 1, 0), (1, 3, 0), (2, 1, 0), (3, 3, 0), (0, 2, 1), (1, 2, 1),

(2, 2, 1), (3, 2, 1), (0, 3, 1), (1, 1, 1), (2, 3, 1), (3, 1, 1)}

• C7 = {(0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 3, 0), (0, 1, 0), (1, 0, 0), (2, 3, 0), (3, 2, 0), (0, 0, 1), (1, 1, 1),

(2, 2, 1), (3, 3, 1), (0, 1, 1), (1, 0, 1), (2, 3, 1), (3, 2, 1)}

• C8 = {(0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 3, 0), (0, 1, 0), (1, 0, 0), (2, 3, 0), (3, 2, 0), (0, 2, 1), (1, 3, 1),

(2, 0, 1), (3, 1, 1), (0, 3, 1), (1, 2, 1), (2, 1, 1), (3, 0, 1)}

3 Non-Abelian Groups

Now that we have our (16, 8, 8,−) covering EBS {C1, C2, . . . , C8} in H = Z2
4×Z2, where we denote

the building blocks C1, C2, . . . , C8, we know precisely how to obtain a (256, 120, 56) difference set

in any abelian group G that contains H has a subgroup: we simply attach the 8 distinct coset

representatives gi from the elements in G/H to the blocks Ci and take the union of all giCi. (From

now on, when we say we attach a coset representative to a block we mean that we take the product

of the coset representative with each element in the block.) However, the assumption that G

is abelian is severely limiting. Furthermore, whether or not G is abelian is not relevent in our

construction of the (16, 8, 8,−) covering EBS in H. (Since H = Z2
4 × Z2, H is abelian even if G is

not.) Here we will compare the case that G is abelian with the case the G is non-abelian.

18

Let G be a group (not necessarily abelian) with normal subgroup H ≈ Z2
4 × Z2, and let gi be the

coset representatives from the elements in the factor group G/H. As before, define D =
⋃8
i=1 giCi.

Consider what happens when we compute the set DD(−1) = {did−1j |di, dj ∈ D}: DD(−1) =

{g1C1
⋃
g2C2

⋃
. . . g8C8}{C(−1)

1 g−11

⋃
C

(−1)
2 g−12

⋃
. . . C

(−1)
8 g−18 } =

⋃
giCiC

(−1)
j g−1j for i = 1, . . . , 8

and j = 1, . . . , 8. We will consider CiC
(−1)
j in two cases: first, when i 6= j and second, when i = j.

Suppose i 6= j. Since C1, C2, . . . , C8 is a covering EBS, χ(Ck) has nonzero sum for exactly one

value of k. Consider χ(CiC
(−1)
j) = χ(Ci)χ(C

(−1)
j) = χ(Ci)χ(Cj). If i = k, then χ(Cj) = 0 (and

χ(Cj) = 0). Likewise, If j = k then χ(Ci) = 0. In either case, χ(CiC
(−1)
j) = χ(Ci)χ(Cj) = 0.

It follows that CiC
(−1)
j = k1H for some constant k1. Now, we will add the coset representatives:

giCiC
(−1)
j g−1j = gik1Hg

−1
j = k1giHg

−1
j = k1gig

−1
j H since H is normal in G. Thus,

⋃
giCiC

(−1)
j g−1j

for i = 1, . . . , 8 and j = 1, . . . , 8, i 6= j contributes the same elements to the set DD(−1) in the case

that G is abelian or non-abelian.

Now suppose i = j and consider CiC
(−1)
j = CiC

(−1)
i . We cannot definitively determine the

elements of CiC
(−1)
i since Ci will have a nonzero character sum for some but not all charac-

ters nonprincipal H. However, we can glean useful information when considering the union of

all CiC
(−1)
i . Let χ be a character nonprincipal on H. Then precisely one block, say Ck, has

a nonzero character sum. So, χ(
⋃8
i=1CiC

(−1)
i) =

∑8
i=1 χ(CiC

(−1)
i) =

∑8
i=1 χ(Ci)χ(C

(−1)
i) =∑8

i=1 χ(Ci)χ(Ci) =
∑8

i=1 |χ(Ci)|2 = |χ(Ck)|2 = m2. This implies that χ(
⋃8
i=1CiC

(−1)
i) − m2 =

χ(
⋃8
i=1CiC

(−1)
i) − χ(m2e) = χ(

⋃8
i=1CiC

(−1)
i − (m2e)) = 0. Thus,

⋃8
i=1CiC

(−1)
i − (m2e) = k2H

for some constant k2. Equivalently,
⋃8
i=1CiC

(−1)
i = k2H + m2e Now, we will again add the

coset representatives. Notice that in the abelian case
⋃8
i=1 giCiC

(−1)
i g−1i =

⋃8
i=1 gig

−1
i CiC

(−1)
i =⋃8

i=1 gig
−1
i CiC

(−1)
i =

⋃8
i=1CiC

(−1)
i = c2H +m2e. Thus, to obtain a difference set in a non-abelian

G, coset representatives gi must be chosen so that
⋃8
i=1 giCiC

(−1)
i g−1i = c2H + m2e. The value

of k2 can be calculated as follows: We know that |
⋃8
i=1 giCiC

(−1)
i g−1i | = |k2H + m2e|. Thus,

7 ∗ 162 + 8 ∗ 8 = |H|k2 +m2 = 32k2 +m2. We also know that the identity element must show up

|
⋃8
i=1Ci| =

∑
i = 18|Ci| = 7 ∗ 16+(16− 8) = 120 times. It follows that k2+m2 = 120. Solving this

system of equations for k2 we get k2 = 56. Since λ = 56 in a (256, 120, 56, 64)-difference set, i 6= j

giBiB
(−1)
j g−1j = gicHg

−1
j = k1giHg

−1
j = k1gig

−1
j H must contain the elements of the nontrivial

19

cosets of H 56 times and it follows that k1 = 56.

To better understand the role of the coset representative gi in the conjugation of BiB
(−1)
i , we

have computed the sets BiB
(−1)
i for i = 1, . . . , 8, shown below. The “coefficient” of each element

of H tells us how many times that element appears in the multiset BiB
(−1)
i . (We have omitted

the identity element.) For example, 8 (0,0,1) in the block of elements below B1 tells us that

(0, 0, 1) ∈ H appears in B1B
(−1)
1 8 times.

B1:

8 (0,0,1), 0 (0,1,0), 0 (0,1,1), 8 (0,2,0), 8 (0,2,1), 0 (0,3,0), 0 (0,3,1),

0 (1,0,0), 0 (1,0,1), 0 (1,1,0), 0 (1,1,1), 0 (1,2,0), 0 (1,2,1), 0 (1,3,0),

0 (1,3,1), 0 (2,0,0), 0 (2,0,1), 8 (2,1,0), 8 (2,1,1), 0 (2,2,0), 0 (2,2,1),

8 (2,3,0), 8 (2,3,1), 0 (3,0,0), 0 (3,0,1), 0 (3,1,0), 0 (3,1,1), 0 (3,2,0),

0 (3,2,1), 0 (3,3,0), 0 (3,3,1)

B2:

8 (0,0,1), 16 (0,1,0), 8 (0,1,1), 16 (0,2,0), 8 (0,2,1), 16 (0,3,0), 8 (0,3,1),

8 (1,0,0), 8 (1,0,1), 8 (1,1,0), 8 (1,1,1), 8 (1,2,0), 8 (1,2,1), 8 (1,3,0),

8 (1,3,1), 0 (2,0,0), 8 (2,0,1), 0 (2,1,0), 8 (2,1,1), 0 (2,2,0), 8 (2,2,1),

0 (2,3,0), 8 (2,3,1), 8 (3,0,0), 8 (3,0,1), 8 (3,1,0), 8 (3,1,1), 8 (3,2,0),

8 (3,2,1), 8 (3,3,0), 8 (3,3,1)

B3:

8 (0,0,1), 0 (0,1,0), 8 (0,1,1), 16 (0,2,0), 8 (0,2,1), 0 (0,3,0), 8 (0,3,1),

8 (1,0,0), 8 (1,0,1), 8 (1,1,0), 8 (1,1,1), 8 (1,2,0), 8 (1,2,1), 8 (1,3,0),

8 (1,3,1), 16 (2,0,0), 8 (2,0,1), 0 (2,1,0), 8 (2,1,1), 16 (2,2,0), 8 (2,2,1),

0 (2,3,0), 8 (2,3,1), 8 (3,0,0), 8 (3,0,1), 8 (3,1,0), 8 (3,1,1), 8 (3,2,0),

8 (3,2,1), 8 (3,3,0), 8 (3,3,1)

B4:

0 (0,0,1), 8 (0,1,0), 8 (0,1,1), 16 (0,2,0), 0 (0,2,1), 8 (0,3,0), 8 (0,3,1),

8 (1,0,0), 8 (1,0,1), 8 (1,1,0), 8 (1,1,1), 8 (1,2,0), 8 (1,2,1), 8 (1,3,0),

8 (1,3,1), 8 (2,0,0), 8 (2,0,1), 16 (2,1,0), 0 (2,1,1), 8 (2,2,0), 8 (2,2,1),

16 (2,3,0), 0 (2,3,1), 8 (3,0,0), 8 (3,0,1), 8 (3,1,0), 8 (3,1,1), 8 (3,2,0),

8 (3,2,1), 8 (3,3,0), 8 (3,3,1)

B5:

16 (0,0,1), 8 (0,1,0), 8 (0,1,1), 0 (0,2,0), 0 (0,2,1), 8 (0,3,0), 8 (0,3,1),

8 (1,0,0), 8 (1,0,1), 8 (1,1,0), 8 (1,1,1), 8 (1,2,0), 8 (1,2,1), 8 (1,3,0),

8 (1,3,1), 16 (2,0,0), 16 (2,0,1), 8 (2,1,0), 8 (2,1,1), 0 (2,2,0), 0 (2,2,1),

8 (2,3,0), 8 (2,3,1), 8 (3,0,0), 8 (3,0,1), 8 (3,1,0), 8 (3,1,1), 8 (3,2,0),

8 (3,2,1), 8 (3,3,0), 8 (3,3,1)

B6:

0 (0,0,1), 8 (0,1,0), 8 (0,1,1), 0 (0,2,0), 16 (0,2,1), 8 (0,3,0), 8 (0,3,1),

8 (1,0,0), 8 (1,0,1), 8 (1,1,0), 8 (1,1,1), 8 (1,2,0), 8 (1,2,1), 8 (1,3,0),

20

8 (1,3,1), 16 (2,0,0), 0 (2,0,1), 8 (2,1,0), 8 (2,1,1), 0 (2,2,0), 16 (2,2,1),

8 (2,3,0), 8 (2,3,1), 8 (3,0,0), 8 (3,0,1), 8 (3,1,0), 8 (3,1,1), 8 (3,2,0),

8 (3,2,1), 8 (3,3,0), 8 (3,3,1)

B7:

16 (0,0,1), 8 (0,1,0), 8 (0,1,1), 0 (0,2,0), 0 (0,2,1), 8 (0,3,0), 8 (0,3,1),

8 (1,0,0), 8 (1,0,1), 8 (1,1,0), 8 (1,1,1), 8 (1,2,0), 8 (1,2,1), 8 (1,3,0),

8 (1,3,1), 0 (2,0,0), 0 (2,0,1), 8 (2,1,0), 8 (2,1,1), 16 (2,2,0), 16 (2,2,1),

8 (2,3,0), 8 (2,3,1), 8 (3,0,0), 8 (3,0,1), 8 (3,1,0), 8 (3,1,1), 8 (3,2,0),

8 (3,2,1), 8 (3,3,0), 8 (3,3,1)

B8:

0 (0,0,1), 8 (0,1,0), 8 (0,1,1), 0 (0,2,0), 16 (0,2,1), 8 (0,3,0), 8 (0,3,1),

8 (1,0,0), 8 (1,0,1), 8 (1,1,0), 8 (1,1,1), 8 (1,2,0), 8 (1,2,1), 8 (1,3,0),

8 (1,3,1), 0 (2,0,0), 16 (2,0,1), 8 (2,1,0), 8 (2,1,1), 16 (2,2,0), 0 (2,2,1),

8 (2,3,0), 8 (2,3,1), 8 (3,0,0), 8 (3,0,1), 8 (3,1,0), 8 (3,1,1), 8 (3,2,0),

8 (3,2,1), 8 (3,3,0), 8 (3,3,1)

Note that any nonidentity element (a1, a2, a3) ∈ H appears 56 times in
⋃
i=1,...,8BiB

(−1)
i . For

example element (3, 3, 0) appears 8 times in each BiB
(−1)
i for i = 2, . . . , 8. Thus, in order to satisfy⋃8

i=1 giCiC
(−1)
i g−1i = 56H + m2e, coset representatives gi must maintain the property that each

element of H appears 56 times. For example, any method of attaching coset representatives to

blocks in a way that caused a permuation of the blocks would satisfy this. That is, the choice

of coset representatives gi such that giBiB
(−1)
i g−i 1 = Bj is a one-to-one and onto mapping from

B1, . . . , Bj to itself. Thus, the way we attach coset representatives to the blocks cannot be arbitrary.

However, we expect that some permutation of the coset representatives attached to our blocks will

satisfy the necessary property:
⋃8
i=1 giCiC

(−1)
i g−1i = 56H +m2e.

Thus, our hypothesis is as follows: Given a group G with a normal subgroup H ≈ Z2
4 × Z2, we

can construct a (256, 120, 56) difference set in G by simply attaching some permutation of the coset

representatives from the elements in G/H to the blocks composing our (16, 8, 8,−) covering EBS

in H. (This is analogous to the process of constructing a (128, 8, 1,−) covering EBS in G).

21

4 GAP

We used the GAP software (version 4.63) in order to automate the process for checking for differ-

ence sets. GAP, short for Groups, Algorithms, Programming, provides a system for computational

discrete algebra along with a programming language. The GAP library contains implementations

of many algebraic algorithms and also large data libraries of algebraic objects, including the 56092

groups of order 256.

Before delving into the code written to check for difference sets, we will first give an overview of

some of the GAP syntax and structures that will be used repetitively.

The following syntax is used to define a function:

MyFunction:=function(formalparameter1, formalparameter2, ..., formalparametern)

//function definition

end;

Here, a function with function name MyFunction is declared and expects n arguments at runtime.

Note that GAP does not require that the type of the formal parameter(s) be specified in a function

definition. However, the function can only be called with an argument whose type is supported by

the function definition. For example, the operations applied to formalparameter1 in the function

definition must be defined for the type of variable passed in as the first argument at runtime. Note

that a function can require zero formal parameters. The entirety of the function definition must be

contained within the signature (the first line) and the terminating end; command. Then to use the

function, simply make the command MyFunction (argument1, argument2, ..., argumentn);,

where argument1, argument2, ..., argumentn correspond to the formal parameters in the func-

tion definition.

Within each function, local variables (any variables to be used within the scope of the function)

must be the first line of the method definition: local var1, var2, ... , varn;

22

In GAP, the list data structure can be used to store a collection of objects in a particular order, much

like the array data structure in many other programming languages. Each element has a particular

index, called its position, where the first element has position 1. A list can be defined as follows:

ourlist:=[element1, element2,...,elementn];

A for loop can efficiently loop over a list and perform some operation on each element of the list

in order of increasing position. The following syntax accomplishes this:

for i in listName do someCode; od;

This line loops over the entire list listName and at each iteration temporarily assigns the variable

name i to the current element. The action to be performed to i at each iteration is specified

between do and od;. (someCode is used to show the location.)

An if statement can be used to perform some operation depending on the condition. The follow-

ing syntax is used to achieve this: if condition then someCode; If the condition is true, then

someCode executes. Otherwise, it is skipped.

Note that there are many functions built into the GAP library. In the method NormalSubgroupCheck

displayed below, the following built in functions are used: SmallGroup(), NormalSubgroups(),

StructureDescription() and Add(). The GAP documentation specifies the type and number of

arguments required and the return type of each function. For example, the SmallGroup() function

expects two integer arguments i and j and returns the group of size i and of index j from the GAP

libraries.

Now, we will take a closer look at the GAP code used to automate the construction method outlined

above.

We received a list of group indices from Dr. Dillon of the groups of order 256 in which the existence

of a difference set was unknown. (The index of a group is simply a reference to the particular group

in the GAP library.) This list contained 724 groups of order 256. Recall, our construction method

to determine a difference set in a group G requires that G contain a normal subgroup H ≈ Z2
4×Z2.

23

Thus, we first determined which of the 724 groups contained the necessary H. The following

function achieves this result:

NormalSubgroupCheck:=function(groups)

local normal, j, dsIndices, i, G;

dsIndices:=[];

for j in groups do

G:=SmallGroup(256, j);

normal:=NormalSubgroups(G);

for i in normal do

if StructureDescription(i)="C4 x C4 x C2" then

Add(dsIndices, j);

break;

fi;

od;

od;

return dsIndices;

end;

The function defined above is named NormalSubgroupCheck and expects a single argument at

runtime that will take on the variable name groups. We have written the function to accomodate

the groups parameter as a list of integers, in particular, the list of integers containing the indices

of the 724 groups in which the existence of a difference set is unknown.

The NormalSubgroupCheck function declares normal, j, dsIndices, i,and G as variables local

to the function. We set the variable dsIndices equal to an empty list that will eventually contain

the indices of the groups with the desired normal subgroup.

The for-loop iterates through groups (assumed to be a list of integers), and for each index, tem-

porarily stored in the variable j, we set the variable G equal to the the group of order 256 with

index j. We then assign the variable normal to the list of the normal subgroups of G. The inner

for-loop iterates through the the list normal, and each element of normal (the normal subgroups

of G) is temporarily stored in the variable i. If the subgroup stored in i has structure description

“C4 x C4 x C2” (i.e. is isomorphic to Z2
4 × Z2), we add j, the current index of the group stored

24

in G, to the list dsIndices. Upon completion of the function call, the variable dsIndices contains

the indices from the list passed in as a parameter that correspond to groups containing a normal

Z2
4 × Z2 subgroup. This list is returned by the function.

Thus, if the variable list stores the list of indices provided by Dr. Dillion, the function call

NormalSubgroupCheck(list) returns the list of the indices in list that correspond to the groups

containing a Z2
4 × Z2 normal subgroup. Of the 724 groups in which the existence of the difference

set was unknown, 649 contain a Z2
4 × Z2 normal subgroup .

Once we had determined the list of indices of groups that contained the necessary Z2
4×Z2 subgroup,

the following code automated the construction method outlined above. We will walk through the

code, and preface each block of code with a description of its functionality and purpose.

The code below defines the function GetDifferenceSet and declares the local parameters. These

are all of the parameters to be used throughout the function, and their purpose will be explained

when they are used. The variable success is set to an empty list, and this will be used to store

the indices corresponding to groups containing a difference set built by our construction method.

The function will ultimately return success. The list variable, here shown in abbreivated form,

is the list of indices returned by the NormalSubgroupCheck function. That is, it is a list of 649

indices corresponding to the groups out of the original 724 that contain the desired Z2
4×Z2 normal

subgroup.

GetDifferenceSet:=function()

local E, i, j, k, c1c2, c1c2c3, N, r1, r2, r3, r4, r5, r6, r7, r8, cosets,

D1, D2, D3, D4, D5, D6, D7, D8, X, Y, z, l, NS, groupElts, v, m, p, q,t, i

ndex, count, current, currentPerm, DSCheck, a, b, c, d,e, temp, dsfound,

cosetReps, list, w, G, attempts, success;

success:=[];

list:=[2, 3, 6, 7,..., 51711];

The remainder of the function, excluding the return statement, is included in the for loop which

begins in the code below. The loop iterates through each index in list, temporarily stored in w.

25

The four variables instantiated are variables that are reset each time we consider a new index w in

list. The variable currentPerm is a list used to store a permuation of the integers 1 through 8. The

functionality of the variable is that it enables us to systematically assign the 8 coset representatives

from the factor group G/H to our 8 blocks. Each integer will correspond to a particular coset

representative, and a permuation of these integers (in list form) will correspond to a particular

assignment of the coset representatives to our blocks. The dsfound is a boolean variable that

represents whether or not a difference set has been found for the current group. It is instantiated

to false and is set to true when a difference set is confirmed. The variable G is set to the group in

the GAP library of size 256 corresponding to index w. The variable NS is set equal to a list of the

normal subgroups of the group G.

for w in list do

currentPerm:=[1, 2, 3, 4, 5, 6, 7, 8];

dsfound:=false;

G:=SmallGroup(256, w);

NS:=NormalSubgroups(G);

The purpose of the code below is to find the normal subgroup of the group G that is isomorphic to

Z2
4×Z2. Since we are only considering the indices that were returned by the NormalSubgroupCheck()

function, we know that each index in list corresponds to a group with the desired normal sub-

group. The code iterates through each normal subgroup l of G stored in the list NS, and checks

whether it is isomorphic to Z2
4 × Z2. The first normal subgroup to satisfy this condition is stored in

the variable N and then we break out of the loop.

for l in NS do

if StructureDescription(l)="C4 x C4 x C2" then

N:=l;

break;

fi;

od;

Next, we find the generators of the normal subgroup N. We set the variable E equal to a list of the

elements of G in N. If we define N ≈< X,Y, z|X,Y ∈ Z4, z ∈ Z2 >, the three for loops below find

26

X,Y and z and we call them X, Y and z. Because GAP does not store group generators in the

way that we would expect algebraically, we have to look through E and find the elements with the

desired properties. Thus, we look for two elements of order 4 and one element of order 2 that

generate a subgroup isomorphic to Z2
4 × Z2.

The first for loop iterates through each element i of E and sets the variable X equal to the first

element of order 4. Now in the second for loop we again iterate through the elements j of E. If j

is an element of order 4, we set c1c2 equal to the subgroup generated by X and j. If the number

of elements in c1c2 is 16, then we know that c1c2 ≈ Z2
4, we set our second generator Y equal to j

and break out of the loop. In the third for loop we iterate through the elements k of E. If k is an

element of order 2, we set c1c2c3 equal to the subgroup generated by X, Y and k. If the number

of elements in c1c2c3 is 32, then we know that c1c2c3 ≈ Z2
4 × Z2, and we set our third generator

z equal to k and break out of the loop. At this point, the variables X, Y and z are equal to the

generators of N.

E:=Elements(N);

for i in E do

if Order(i)=4 then

X:=i;

break;

fi;

od;

for j in E do

if Order(j)= 4 then

c1c2:=Subgroup(N, [X,j]);

if Size(Elements(c1c2))=16 then

Y:=j;

break;

fi;

fi;

od;

for k in E do

if Order(k) = 2 then

27

c1c2c3:=Subgroup(N, [X,Y,k]);

if Size(Elements(c1c2c3)) = 32 then

z:= k;

break;

fi;

fi;

od;

Now, we want to find coset representatives for the elements in the factor group G/H. To do

this, we assign the variable cosets equal to the two dimensional list returned by the function call

CosetDecomposition(G,N). The function returns a list of the cosets of N in G, where each coset

is represented as a list of elements of G in that coset. The syntax cosets[i][j] refers to the jth

element in the ith coset of N. Now we arbitrarily choose the first element from each of the 8 cosets

as our coset representatatives and assign them to the variables r1 through r8. We store the coset

representatives in a list called cosetReps.

cosets:=CosetDecomposition(G,N);

r1:=cosets[1][1];

r2:=cosets[2][1];

r3:=cosets[3][1];

r4:=cosets[4][1];

r5:=cosets[5][1];

r6:=cosets[6][1];

r7:=cosets[7][1];

r8:=cosets[8][1];

cosetReps:=[r1,r2,r3,r4,r5,r6,r7,r8];

We are now prepared to construct our blocks in GAP. In terms of our generators X,Y, and z,

represented by X, Y and z, our blocks are as follows:

• d1 =< X2, Y >
⋃
X < X2z, Y >

• d2 =< X2, Y z >
⋃
X < X2z, Y z >

• d3 =< X,Y 2z >
⋃
Y < XY 2, Y 2z >

28

• d4 =< XY, Y 2z >
⋃
Y < XY 3, Y 2z >

• d5 =< X, z >
⋃
Y < XY 2, z >

• d6 =< X2, Y 2, z >

• d7 =< Y, z >
⋃
X < X2Y, z >

• d8 =< XY, z >
⋃
X < X3Y, z >

Note that these blocks are a slight variation on the blocks constructed earlier in this paper.

The code below constructs these blocks stored as lists of elements named d1 through d8. We will

walk through the construction of d1 using our generators and GAP methods, and from this the con-

struction of the remaining blocks should be clear. First, we declare d1 to be an empty list. Now let’s

look at the following nested function calls: Append(D1, Elements(Subgroup(G, [X^2, Y]))); .

The function call Subgroup(G, [X^2, Y]) returns the subgroup of G generated by X^2 and Y .

Elements(Subgroup(G, [X^2, Y]) returns a list of elements of this subgroup, and finally

Append(D1, Elements(Subgroup(G, [X^2, Y]))); adds each of the elements in this list to d1.

There is one slight difference that requires explanation with the following function call:

Append(D1, Elements(RightCoset(Subgroup(G, [X^2*z, Y]),X)));

Subgroup(G, [X^2*z, Y]) returns the subgroup of G generated by X^2*z and Y.

Now RightCoset(Subgroup(G, [X^2*z, Y]),X)) returns the right coset of the subgroup using

X as the coset representative.

d1:=[];

Append(d1, Elements(Subgroup(G, [X^2, Y])));

Append(d1, Elements(RightCoset(Subgroup(G, [X^2*z, Y]),X)));

d2:= [];

29

Append(d2, Elements(Subgroup(G, [X^2, Y*z])));

Append(d2, Elements(RightCoset(Subgroup(G, [X^2*z, Y*z]),X)));

d3:=[];

Append(d3, Elements(Subgroup(G, [X, Y^2*z])));

Append(d3, Elements(RightCoset(Subgroup(G, [X*Y^2, Y^2*z]),Y)));

d4:=[];

Append(d4, Elements(Subgroup(G, [X*Y, Y^2*z])));

Append(d4, Elements(RightCoset(Subgroup(G, [X*Y^3, Y^2*z]),Y)));

d5:= [];

Append(d5, Elements(Subgroup(G, [X, z])));

Append(d5, Elements(RightCoset(Subgroup(G, [X*Y^2, z]),Y)));

d6:=[];

Append(d6, Elements(Subgroup(G, [X^2, Y^2,z])));

d7:=[];

Append(d7, Elements(Subgroup(G, [Y, z])));

Append(d7, Elements(RightCoset(Subgroup(G, [X^2*Y, z]),X)));

d8:=[];

Append(d8, Elements(Subgroup(G, [X*Y,z])));

Append(d8, Elements(RightCoset(Subgroup(G, [X^3*Y, z]),X)));

Now that we have our blocks constructed, we are ready to assign coset representatives. Recall that

cosetReps is a list containing the 8 coset representatives obtained by forming the factor group

G/H and that currentPerm is a list that is a permutation of the integers 1 through 8. There are

8! = 40320 possible permutations. To know when have exhausted them all, we use the variable

attempts to keep track of how many of the permutations we have tried thus far. We begin by

initializing attempts to 0. We now begin a while loop that continues iterating while the boolean

variable dsfound is false. We then attach the coset representatives determined by the current

permutation to each of our 8 blocks. To see how this is done, we will look at the first line of

code D1:= cosetReps[currentPerm[1]]*d1; This simply takes the coset representative at posi-

tion currentPerm[1] (the integer in the first position in the currentPerm list) and attaches it to

30

block d1. The constructions of D2 through D8 (the blocks d2 through d8 with coset representa-

tives attached) are done in the same way. Blocks D2 through D8 are then appended to the list D1.

By the end of the code below, the variable D1 contains all of the elements in the blocks with the

permutation of coset representatives determined by the variable currentPerm.

attempts:=0;

while dsfound=false do

D1:= cosetReps[currentPerm[1]]*D1;

D2:= cosetReps[currentPerm[2]]*D2;

D3:= cosetReps[currentPerm[3]]*D3;

D4:=cosetReps[currentPerm[4]]*D4;

D5:=cosetReps[currentPerm[5]]*D5;

D6:=cosetReps[currentPerm[6]]*D6;

D7:=cosetReps[currentPerm[7]]*D7;

D8:=cosetReps[currentPerm[8]]*D8;

Append(D1, D2);

Append(D1, D3);

Append(D1, D4);

Append(D1, D5);

Append(D1, D6);

Append(D1, D7);

Append(D1, D8);

Now, D1 contains a tentative difference set constructed by our construction method. It is possible

that G is not abelian and consequently D1 is not necessarily a difference set. The purpose of the code

below is to check whether or not the elements of D1 form a (256, 120, 56) difference set in G. First,

we set the variable groupElts equal to a list of elements of G. We initialize the variable count to a

list of size 256 with the value of 0 at each position. The list is shown in abbreviated form. This list

will be used to keep track of the number of times that each element in G appears in the set DD(−1),

where here we are using the variable D1 to represent D. The two nested for loops iterate through

the elements p of D1 and q of D1 and stores the value p^q(-1) in the variable current. We then

determine the element of G to which p^q(-1) corresponds: we set the variable index equal to the

position of the element in the list groupElts that current matches. We increment the count of

that particular element by incrementing the integer at the corresponding position in the list count.

Thus, at the end of the block of code below, the integer at position i in the list count corresponds

31

to the number of times that the ith element of G appears in the set DD(−1).

groupElts:=Elements(G);

count:=[0,...0];

for p in D1 do

for q in D1 do

current:= p*q^(-1);

index:= Position(groupElts, current);

count[index]:=count[index]+1;

od;

od;

IfDD(−1) is a difference set, each element of G will show up inDD(−1) precisely 56 times, excluding

the identity element (in position 1 of the list G) which will appear |D| = 120 times. Thus, we will

consider D1 a difference if the value 56 is stored at each position 2 through 256 of the list count

after the code above is completed. The boolean variable DSCheck will be used to determine if

the set D1 corresponds to a difference set and is initialized to true. The for loop below assigns

the variable t to the integers 2 through 256 and if the value at position t of count is not 56 the

boolean variable DSCheck is set to false, and we break out of the loop. This implies that using the

permutation of cosetReps corresponding to currentPerm to attach coset representatives to our

blocks does not result in a difference set. If after the for loop the value of DSCheck remains true,

each nonidentity element of G showed up in DD(−1) precisely 56 times. Thus, we have a difference

set. The purpose of the if statement is to set the boolean variable dsfound to true and add w, the

index of the current group G to the list success when a difference set is found.

DSCheck:=true;

for t in [2..256] do

if count[t]<>56 then

DSCheck:=false;

break;

fi;

od;

if DSCheck=true then

dsfound:=true;

32

Add(success, w);

fi;

If we exhaust all 8! permutations of our 8 coset representatives, then the current group G does

not have a difference set using our construction method. If this is the case, we set the boolean

variables DSCheck and dsfound both equal to true. The assignment DSCheck = true prevents the

next permutation from being generated in the next block of code, while the assignment dsfound

= true allows us to break out of the outer for loop that checks each possible assignment of coset

representatives to the blocks of the current group. In this case, the index of G is not added to the

list success.

if attempts>40318 then

DSCheck:=true;

dsfound:=true;

fi;

Now, as long as we have not exhausted all permutations of our coset representatives, we want to

check if using the next permuation generated to assign coset representatives to our blocks results

in a difference set. If the current permutation did not result in a difference set, the value of the

variable DSCheck is false, and the body of the if statement below is executed. We first increment

the variable attempts. The remainder of the body generates the subsequent permutation. We will

not walk through the algorithm used to generate the next permutation since it is not relevent to our

problem. However, permutations of the integers in currentPerm will be generated systematically

from [1, 2, 3, 4, 5, 6, 7, 8] to [8, 7, 6, 5, 4, 3, 2, 1]. A smaller example illustrates

the algorithm at work. The permutations of the elements in the list [1, 2, 3] are generated in the

following order: [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1].

if DSCheck=false then

attempts:=attempts+1;

a:= 9;

b:= a-2;

while currentPerm[b]>currentPerm[b+1] do

33

b:=b-1;

od;

c:= a-1;

while currentPerm[b]>currentPerm[c] do

c:=c-1;

od;

temp:= currentPerm[b];

currentPerm[b]:=currentPerm[c];

currentPerm[c]:=temp;

d:= a-1;

e:= b+1;

while d>e do

temp:= currentPerm[d];

currentPerm[d]:=currentPerm[e];

currentPerm[e]:=temp;

d:=d-1;

e:=e+1;

od;

fi;

od;

od;

At this point, the variable success contains the indices of the groups with difference sets produced

by our construction method. The list is returned by the function.

return success;

end;

5 Results

Of the 649 groups that contained the normal Z2
4×Z2 normal subgroup, our GAP program generated

difference sets in 643. (The indices corresponding to these groups are given in 6 Addendum.) Thus,

we were able to produce difference sets in approximately 90% of the groups of order 256 where

34

the existence of a difference set was unknown.

We will look explicitly at the 6 groups of order 256 containing a Z2
4×Z2 normal subgroup for which

our construction method did not produce difference sets. The indices of these groups are: 98, 99,

114, 115, 6453, 6528. Recall that for a non-Abelian group of order 256 with a the necessary

normal subgroup, we had to assign coset representatives to the blocks D1 through D8 so that⋃8
i=1 giBiB

(−1)
i g−1i = 32H +m2e. Thus, our results show that for the 6 groups whose indices are

given above, we were not able to choose coset representatives that satisfy this property.

We speculated that we may be able to determine why we were unable to produce difference sets

the 6 groups by looking more closely at their subgroup structure. Recall that all of the 649 groups

whose indices were returned by the NormalSubgroupCheck() function have a normal Z2
4 ×Z2 sub-

group. GAP stores elements in terms of the GAP generators of the group. However, GAP generators

are not necessarily the same as the generators we would intuitively expect. Each group of order

256 has 8 generators, regardless of the group structure. For example, even the cyclic group of order

256, Z256, has 8 generators and not just the single generator typically seen in group theory. The

generators of each group of order 256 are denoted f1 through f8. For the 6 groups of interest,

we printed the elements (in terms of the GAP generators) of the normal subgroup that was used

by our program to build our 8 blocks. From now on we will say that two groups have identical

normal subgroups if the elements of the subgroups are the same in terms of the GAP generators for

that group. The groups corresponding to indices 98, 99, 114, and 115 had the following identical

normal subgroups:

[<identity> of ..., f5, f6, f7, f8, f3*f4, f5*f6, f5*f7, f5*f8, f6*f7, f6*f8,

f7*f8, f3*f4*f5, f3*f4*f6, f3*f4*f7, f3*f4*f8, f5*f6*f7, f5*f6*f8, f5*f7*f8,

f6*f7*f8, f3*f4*f5*f6, f3*f4*f5*f7, f3*f4*f5*f8, f3*f4*f6*f7, f3*f4*f6*f8,

f3*f4*f7*f8, f5*f6*f7*f8, f3*f4*f5*f6*f7, f3*f4*f5*f6*f8, f3*f4*f5*f7*f8,

f3*f4*f6*f7*f8, f3*f4*f5*f6*f7*f8]

We will call this particular normal subgroup N1. The groups corresponding to indices 6453 and

6528 had the following identical normal subgroup:

35

[<identity> of ..., f4, f5, f7, f8, f1*f6, f4*f5, f4*f7, f4*f8, f5*f7, f5*f8,

f7*f8, f1*f4*f6, f1*f5*f6, f1*f6*f7, f1*f6*f8, f4*f5*f7, f4*f5*f8, f4*f7*f8,

f5*f7*f8, f1*f4*f5*f6, f1*f4*f6*f7, f1*f4*f6*f8, f1*f5*f6*f7, f1*f5*f6*f8,

f1*f6*f7*f8, f4*f5*f7*f8, f1*f4*f5*f6*f7, f1*f4*f5*f6*f8, f1*f4*f6*f7*f8,

f1*f5*f6*f7*f8, f1*f4*f5*f6*f7*f8]

We will call this particular normal subgroup N2.

We looked at the structure in terms of GAP generators of the 643 groups in which our construction

method successfully found difference sets. Difference sets were successfully built out of the N1

normal subgroup for two of the groups (corresponding to indices 108 and 109). The normal

subgroup N2 was not used to build difference sets in any of the groups.

Since N2 was not used for any successful difference set construction, there may be something

intrinscially different about the normal subgroup in the way that it interacts with other group

elements so that the property
⋃8
i=1 giBiB

(−1)
i g−1i = 32H+m2e cannot be satisfied. Out of all of the

distinct (containing different elements in terms of GAP group generators) normal subgroups used

to successfully build difference sets for the 643 groups, N1 showed up the fewest number of times.

Thus, it may be the case that our desired property is difficult to satisfy based on the structure of N1.

Since we are not sure how the GAP generators are determined, it is difficult to form any further

hypotheses based on these observations.

These observations give rise to possible extensions of this work. Our hypothesis that some permu-

tation of coset representatives attached to our blocks from the (16, 8, 8,−) covering EBS did not

give any indication of how to choose the correct permutation. This gave rise to the brute force

approach implemented in GAP of exhaustively attaching each permuation of coset representatives

to our blocks until a difference set was found. Since our construction method did not produce

difference sets for all 649 groups, it is clear that our construction method of a difference set in a

group G of order 256 requires a stronger condition than that G contains a Z2
4 × Z2 normal sub-

group. We may be able to determine what this condition is by closely examining the 6 groups for

which our construction method did not produce difference sets. Our final observation that these 6

groups contained “different” normal subgroups in terms of GAP generators may be a feasible initial

36

approach to this problem.

6 Addendum

The following is a list of the indices of the 643 groups for which our construction method produced

a difference set:

2, 3, 6, 7, 10, 11, 15, 18, 19, 28, 29, 30, 31, 36, 37, 38, 44, 48, 50, 51, 53, 54,

68, 69, 70, 71, 76, 77, 79, 90, 93, 94, 95, 96, 97, 100, 103, 104, 105, 106, 107, 108,

109, 112, 113, 118, 123, 135, 152, 154, 185, 186, 194, 199, 200, 207, 208, 211, 212,

226, 232, 233, 234, 236, 272, 274, 277, 279, 281, 283, 285, 286, 288, 291, 311, 340,

341, 342, 343, 344, 345, 346, 347, 350, 354, 355, 356, 357, 358, 359, 360, 361, 362,

364, 392, 393, 401, 403, 404, 405, 417, 424, 425, 428, 429, 556, 573, 590, 607, 624,

638, 645, 648, 651, 654, 660, 665, 668, 671, 674, 680, 685, 688, 691, 694, 700, 705,

708, 711, 714, 720, 727, 728, 732, 780, 781, 786, 787, 791, 796, 803, 815, 816, 820,

1119, 1120, 1121, 1122, 1123, 1124, 1754, 1755, 1756, 1757, 1762, 1763, 1772, 1773,

1774, 1775, 1776, 1777, 1786, 1787, 1788, 1789, 1790, 2521, 2522, 2523, 2524, 2525,

2526, 2527, 2528, 2854, 2855, 2859, 2860, 2863, 2864, 2879, 2880, 2881, 2882, 2885,

2887, 2888, 2889, 2890, 2892, 2894, 2895, 3339, 3342, 3348, 3564, 3565, 3566, 3567,

3568, 3569, 3570, 3573, 3574, 3603, 3604, 3607, 3609, 3610, 3613, 3637, 3638, 3639,

3640, 3641, 3642, 3643, 3644, 3645, 3646, 3659, 3660, 3661, 3665, 3666, 3671, 3675,

3676, 3677, 4402, 4555, 4559, 4728, 4769, 4823, 4870, 5008, 5009, 5013, 5017, 5019,

5022, 5024, 5879, 5880, 5882, 5883, 5884, 5885, 6097, 6100, 6101, 6118, 6291, 6468,

6470, 6493, 6514, 6525, 6526, 6527, 6529, 6530, 6531, 6627, 6628, 14660, 14661, 14662,

14663, 14664, 14665, 14666, 14667, 15287, 15288, 15289, 15290, 15291, 15292, 15293,

15294, 15361, 15362, 15363, 15364, 15365, 15366, 15367, 15368, 15369, 15370, 15371,

15372, 16241, 16242, 16243, 16244, 16245, 16246, 16247, 16248, 16249, 16250, 16251,

16252, 16253, 16254, 16255, 16256, 16357, 16358, 16359, 16360, 16361, 16362, 16824,

16828, 16831, 19445, 19447, 19502, 19503, 19504, 19505, 19510, 19511, 19512, 19513,

19852, 19853, 19854, 19855, 19856, 19857, 19858, 19859, 19868, 19869, 19870, 19871,

19872, 19873, 19874, 19875, 20123, 20124, 20127, 20128, 20138, 20141, 20142, 20145,

20978, 20979, 20980, 20981, 20982, 20983, 20984, 20985, 20986, 20987, 20988, 20989,

20990, 20991, 20992, 20993, 20994, 20995, 20996, 20997, 21001, 21002, 21005, 21009,

21010, 21017, 21019, 21020, 21022, 21025, 21026, 21029, 21031, 21032, 21034, 21037,

21039, 21040, 21043, 21044, 21046, 21049, 21778, 21780, 21786, 21788, 21793, 21795,

21815, 21816, 21817, 21818, 21819, 21820, 21821, 21822, 21823, 21824, 21825, 21826,

21827, 21828, 22168, 22171, 22172, 22173, 22174, 22176, 22198, 22202, 22209, 22215,

22218, 22219, 22267, 22273, 22279, 22282, 22283, 22302, 22304, 22306, 22309, 22312,

22314, 22315, 22348, 22504, 22511, 22517, 22518, 23059, 23085, 23086, 23087, 23091,

23092, 23141, 23142, 23149, 23151, 23206, 23212, 23219, 23223, 23295, 23296, 23299,

23300, 23337, 23364, 23367, 23369, 23371, 23372, 23374, 23377, 23378, 23380, 23383,

37

25127, 25129, 25131, 25133, 25143, 25145, 25147, 25149, 25225, 25229, 25241, 25245,

25298, 25299, 25300, 25301, 25302, 25303, 25304, 25305, 25306, 25307, 25308, 25309,

25310, 25311, 25312, 25313, 25314, 25315, 25316, 25317, 25318, 25319, 25320, 25321,

25322, 25323, 25324, 25325, 25326, 25327, 25328, 25329, 25362, 25363, 25366, 25367,

25372, 25373, 25376, 25377, 25378, 25379, 25382, 25383, 25388, 25389, 25392, 25393,

25460, 25461, 25462, 25463, 25472, 25473, 25474, 25475, 25476, 25477, 25478, 25479,

25488, 25489, 25490, 25491, 25492, 25493, 25494, 25495, 25496, 25497, 25498, 25499,

25500, 25501, 25502, 25503, 25504, 25505, 25506, 25507, 25508, 25509, 25510, 25511,

25512, 25517, 25521, 25524, 25525, 25529, 25784, 25802, 25815, 25819, 25824, 25829,

25836, 25837, 25838, 25839, 25840, 25841, 25842, 25843, 25844, 25845, 25846, 25847,

25852, 25855, 26244, 26245, 26246, 26247, 26248, 26249, 26250, 26251, 26252, 26254,

26257, 26260, 26263, 26272, 26279, 26283, 26287, 29689, 30601, 34774, 35277, 36732,

37660, 37725, 38211, 39141, 39145, 39148, 39163, 39169, 39179, 39230, 39912, 40328,

43419, 44299, 45293, 45984, 46024, 46109, 46119, 46144, 46145, 46722, 51465, 51483,

51711

The following 6 indices correspond to groups with a normal subgroup isomorphic to Z4 × Z4 × Z2

for which our construction method was unable to produce a difference set:

98, 99, 114, 115, 6453, 6528

The following 81 indices correspond to the remaining open cases (including the 6 groups with the

normal subgroup isomorphic to Z4 × Z4 × Z2 for which we were unable to produce a difference

set). The structure description given by GAP of the corresponding group is also provided.

98: ((C8 x C2) : C8) : C2

99: (C2 x Q16) : C8

114: (C8 : C4) : C8

115: (C8 : C4) : C8

321: C32 : C8

323: ((C32 x C2) : C2) : C2

351: (C8 x C2) . ((C4 x C2) : C2) = (C4 x C2) . (C16 x C2)

353: C8 . (((C4 x C2) : C2) : C2) = (C2 x C2 x C2) . (C16 x C2)

367: (C32 x C4) : C2

368: (C32 : C4) : C2

369: (C32 x C4) : C2

370: (C16 . D8 = C4 . (C16 x C2)) : C2

372: Q32 : C8

373: (C16 : C8) : C2

374: Q32 : C8

375: (C32 x C4) : C2

376: (C32 : C4) : C2

38

379: C2 . ((C16 : C4) : C2) = C16 . (C8 x C2)

380: Q8 : C32

381: (C8 x C2) . ((C4 x C2) : C2) = (C4 x C2) . (C16 x C2)

408: ((C32 x C2) : C2) : C2

409: (C2 x C2) . ((C16 x C2) : C2) = (C16 x C2) . (C4 x C2)

433: (C2 x C2) . ((C16 x C2) : C2) = (C16 x C2) . (C4 x C2)

434: (C4 : C32) : C2

435: (C8 . D16 = C8 . (C8 x C2)) : C2

436: (C16 . D8 = C4 . (C16 x C2)) : C2

437: C2 . ((C4 : C16) : C2) = (C16 x C2) . (C4 x C2)

439: (C2 x C2) . ((C16 x C2) : C2) = (C16 x C2) . (C4 x C2)

440: (C2 x C2) . ((C16 x C2) : C2) = (C16 x C2) . (C4 x C2)

442 : C2 . ((C2 x C2) . ((C8 x C2) : C2) = (C8 x C2) . (C4 x C2)) = (C16 x C2)

. (C4 x C2)

445: C32 : C8

449: C32 : C8

450: C8 . D32 = C16 . (C8 x C2)

451: C32 : C8

452: C4 . (C16 : C4) = C16 . (C8 x C2)

501: (C64 : C2) : C2

509: (C2 . ((((C4 x C2) : C2) : C2) : C2) = (C4 x C4) . (C4 x C2)) : C2

514: C2 . (((C8 : C4) : C2) : C2) = ((C2 x C2) . (C2 x C2 x C2)) . (C4 x C2)

522: C2 . ((C8 x C4) : C4) = (C8 x C4) . (C4 x C2)

532: C32 . D8 = C4 . (C32 x C2)

536: C64 : C4

5331: ((C16 x C4) : C2) : C2

5421: ((C4 : C16) : C2) : C2

5422: ((C2 x C2) . ((C8 x C2) : C2) = (C8 x C2) . (C4 x C2)) : C2

5423: ((C2 x C2) . ((C8 x C2) : C2) = (C8 x C2) . (C4 x C2)) : C2

5427: (C16 x Q8) : C2

5430: ((C4 : C16) : C2) : C2

6453 : (C2 x C2) . ((((C4 x C2) : C2) : C2) : C2) = (C2 x C2 x Q8) . (C2 x C2

x C2)

6528: C4 . ((C8 x C4) : C2) = (C8 x C2 x C2) . (C2 x C2 x C2)

6532: C4 . ((C8 : C4) : C2) = (C8 x C2 x C2) . (C2 x C2 x C2)

6533 : C2 . ((C2 x C2 x C2) . (C2 x D8) = (C4 x C2 x C2) . (C2 x C2 x C2)) = (C8

x C2 x C2) . (C2 x C2 x C2)

6620: C2 x (C32 : C4)

6629: (C32 x C4) : C2

6631: (C16 . D8 = C4 . (C16 x C2)) : C2

6639: C4 x Q64

6641: Q64 : C4

6642: (C4 x D32) : C2

6647: C32 x Q8

6648: C32 : Q8

39

6674: (C2 x QD64) : C2

6676: C4 : Q64

6678: (C2 x Q64) : C2

6693: (C32 : C4) : C2

6696: (C2 x C2) . (C2 x D32) = (C16 x C2) . (C2 x C2 x C2)

6700: (C2 x (C16 : C4)) : C2

6701: ((C32 x C2) : C2) : C2

6704: (C32 : C4) : C2

6709: (C32 x C4) : C2

6711: (C32 : C4) : C2

6712: (C2 x C2) . (C2 x D32) = (C16 x C2) . (C2 x C2 x C2)

6714: C4 : Q64

6715: (C32 x C4) : C2

6716: (C32 x C4) : C2

6717: (C2 x QD64) : C2

6718: (C2 x Q64) : C2

6720: (C2 x C2) . (C2 x D32) = (C16 x C2) . (C2 x C2 x C2)

6721: C32 : Q8

6724: C2 x (C64 : C2)

23224: (C2 . ((C2 x (C4 : C4)) : C2) = (C4 x C2 x C2) . (C2 x C2 x C2)) : C2

23225: (((C8 x C2) : C4) : C2) : C2

40

References

[1] J.A. Davis, J. Jedwab, A unifying construction for difference sets, J. Combin. Theory Ser. A 13

(1997), 80-1.

[2] J.F. Dillion, Variations on a scheme of McFarland for noncylic difference sets, J. Combin.

Theory Ser. A 40 (1985), 9-21.

[3] J.F. Dillon, Personal correspondence.

[4] R. L. McFarland, A family of difference sets in non-cyclic groups, J. Combin. Theory Ser. A 15

(1973), 1-10.

41

	Difference sets in non-abelian groups of order 256
	Recommended Citation

	tmp.1377088571.pdf.cnA4i

