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ABSTRACT

We present a determination of the distributions of the photon spectral index and gamma-ray flux—the so-called
log N–log S relation—for the 352 blazars detected with a greater than approximately 7σ detection threshold and
located above ±20◦ Galactic latitude by the Large Area Telescope of the Fermi Gamma-ray Space Telescope in its
first year catalog. Because the flux detection threshold depends on the photon index, the observed raw distributions
do not provide the true log N–log S counts or the true distribution of the photon index. We use the non-parametric
methods developed by Efron and Petrosian to reconstruct the intrinsic distributions from the observed ones which
account for the data truncations introduced by observational bias and includes the effects of the possible correlation
between the two variables. We demonstrate the robustness of our procedures using a simulated data set of blazars
and then apply these to the real data and find that for the population as a whole the intrinsic flux distribution can be
represented by a broken power law with high and low indices of −2.37 ± 0.13 and −1.70 ± 0.26, respectively, and
the intrinsic photon index distribution can be represented by a Gaussian with mean of 2.41 ± 0.13 and width of 0.25 ±
0.03. We also find the intrinsic distributions for the sub-populations of BL Lac and flat spectrum radio quasar type
blazars separately. We then calculate the contribution of Fermi blazars to the diffuse extragalactic gamma-ray
background radiation. Under the assumption that the flux distribution of blazars continues to arbitrarily low fluxes,
we calculate the best-fit contribution of all blazars to the total extragalactic gamma-ray output to be 60%, with a
large uncertainty.
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Online-only material: color figure

1. INTRODUCTION

A vast majority of the extragalactic objects observed by the
Large Area Telescope (LAT) on the Fermi Gamma-ray Space
Telescope can be classified as blazars (e.g., Abdo et al. 2010a), a
unique subclass of active galactic nuclei (AGNs) for which the
jet is aligned with the observer’s line of sight (e.g., Blandford
& Konigl 1979). Analyses of the gamma-ray spectra of blazars
along with other signatures of AGNs indicate that the gamma-
ray emission is an essential observational tool for understanding
the physics of the central engines of AGNs. In addition, as in all
AGNs, the distribution of the spectral and other characteristics
of blazars, and the correlations among these characteristics and
their cosmological evolutions, are essential information for the
studies of the formation and growth of central black holes of
galaxies (e.g., Dermer 2007).

This information comes from the investigation of the pop-
ulation as a whole. The process for any extragalactic source
starts with the determination of the log N–log S relation which
can be carried out simply by counting sources even before any
redshifts are measured and distances are used to determine in-
trinsic characteristics such as luminosities and source densities
(and their evolution). Although redshifts are measured for many
blazars the extant sample is not yet sufficiently large to allow
an accurate determination of the intrinsic characteristics. Our
ultimate goal is to carry out such an analysis but the focus of
this paper is the determination of the flux and photon spectral
index distributions.

1 Also at Departments of Physics and Applied Physics.
2 National Research Council Associate.

The detection threshold flux of blazars by the Fermi-LAT
depends strongly on an object’s gamma-ray spectrum, such that
harder spectra are detected at lower fluxes (measured for a given
photon energy, here for photons >100 MeV). This means that
for the determination of the flux distribution, we need both a
measure of flux and the photon index Γ, and that one deals with
a bi-variate distribution of fluxes and indices, which is truncated
because of the above mentioned observational bias. Thus, a bias-
free determination of the distributions is more complicated than
just counting sources.

There have been analyses of these data (e.g., Abdo et al.
2010b) using Monte Carlo simulations to account for the de-
tection biases. In this paper, we use non-parametric methods to
determine the distributions directly from the data at hand. As
stressed by Petrosian (1992), when dealing with a bi- (or more
generally multi-) variate distribution, the first required step is
the determination of the correlation (or statistical dependence)
between the variables, which cannot be done by simple pro-
cedures when the data are truncated. We use the techniques
developed by Efron and Petrosian (EP, Efron & Petrosian 1992,
1999) which can account reliably for the complex observational
selection biases to determine first the intrinsic correlations (if
any) between the variables and then the mono-variate distribu-
tion of each variable. These techniques have been proven useful
for application to many sources with varied characteristics and
most recently to radio and optical luminosity in quasars in Singal
et al. (2011), where a more thorough discussion and references
to earlier works are presented.

In this paper, we apply these methods to determine the
correlation and the intrinsic distributions of flux and photon
index of Fermi-LAT blazars. In Section 2, we discuss the data
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Figure 1. Flux and photon spectral indices for the 352 Fermi-LAT blazars used
in this analysis, those with test statistic �50 and |b| � 20◦. BL Lac type blazars
(n = 163) are shown as blue triangles, FSRQ type blazars (n = 161) are shown
as red plus signs, and blazars of unidentified or ambiguous type (n = 28) are
represented by black x’s. It is seen that there is a selection bias against soft
spectrum sources at fluxes below ∼10−7 photons cm−2 s−1. We also show for a
selection of sources (but only a few for clarity) the approximate limiting flux for
that source—that is, the lowest flux it could have and still be sufficiently bright
to be included in the sample given its location on the sky given the reported
detection significance. The location of the line used for the truncation boundary
(see Section 3.1) is shown in Figure 8.

(A color version of this figure is available in the online journal.)

used from the LAT extragalactic catalog, and in Section 3 we
explain the techniques used and present the results. In Section 4,
we describe how the result from such studies is important
for understanding the origin of the extragalactic gamma-ray
background (EGB) radiation. A brief discussion and summary is
presented in Section 5. A test of the procedures using simulated
data is discussed in the Appendix.

2. DATA

In this analysis, we use the sources reported in the Fermi-LAT
first year extragalactic source catalog (e.g., Abdo et al. 2010c).
In particular, we rely on the subset of sources that have a
detection test statistic TS � 50 and which lie at Galactic
latitude |b| � 20◦. This is the same criterion adopted by the
LAT team for analysis of the blazar population (Abdo et al.
2010b, hereafter MA) and includes those sources that are fully
calibrated and removes spurious sources. The test statistic is
defined as TS = −2 × (ln(L0) − ln(L1)), where L0 and L1
are the likelihoods of the background (null hypothesis) and
the hypothesis being tested (e.g., source plus background). The
significance of a detection is approximately n × σ = √

TS.
Of 425 total such sources, 352 are identified as blazars. The
rest are either identified as radio galaxies (2), other AGNs or
starbursts (6), high latitude pulsars (9), and objects without radio
associations (56). Among the blazars 161 are identified as flat
spectrum radio quasar (FSRQ) type, 163 are identified as BL
Lacertae (BL Lac) type, and 28 have uncertain type. The fluxes
and photon indices of the blazars are plotted in Figure 1.

The 352 blazars used in this analysis range in gamma-ray flux
(integrated over the photon energy range 100 MeV to 100 GeV
from a power-law fit to the Fermi-LAT data and designated here
as F100) from 9.36 × 10−9 to 1.37 × 10−6 photons cm−2 s−1.
The photon index Γ, obtained by fitting a simple power law to
the spectra in the above energy interval, ranges from 1.253

to 3.039. The photon index Γ is defined such that for the
monochromatic photon spectral density n (E)dE ∝ E−Γ (or
νFν ∝ ν−Γ+2). The bias mentioned above is clearly evident;
there is a strong selection against soft spectrum sources at
fluxes below F100 ∼ 10−7 photons cm−2 s−1 caused by the
dependence of the Fermi-LAT point-spread function (PSF) with
energy (Atwood et al. 2009).

Each source has a TS associated as discussed above, and the
background flux is a function of position on the sky, as discussed
in Abdo et al. (2010c). In Figure 1, we also show the approximate
limiting flux of some (not all to avoid confusion) objects, an
estimate of the lowest flux it should have (at its location in the
sky and having the specific value of its index) to be included
in the sample, given by Flim = F100/

√
TS/50. However, as

discussed below, because the limiting flux as determined in this
way is not the optimal estimate, we use a more conservative
truncation as shown by the straight line in Figure 8.

3. DETERMINATIONS OF DISTRIBUTIONS

3.1. Correlations

As stressed above, when dealing with bi-variate truncated
data it is imperative to determine whether the variables are
independent or not. If flux and photon index are independent,
the combined distribution G(F100, Γ) can be separated into
two independent distributions ψ(F100) and h(Γ). However,
independence may not be the case for F100 and Γ even though
flux is a distance dependent measure while photon index is
not. An intrinsic correlation between the photon index and
luminosity may be strong enough to manifest as a flux–index
correlation even after cosmological smearing of the correlations,
as is the case for example in gamma-ray bursts (Yonetoku et al.
2004; Lloyd et al. 2000). Even if there is no intrinsic correlation
between the photon index and flux, if the selection process
introduces some correlation, then the independence assumption
breaks down, and any such correlation should be removed in
order to obtain bias-free distributions of the variables.3 Thus, the
first task is to establish whether the variables are independent.
Determining the correlation when the data are truncated is not
straightforward.

We use the Efron–Petrosian method to determine whether the
two variables are correlated. This method is a version of the
Kendall Tau Statistic test devised for truncated data and uses
the test statistic

τ =
∑

j (Rj − Ej )√∑
j Vj

(1)

to test the independence of two variables in a data set, say (xj , yj )
for j = 1, . . . , n. For untruncated data (i.e., data truncated
parallel to the axes) Rj is the y rank of the data point j within
the set with xi < xj (or alternatively xi > xj ), which we call
the associated set. If the data are truncated, say it includes
only points with y > ylim = g(x) then the associated set is
defined as the largest untruncated set of points associated with
xj, i.e., not all points xi > xj but only a subset of these that
have yk � ylim,j = g(xj ) (see EP for a full discussion of this
method).

If (xj , yj ) were independent then the rank Rj should be
distributed uniformly between 0 and 1 with the expectation
value and variance Ej = (1/2)(j + 1) and Vj = (1/12)(j 2 + 1),

3 The observed distribution (in Figure 1) clearly shows a strong correlation.
However, most of this correlation is due to the data truncation described above.
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respectively. Independence is rejected at the nσ level if | τ | > n,
if τ turns out to be significantly different than the expected value
of zero. In such a case, the correlation is removed parameter-
ically as follows. We define a new variable y ′ = f (x, y) and
repeat the rank test with different values of parameters of the
function f and determine the nature of the correlation by the
best-fit value of the parameters that give τ = 0; the nσ range is
obtained from −n < τ < n.

We carry out this test for our data set using a variable trans-
formation, which is a simple coordinate rotation, by defining a
new variable we call the “correlation reduced photon index” as

Γcr = Γ − β × log

(
F100

F0

)
(2)

and determine the value of the parameter β empirically that
makes F100 and Γcr independent, which then means that the
distributions of F100 and Γcr are indeed separable:

G(F100, Γ) = ψ (F100) × ĥ (Γcr). (3)

Once the mono-variate distributions are determined then the true
distribution of Γ can be recovered by an integration over F100 as

h (Γ) =
∫

F100

ψ (F100) ĥ

(
Γ − β × log

(
F100

F0

))
dF100.

(4)

Here F0 is some fiducial flux we chose to be F0 = 6 ×
10−8 photons s−1 cm−2 sr−1 which is approximately where the
flux distribution breaks (see below), although its value is not
important. The data described in Section 2 are truncated in the
F100 − Γ plane, due to the bias against low flux, soft spectrum
sources. We can use a curve approximating the truncation,
Γlim = g(F100), which allows us to define the associated sets.
The associated set for each point are those objects whose photon
index is less than the limiting photon index of the object in
question with its specific value of F100.

We have tested this procedure using a simulated data set
from the Fermi-LAT collaboration designed to resemble the
observations, but with known distributions of uncorrelated
photon index and flux and subjected to a truncation similar
to the actual data. The results are described in the Appendix
where we demonstrate that we can recover the input distributions
which are of course quite different from the observed biased
distributions. As shown in the Appendix, we find that we
recover the input distribution best if we start with a truncation
boundary Γlim = g(log F100) roughly defined by the limiting
values obtained from the TS values. We then gradually move
this limit to higher fluxes (see Figure 8) and to more conservative
estimations of the truncation. This procedure is stopped when
the results do not change significantly. This way we lose some
data points but make certain that we are dealing with a complete
sample with a well-defined truncation. Note that when defining
new variables the truncation curve as a function of flux should
also be transformed by the same parameter β:

Γcr,lim = Γlim − β × log

(
F100

F100−min

)
. (5)

We subject the actual data to the same procedure, and the
results converge with the same cutoff limit location. Figure 2
shows the result of the test statistic τ as a function of the
correlation parameter β for a all blazars and the subsets

Figure 2. Correlation factor β vs. test statistic τ for a photon index and flux
correlation of the form given in Equation (2) for the 352 blazars used in this
analysis (solid curve), the subset of BL Lac type blazars (dashed curve), and the
subset of FSRQ type blazars (dash-dot curve). The 1σ range of best-fit values
for β are where |τ | � 1. For comparison, the dotted curve shows the correlation
factor for just those sources above 5 × 10−8 photons cm−2 s−1, where the data
truncation in the F100, Γ plane is not as relevant.

including only BL Lac objects and FSRQs in the sample.
Table 1 shows the best-fit values and 1σ ranges of the correlation
parameter β. We note that the correlation is weak, for example,
for all Fermi blazars the best-fit value is β = 0.02 ± 0.08
indicating a weak correlation with the 1σ range including β = 0
or no correlation.

3.2. Distributions

With the correlation removed the independent distributions
ψ(F100) and ĥ(Γcr) can be determined using a method outlined
in Petrosian (1992) and developed by Lynden-Bell (1971).
These methods give the cumulative distributions by summing
the contribution from each point without binning the data.

3.2.1. Flux Distributions

For the flux, the cumulative distribution

Φ(F100) ≡
∫ ∞

F100

ψ(F ′
100) dF′

100 (6)

is obtained as

Φ(F100) =
∏
j

(
1 +

1

N (j )

)
, (7)

where j runs over all objects with fluxes F100,j � F100, and
N (j ) is the number of objects in the associated set of object
j; namely, those with a value of F100,i � F100,j and Γcr,i �
Γcr,lim(F100,j ) determined from the truncation curve described
above. Equation (7) represents the established Lynden–Bell
method. We note again that the cutoff curve as a function of
flux is scaled by β in the same manner of Equation (2). The use
of only the associated set for each object removes the biases
introduced by the truncation.

The differential distribution

ψ(F100) = −dΦ(F100)

dF100
(8)
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Table 1
Best-fit Parameters for Fermi-LAT Blazar Intrinsic Distributions, as Calculated in This Work and in MA (Abdo et al. 2010b)

n βa mabove
b Fbreak

c mbelow
d μe σ f

Blazarsg (this work) 352 0.02 ± 0.08 −2.37 ± 0.13 7.0 ± 0.2 −1.70 ± 0.26 2.41 ± 0.13 0.25 ± 0.03
Blazarsg (MA) 352 · · · −2.48 ± 0.13 7.39 ± 1.01 −1.57 ± 0.09 2.37 ± 0.02 0.28 ± 0.01

BL Lac objects (this work) 163 0.04 ± 0.09 −2.55 ± 0.17 6.5 ± 0.5 −1.61 ± 0.27 2.13 ± 0.13 0.24 ± 0.02
BL Lac objects (MA) 163 · · · −2.74 ± 0.30 6.77 ± 1.30 −1.72 ± 0.14 2.18 ± 0.02 0.23 ± 0.01

FSRQs (this work) 161 −0.11 ± 0.06 −2.22 ± 0.09 5.1 ± 2.0 −1.62 ± 0.46 2.52 ± 0.08 0.17 ± 0.02
FSRQs (MA) 161 · · · −2.41 ± 0.16 6.12 ± 1.30 −0.70 ± 0.30 2.48 ± 0.02 0.18 ± 0.01

Notes.
a The correlation between photon index Γ and log flux F100. See Equation (2) and Section 3.1. A higher value of β (i.e., more positive correlation between flux and
photon index absolute value) moves the mean of the photon index distribution down to lower photon index absolute value (lower μ) and makes the faint end source
counts slope less steep (less negative mbelow), while a lower value of β has the opposite effect. All values reported for this work include the full range of results and
their uncertainties when considering the 1σ range of β.
b The power law of the intrinsic flux distribution ψ(F100) at fluxes above the break in the distribution. See Equation (9).
c The flux at which the power-law break in ψ(F100) occurs, in units of 10−8 photons cm−2 s−1. We present the value even though the precise location of the break is
not important for the analysis in this work. The value of Fbreak can be obtained using Equations (10) and (11).
d The power law of the intrinsic flux distribution ψ(F100) at fluxes below the break. See Equation (9).
e The mean of the Gaussian fit to the intrinsic photon index distribution h(Γ).
f The 1σ width of the Gaussian fit to the intrinsic photon index distribution h(Γ).
g Including all FQRQs, BL Lac objects, and 28 of unidentified types.

Figure 3. Observed (diamonds) and intrinsic (stars) cumulative distribution of
flux Φ(F100) = ∫ ∞

F ′
100

ψ(F ′
100) dF ′

100 for the 352 Fermi-LAT blazars used in this

analysis, shown for the best-fit value of the correlation parameter β. The error
bars represent the 1σ range of the correlation parameter β and are in general
smaller than the stars, and are larger than the statistical error. The normalization
is obtained by Equation (10).

is obtained by fitting piecewise polynomial functions via least-
squares fitting to Φ(F100) and calculating its derivative. Figure 3
shows the true intrinsic and (the raw) observed cumulative
distributions of F100 for all 352 blazars, while Figure 4 shows
the calculated true intrinsic differential distribution ψ(F100),
along with those obtained from the raw observed data without
correcting for the bias. A direct comparison to the results from
MA is presented there as well. The differential counts manifest
a broken power law which can be fit by the form

ψ(F100) = ψ(Fbreak)

(
F100

Fbreak

)mabove

for F100 � Fbreak

× ψ(Fbreak)

(
F100

Fbreak

)mbelow

for F100 < Fbreak.

(9)

Figure 4. Observed (diamonds) and reconstructed intrinsic (stars) differential
distribution of flux ψ(F100) for the 352 Fermi-LAT blazars used in this analysis.
The error bars represent the 1σ range of the correlation parameter β. The intrinsic
distribution is a power law with a break at Fbr 
 6 × 10−8 photons cm−2 s−1.
The best-fit slopes for the intrinsic distribution are −2.37 ± 0.13 above the break
and −1.70 ± 0.26 below, and the best-fit intrinsic distribution is plotted as the
dotted line. We also plot ψ(F100) as determined in MA (small crosses), with
error bars (dotted lines). The best-fit value for ψ(Fbreak) is 2.2 × 108 sr−1F−1

100.

mabove and mbelow are the power-law slopes above and below
the break, respectively, and are obtained from a least-squares
fitting of ψ(F100), as is the value of Fbreak. At values of F100
above FNT ≡ 1 × 10−7 photons cm−2 s−1, the truncation is not
significant and we can obtain the normalization by scaling the
cumulative distribution Φ(F100) such that

Φ(FNT) = N ± √
N

8.26 sr
, (10)

where N is the number of objects above FNT and is equal to 60
for all blazars, 12 for BL Lac objects, and 48 for FSRQs. The√

N uncertainty arises because of Poisson noise for the brightest
sources, and 8.26 sr is the total sky coverage considered, which
is |b| � 20◦ as discussed in Section 2. This also gives the value
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Figure 5. Intrinsic cumulative distribution of photon index P̂ (Γcr) =∫ Γcr
0 ĥ(Γcr) dΓcr for the 352 Fermi-LAT blazars used in this analysis. The nor-

malization of P̂ is arbitrary.

of ψ(Fbreak) by integrating ψ(F100) at fluxes above FNT and
setting this equal to Φ(FNT):

ψ(Fbreak) = Φ(FNT) (mabove − 1) F
−mabove−1
NT F

mabove
break . (11)

The best-fit value for ψ(Fbreak), corresponding to the best-fit
value of mabove, is then 2.2 × 108 sr−1F−1

100.

3.2.2. Photon Index Distributions

A parallel procedure can be used to determine the distribution
of the correlation reduced photon index, namely, the cumulative
distribution:

P̂ (Γcr) ≡
∫ Γcr

0
ĥ(Γ′

cr) d Γ′
cr (12)

obtained with

P̂ (Γcr) =
∏
k

(
1 +

1

M(k)

)
(13)

in the method of Lynden-Bell (1971) can be differentiated to
give the differential distribution

ĥ(Γcr) = dP̂ (Γcr)

d Γcr
. (14)

In this case, k runs over all objects with a value of Γcr,k � Γcr,
and M(k) is the number of objects in the associated set of object
k, i.e., those with Γcr,i � Γcr,k and F100 � Flim,k obtained from
the truncation line at Γcr,k.

Figure 5 shows the cumulative distribution of the correlation
reduced photon index P̂ (Γcr) for all 352 blazars. Differentiation
of this gives ĥ(Γcr), which can be substituted in Equation (4) to
obtain the intrinsic distribution of the photon index itself, h(Γ).
The results are shown in Figure 6 along with the raw observed
distribution for comparison. Because the mean of the intrinsic
distribution of the photon index is sensitive to the value of the
correlation parameter β, we include the full range of intrinsic
distributions resulting from the 1σ range of β. A Gaussian form
provides a good description of the intrinsic distribution of the
index.

Figure 6. Observed (diamonds) and reconstructed intrinsic (stars) distribution
of photon index h(Γ) for the 352 Fermi-LAT blazars used in this analysis. The
intrinsic distribution is calculated from the flux distribution and the correlation
reduced photon index distribution by Equation (4). The stars represent the
intrinsic distribution calculated with the best-fit value of the correlation
parameter β and the solid curve is the best-fit Gaussian function to these values,
while the dotted curves represent the best-fit Gaussian functions to the extremal
intrinsic distributions allowed by the 1σ range of β. The intrinsic distribution
can be represented by a Gaussian with a mean of 2.41 ± 0.13 and 1σ width of
0.25 ± 0.03, while the observed distribution can be represented by a Gaussian
with a mean of 2.32 ± 0.01 and 1σ width of 0.32 ± 0.01. The normalization of
h(Γ) is arbitrary.

We have carried out identical procedures to obtain the
distributions of the BL Lac and FSRQ subsets of the data. Table 1
summarizes the best-fit parameters for the intrinsic flux and
photon index distributions, for the sample considered as a whole,
and for the BL Lac and FSRQ sub-populations separately. The
errors reported include statistical uncertainties in the fits and
the deviations resulting from the 1σ range of the correlation
parameter β. A higher value of β (i.e., more positive correlation
between flux and photon index absolute value) moves the mean
of the photon index distribution down to a lower absolute value
of the photon index and makes the faint end source counts slope
less steep (less negative mbelow), while a lower value of β has
the opposite effect.

3.3. Error Analysis

It addition to uncertainty in the value of β and those due to
the fitting procedure there are other effects that can add to the
uncertainties of the final results. Here, we consider the effects
of some factors which we have ignored in the above analysis.

1. Individual measurement uncertainties. We have treated
individual sources as points having a delta function dis-
tribution in the flux–index plane, resulting in a possible
Eddington bias (Eddington 1940). The measurement un-
certainties can be included by changing the delta functions
to kernels whose widths are determined by the reported
measurement errors. The main effect of this will be smear-
ing out of the distribution which can be neglected if the
errors are small compared to the width of the features in
the distributions. This effect will not introduce any bias as
long as measurement uncertainties are symmetrical about
the reported value (e.g., the kernels are Gaussian) and the
distributions themselves are symmetrical or fairly flat. The
former is the case for the reported uncertainties in Abdo
et al. (2010a). This later is the case for the distribution of Γ,
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where the reported measurement errors vary between 0.04
and 0.35, but this is not likely to introduce any bias given
the symmetrical distribution in Γ.

The situation is different for the flux distribution, which is
a power law. In this case the typical flux uncertainty values
are on the order of 1/4–1/3 of the reported fluxes. There
may be more or fewer sources included than missed in a
flux-limited sample such as this one. For example, for a
power-law differential distribution with index |mbelow| > 1,
which is the case here, more sources will be included
than missed at any flux for which there are errors in the
reported fluxes, which will bias the distribution. The effect
is different for the case where fractional measurement errors
are constant with flux versus when they change with flux.
For constant fractional flux measurement errors, an error
will be introduced on the normalization of the source counts
and can be approximated by [1/2 δ2 mbelow (mbelow + 1)]
(Teerikorpi 2004), where δ is the fractional error in flux.
For mbelow ∼ −1.7 and δ ∼ 0.3 this error will be
about 5%, which is small compared with other sources
of normalization uncertainty. On the other hand, there will
be an effect on the reconstructed slope of the counts only if
the fractional flux measurement errors change with flux. It
is expected that the fractional flux errors will be larger for
lower fluxes, and in the extreme case that they do increase
from negligible at high fluxes to values of 1/4–1/3 at the
lowest fluxes, according to simulation results in Teerikorpi
(2004), resulting fractional errors in the source count slope
will be around 7%, which is significantly smaller than the
errors we already quoted for the source count slopes.

Caditz & Petrosian (1993) evaluated the effect of mea-
surement error on EP method determinations of luminosity
functions of quasars using a Gaussian kernel and found that
for individual uncertainty widths significantly smaller than
the data range, the effects of the inclusion of measurement
uncertainties were small (e.g., Figure 1 of that work). Given
the Gaussian symmetrical nature of the reported uncertain-
ties, the symmetrical nature of the photon index distribu-
tion, and the relatively shallow faint end power-law slope
of the source count distribution, and especially the relative
size of the reported uncertainties compared to the range of
values considered, in light of the analysis done by Caditz
and Petrosian we consider the errors introduced by the indi-
vidual data point uncertainties to be negligible compared to
the uncertainties introduced by the range of the correlation
parameter β and the uncertainties in the power-law fits.

2. Blazar variability. It is well known that blazars are inher-
ently variable objects. There are two potential effects aris-
ing from blazar variability relevant to the analysis here.
One is similar to measurement error discussed above,
in that it presumably would cause more objects to rise
above the flux limit and be included in the survey than
go below the flux limit and be excluded. The other is that
the reported temporally averaged quantities such as flux and
photon index, which we use in this analysis, may deviate
from the true average values.

Addressing the former issue, as discussed in the first
year Fermi-LAT extragalactic source catalog (e.g., Figure
11(c) of Abdo et al. 2010c), the pattern of maximum flux
versus mean flux does deviate at the lowest detected fluxes.
This indicates that variability becomes more important with
decreasing flux, but not as sharply as might be expected
from previous EGRET data. This will be even less sharp

for the TS � 50 sources we use as opposed to the entire
TS � 25 sample considered there. As shown in Abdo et al.
(2010e), the peak-to-mean flux ratio is a factor of two
or less for most Fermi-LAT blazars, which excludes the
possibility that most of the sources are detected because
of a single outburst which happened during the 11 months
of observation and are undetected for the remaining time.
We believe the bias resulting from detecting blazars only in
their flaring state is small.

Addressing the latter issue, both Abdo et al. (2010f) and
Abdo et al. (2011) presented a detailed analysis of the
variability issues with Fermi-LAT blazars. They find that
most sources exceed their average flux by less than 20%,
and often less than 5%, of the monitored time, and conclude
that both the timescale of variability is short compared with
the length of observations, and that the measured average
quantities are not highly biased by flaring. Moreover, as also
shown in Abdo et al. (2010e), there is little or no temporal
variation of the photon index with flux. We thus believe
that no large systematic uncertainties result from the use of
these averaged physical quantities.4

3. Source confusion. Source confusion can also introduce
errors at the faint end of the reconstructed distributions
because of relatively broad PSF of the Fermi-LAT; some
faint sources may be either missed entirely or erroneously
combined into the fluxes of other sources. We first note
that these two phenomena will have opposite systematic
effects on the faint end source count slope, as the former
would tend to make it less steep while the later would
tend to make it steeper. In addition to this self-canceling
tendency, several tests argue against Fermi-LAT’s blazar
detections being significantly confusion limited. Abdo et al.
(2010a) estimate that at Galactic latitudes above ±10◦ and
at a TS � 25 detection threshold, approximately 7.6% of
sources (80 out of 1043) are missed because of confusion,
and blazars are 85% of the |b| � 10◦ sources. Since we
have used only sources detected at TS � 50 and at latitudes
above ±20◦ Galactic latitude, the effect of confusion should
be lower because the sample will be more complete. Again,
the faint end source counts slope could be altered by
an amount considerably less than this. Other evidence
against source confusion being a significant problem for
Fermi-LAT blazars is the large increase in the number
of extragalactic sources from the first-year to second-
year Fermi-LAT catalogs (e.g., Ackermann et al. 2011).
Additionally, there is the analysis described in Section
8.3 of MA where different extragalactic sky scenarios
were simulated and run through an instrument detection
and catalog pipeline, including an extremal scenario with
a single steep power-law distribution of blazars with a
differential slope of −2.23, in which blazars with fluxes
greater than 10−9 photons cm2 s−1 would produce 70%
of the total EGB. Even under this much more dense sky
scenario, many more blazars would be detected by the
instrument and analysis, including at low fluxes.

We also note that to the extent that the effects of both blazar
variability and source confusion will have some photon index
dependence, because of differing spectra in the case of the
former and the Fermi-LATs energy-dependent PSF in the case
of the latter, then any potential biases will already have been

4 There is an interesting implication in blazar variability for the extragalactic
gamma-ray background, which is discussed in Section 4.
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accounted for in the way we have dealt with truncations in the
F100, Γ plane. We have treated the truncation in that plane as
empirical and accounted for it as discussed in Section 3.1.

In summary, most of these additional sources of error are
small and are important only for a small range of fluxes around
the lowest fluxes, where the EP method has a larger uncertainty
anyway, and for that reason these low fluxes are excluded from
the fitting in our analysis (compare the end points of raw and
corrected distributions in Figures 3 and 4).

4. TOTAL OUTPUT FROM BLAZARS AND THE
EXTRAGALCTIC GAMMA-RAY BACKGROUND

We can use the above results to calculate the total flux from
blazars and the contribution of blazars to the EGB, defined here
as the total extragalactic gamma-ray photon output.5 The total
output in gamma-ray photons from blazar sources with fluxes
greater than a given F100, in terms of photons s−1 cm−2 sr−1

between 0.1 and 100 GeV, is

Iγ (>F100) =
∫ ∞

F100

F ′
100 ψ(F ′

100) dF′
100. (15)

Integrating by parts, the contribution to the EGB can be related
directly to the cumulative distribution Φ(F100) which is the
primary output of our procedure

Iγ (>F100) = F100 Φ(F100) +
∫ ∞

F100

Φ(F ′
100) dF′

100. (16)

The advantage of using the latter equation is that it can give
a step-by-step cumulative total contribution to the background
instead of using analytic fits to the differential or cumulative
distributions obtained from binning the data. Figure 7 shows
Iγ (>F100) resulting from this integration down to flux F100 =
5 × 10−9, with the total output of the blazar population at
fluxes probed by this analysis being Iγ (>F100 = 5 × 10−9) =
4.5 ± 0.5 × 10−6 photons s−1 cm−2 sr−1. Note that this includes
the contribution from both detected blazars and those undetected
above this flux owing to the truncation in the F100, Γ plane.
Therefore, as expected it is more than the total contribution
of blazars resolved by Fermi-LAT which is estimated to be
(4.1 ± 0.2) × 10−6 photons s−1 cm−2 sr−1 (Abdo et al. 2010c).6

In order to determine the contribution of blazars with F100 <
5 × 10−9 photons s−1 cm−2 s−1 to the total EGB we must
extrapolate the flux distribution we have obtained to below
this flux which cannot be unique and is more uncertain.
We fit a power law to the faint end of Φ(F100) so that we
can extend the integration of Equation (16) to lower fluxes.
Extending to zero flux we find that blazars in toto can produce
a photon output of Iγ (>F100 = 0) = 8.5(+6.3/–2.1) ×
10−6 photons s−1 cm−2 sr−1. This large range is due to the
uncertainty in the faint end cumulative source counts slope,
ultimately owing to the range of the correlation parameter β,
where the best-fit value reported is for the middle of the 1σ faint
end slope of Φ(F100).

This is to be compared with the total observed EGB of
IEGB = (14.4 ± 1.9) × 10−6 photons s−1 cm−2 sr−1 reported

5 This definition avoids the problem that individual instruments resolve a
different fraction of sources, leading to different estimates for the fraction of
the total extragalactic photon output that is unresolved.
6 Actually the latter is what is attributed to point sources with test statistic
value of TS > 25, which corresponds roughly to a 5σ detection.

Figure 7. Estimate of the cumulative number of photons between 0.1
and 100 GeV above a given F100 from blazars, Iγ−blazars(>F100) from
Equation (16), shown with error bars resulting from the 1σ range of the cor-
relation parameter β. The bottom dotted horizontal line shows the level of the
EGB as measured by Fermi (Abdo et al. 2010d), with Fermi-resolved point
sources removed. The top dashed horizontal line shows the EGB, i.e., the total
extragalactic gamma-ray output (IEGB) as defined here. The best-fit total contri-
bution of blazars to IEGB, obtained by integrating Equation (16) to zero flux, is
59%, but our analysis cannot rule out blazars, integrated to arbitrarily low flux,
forming as little as 33% or as much as all of the total extragalactic gamma-ray
output, due to the large range of uncertainty in the faint end source counts slope,
ultimately owing to the uncertainty in the correlation parameter β.

by Fermi.7 If the blazar population continues to have the fitted
power-law distribution to zero flux then it is clear that for our
best-fit parameters, blazars can produce 59% of the observed
EGB but this contribution could be as little as 39% or as much
as all of the total extragalactic gamma-ray output of the universe.
This result is in agreement, albeit with a larger uncertainty, with
the result in MA, where following the definition conventions
here blazars extrapolated to zero flux are found to contribute
46% ± 10% of the EGB.8

It is, however, likely that blazars do not continue as a
population with no change in the source counts slope to zero
flux, since even a dim AGN of luminosity ∼1045 erg s−1 at
redshift 3 would have a flux of ∼10−12 photons cm−2 s−1. If we
only integrate Equation (16) to this lower flux limit, then we get
the total blazar contribution to be Iγ (>F100 = 1 × 10−12) =
7.7(+0.8/–1.2)×10−6 photons s−1 cm−2 sr−1, which brings the
upper limit estimate down to 66% of the total EGB.

We can also obtain the energy intensity of the cumulative
emission from blazars as

Iγ−blazars(>F100) =
∫ ∞

F100

dF ′
100

∫ ∞

−∞
dΓE(F ′

100, Γ) G(F ′
100, Γ),

(17)

7 The Fermi collaboration papers divide this radiation into two parts, one
from what is referred to as the contribution of resolved sources (the
Isources = (4.1 ± 0.2) × 10−6 photons s−1 cm−2 sr−1 mentioned above), and a
second “diffuse” component of IEGB−sources = (1.03 ± 0.17) × 10−5

photons s−1 cm−2 sr−1 (Abdo et al. 2010d). However, the most relevant
comparison is with the total of these two, because which sources are declared
to be resolved is determined by a TS threshold, not a flux limit, and these are
different due in part to the truncation in the F100, Γ plane and the varying
Galactic diffuse level.
8 The total point source diffuse emission and EGB intensity presented in
Table 6 of MA have the contribution of resolved Fermi-LAT sources removed,
so for direct comparison to the results presented here, the total Fermi-LAT
resolved source contribution of (4.1 ± 0.2) × 10−6 photons s−1 cm−2 sr−1

must be added to both before the ratio is taken.

7



The Astrophysical Journal, 753:45 (11pp), 2012 July 1 Singal, Petrosian, Ajello

where for a simple power-law spectrum we can relate the energy
emitted between 0.1 and 100 GeV to the flux as

E100

F100
≡ R(Γ) ∼= 100 × Γ − 1

Γ − 2
× 1 − 103(2−Γ)

1 − 103(1−Γ)
MeV photon−1,

(18)
except for Γ = 2 and Γ = 1 for which R(2) = ln 103/(1 −
10−3) ∼ 6.9 and R(1) = (103 − 1)/ ln 103 ∼ 150, respectively.
If we ignore the weak correlation between Γ and F100 (set
β = 0) we get Iγ−blazars(>F100) = R̄ × Iγ (>F100), where
R̄ is the average value of R over the Gaussian distribution
of Γ. We carry this average numerically and get the total
(resolved and unresolved) Iγ−blazars = 2.7(+3.1/ − 0.9) ×
10−3 MeV cm−2 s−1 sr−1, integrating to zero flux taking into
account the uncertainties above and the 1σ uncertainty in the
mean of h (Γ).

We note that this analysis cannot rule out blazars as the sole
significant contributor to the EGB, although the best-fit value
does not favor this to be the case. The spectral index of the EGB
of ∼2.4 (Abdo et al. 2010d) is consistent with the mean photon
index of the blazars as determined here and in MA. In a similar
vein, Venters & Pavildou (2011) have shown that the spectrum of
the EGB is consistent with a blazar origin. Several authors (e.g.,
Stecker & Venters 2011; Abazajian et al. 2012) have suggested
that blazars could be the primary source of the EGB, while the
results presented in MA and Malyshev & Hogg (2011) would
favor the primary source being something else. Other possible
source populations include star-forming galaxies, which have
been recognized as a possible major contributor to the EGB by
e.g., Stecker & Venters (2011), Fields et al. (2010), and Lacki
et al. (2011), although this has been disputed by Makiya et al.
(2011), radio galaxies (e.g., Inoue 2011), and other non-blazar
AGNs (e.g., Inoue & Totani 2009, 2011).

According to Stecker & Salamon (1996), to the extent that
faint blazars are more likely to be observed by instruments such
as the Fermi-LAT if they are in the flaring state rather than the
quiescent state, then the observed blazars should have a different
mean photon index than the EGB, were the EGB to be made
primarily from quiescent state blazars, under the assumption
that blazars in the flaring state have a different spectrum than
in the quiescent state. As the reconstructed mean photon index
here of the Fermi-LAT observed population is close to that of the
EGB, and there is only a weak relation and correlation between
flux and photon index, this would imply that at least one of the
following must be the case: (1) there is not a significant bias
in the Fermi-LAT toward detecting blazars in the flaring state,
(2) quiescent blazars do not form the bulk of the EGB, or (3)
flaring and quiescent blazars have, en masse, roughly the same
photon index distributions.

5. DISCUSSION

We have used a rigorous method to calculate the intrinsic
distributions in flux (known commonly as the source counts or
the log N–log S relation) and photon index of Fermi-LAT blazars
directly from the observed ones without any assumptions or
reliance on extensive simulations. This method features a robust
accounting for the pronounced data truncation introduced by
the selection biases inherent in the observations, and addresses
the possible correlation between the variables. The accuracy
of the methods used here are demonstrated in the Appendix
using a simulated data set with known distributions. A summary
of the best-fit correlations between photon index and flux,
and the best-fit parameters describing the inherent distributions

of flux and photon index, of the observed data is presented
in Table 1 along with the values obtained by MA. We have
obtained the distributions of flux and photon index of blazars
considering the major data truncation arising from Fermi-LAT
observations. More subtle issues affecting the distributions we
have derived, especially the photon index distribution, may
arise due to the finite bandwidth of the Fermi-LAT and lack of
complete knowledge of the objects’ spectra over a large energy
range and deviations from simple power laws. However, the
Fermi-LAT bandwidth is sufficiently large that the contribution
of sources that peak outside of this range to the source counts
and the EGB in this energy range will be small.

We find that the photon index and flux show a slight
correlation, although this correlation is of marginal significance.
This indicates that the intrinsic luminosities and photon indices
are correlated only weakly. The comparison of the intrinsic and
raw observed distributions clearly shows the substantial effects
of the observational bias. The intrinsic differential counts can be
fitted adequately by a broken power law and the photon index
appears to have an intrinsic Gaussian distribution. We also find
that in general the values reported here are consistent with those
reported in MA for the power-law slopes of the flux distribution
ψ(F100) and the distributions of the photon index h(Γ), although
the allowed range of the correlation parameter β here allows for
wider uncertainty in these values in some cases. We do note a
discrepancy at the 1σ level for the faint end slope of the FSRQ
source counts.

Using the bias-free distributions, we calculated the total
cumulative contribution of blazars to the EGB as a function
of flux. We obtain this directly from the cumulative flux
distribution which is the main output of the methods used.
Under the assumption that the distribution of blazars continues
to arbitrarily low flux, we find the best-fit contribution of blazars
to the total extragalactic gamma-ray radiation in the range
from 0.1 to 100 GeV to be at the level of 59%, although
this analysis cannot rule out blazars producing as little as
39% or as much as all of the total extragalactic gamma-ray
output. This result is in agreement with the result in MA,
although with a larger uncertainty. The significant uncertainties
reported here for the source count slopes and the contribution
of blazars to the EGB are ultimately due to the allowed
range of the correlation parameter β. As will be discussed
in the Appendix, the method applied to the (uncorrelated)
simulated data also manifests a significant uncertainty on β
that translates into the corresponding uncertainty for the faint-
end slope of the source count distribution. This is important as
it ultimately governs the contribution of blazars to the EGB.
We note that a similar scenario (i.e., absence of a correlation
between photon index and flux) might characterize the real
data in view of the results reported in the previous sections
and their similarity to the results obtained using simulated
uncorrelated data. As shown in the Appendix, larger samples
are required to narrow down the uncertainty on the correlation
parameter β.

If, as could be expected, the flux distribution flattens at fluxes
below ∼10−12 photons cm−2 s−1, the integrated contribution
will be significantly lower than for a naive extrapolation to zero
flux. This is also modulo any change in the power-law slope
of the source counts below the fluxes probed in this analysis,
which might arise due to luminosity and/or density evolution
with redshift. A full accounting for the possible evolution in the
blazar population using a sample with redshift determinations
will be presented in a forthcoming work.
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Figure 8. Flux and photon index for the 486 sources in the simulated Fermi-
LAT data set, along with the curve (solid line) used to specify the observation
truncation in the F100, Γ plane. As with the real blazar data, moving the cutoff
to the left dashed line has a large effect on the results, but moving it to the right
dashed line has a negligible effect.
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APPENDIX

TESTS OF ANALYSIS METHODS AND ERROR
PROPAGATION WITH SIMULATED DATA

Here we test the methods used in this paper with a simulated
Monte Carlo data set provided by the Fermi-LAT collaboration.
The data set is a realization of a set of simulations discussed
in MA. For each Monte Carlo realization 20,000 sources
were placed isotropically on the sky according to assumed
distributions of flux (broken power law) and photon index
(Gaussian). Instrumental and observational effects on detection
were applied to these data, resulting in a catalog of 486 sources
with detection TS of at least 50, where TS is the test statistic as
discussed in Section 2.

Figure 8 shows the fluxes and photon indices for the simulated
data set, along with a curve approximating the observation
truncation in the F100 − Γ plane, which we take as the limiting
flux for any object at a given photon index, and the limiting
photon index for any object at a given flux, for inclusion in
the relevant associated sets. Since there is some uncertainty in
the detection threshold values of fluxes and indices we carry
our analysis first assuming the individual limiting fluxes for
each source to be Flim = F100/

√
T S/50, and then by using

a simple curve to define the truncation boundary as shown
in Figure 8. This is a more conservative assumption and few
sources are excluded but it ensures the completeness of the
sample. We experiment with moving the curve to the right and
down (eliminating more sources in the edges of the sample)
until we do not notice any change in the result. As described
below this reproduces the input data accurately. We carry out
the same procedure for the real data.

While the raw data obtained from these simulations show
a strong correlation between flux and index (ignoring the
truncation we obtain the correlation parameter βraw = 0.53 ±
0.03 defined in Equation (2)), our method shows that once the

Figure 9. Correlation factor β vs. test statistic τ for a photon index and flux
correlation of the form given in Equation (2), for the 486 sources in the simulated
Fermi-LAT data set. The solid curve shows the results for the method employed
here with the cutoff curve shown in Figure 8 while the dotted curve shows the
results for the raw data.

Figure 10. Observed (diamonds) and reconstructed β = 0 intrinsic (stars)
differential distribution of flux ψ(F100) for the 486 sources in the simulated
Fermi-LAT data set. The data have intrinsic power-law slope distributions of
−2.49 and −1.59 above and below the break, respectively, which are plotted.
The normalization of ψ(F100) here is arbitrary.

effects of truncation are accounted for the correlation disappears
and we get a correlation parameter β consistent with zero, in
agreement with that of the input data. Figure 9 shows the values
of β versus τ for both the raw data and with the truncation
accounted for.

Figure 10 shows the observed and reconstructed intrinsic dif-
ferential distribution of flux ψ(F100) for the simulated data set,
along with the known intrinsic distribution. Figure 11 shows
the observed and reconstructed intrinsic differential distribution
of photon index h(Γ) for the simulated data set, along with the
known intrinsic distribution. Table 2 shows the full range of val-
ues for the reconstructed intrinsic distributions for the simulated
data, including the effects of the entire 1σ range of the corre-
lation parameter β, along with the known input distributions.
It is seen that these methods successfully reproduce the input
intrinsic distributions from a highly truncated data set.
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Table 2
Simulated Blazar Intrinsic Distributions, as Calculated in This Work and as Known from the Inputs to the Simulated Data Set

βa mabove
b Fbreak

c mbelow
d μe σ f

Determined distributionsg 0.02 ± 0.07 −2.41 ± 0.11 8.0 ± 1.0 −1.61 ± 0.27 2.38 ± 0.9 0.34 ± 0.05
Known input distributionsg 0 −2.49 6.6 −1.59 2.37 0.28

Notes.
a The correlation between photon index Γ and log flux F100. See Equation (2) and Section 3.1.
b The power law of the intrinsic flux distribution ψ(F100) at fluxes above the break in the distribution. See Equation (9).
c The flux at which the power-law break in ψ(F100) occurs, in units of 10−8 photons cm−2 s−1.
d The power law of the intrinsic flux distribution ψ(F100) at fluxes below the break. See Equation (9).
e The mean of the Gaussian fit to the intrinsic photon index distribution h(Γ). For the analysis here this includes the full range of results and their
uncertainties when considering the 1σ range of β.
f The 1σ width of the Gaussian fit to the intrinsic photon index distribution h(Γ).
g The simulated observed blazar data set is provided by the Fermi collaboration and has 486 objects. All values for the determined distributions reported
here include the full range of results and their uncertainties when considering the 1σ range of β.

Figure 11. Observed (diamonds) and reconstructed β = 0 intrinsic (stars)
differential distribution of photon index h(Γ) for the 486 sources in the simulated
Fermi-LAT data set. The data have an intrinsic Gaussian distribution with a mean
of 2.37 and 1σ width of 0.28, which is shown by the dashed curve. The solid
curve is the best-fit Gaussian to the stars, which differs only slightly from the
dashed curve. The normalization of h(Γ) here is arbitrary.

Here, we can also address the question of whether errors in
the cumulative distribution propagate in a significantly corre-
lated way to the differential distributions. First we take random
samples of size n from the simulated data set and add 0.3 times
the flux of each object to itself in half of each of the samples
and subtract 0.3 times the flux of each object from itself in the
other half. This factor of 0.3 reflects the largest typical reported
uncertainties in the Fermi-LAT flux measurements that we use.
The effect of doing so on the cumulative flux distribution is
shown in Figure 12 while the effect propagated through to the
cumulative total number of photons (i.e., the contribution to the
EGB), determined in the manner of Equation (16), is shown in
Figure 13. In both figures the solid curve shows the cumulative
flux distribution Φ(F100) for n = 0, the base case of no changes.
The dashed curves show n = 10 and the dotted curves are for
n = 100, the later representing almost one quarter of the objects
in the sample. In these cases the differences in the cumulative
flux distribution and the cumulative number of photons from the
base case are negligible. Then, for a more realistic but perhaps
extreme case, we alter the flux of all of the objects with alter-
ations distributed such that those objects with the lowest fluxes
have their fluxes altered by the highest typical reported mea-
surement errors of 0.3 times the flux, while those with higher
fluxes have lower errors, with the alteration proportional to the

Figure 12. Reconstructed β = 0 intrinsic cumulative distribution of flux
Φ(F100) for the 486 sources in the simulated Fermi-LAT data set. The
normalization of Φ(F100) here is arbitrary. The solid curve shows the fluxes
as simulated, while the dashed (n = 10) and dotted (n = 100) curves show
the results if a number n of those fluxes are altered in such a way that half of
the altered fluxes are increased by 30% and half are decreased by 30%, values
representing the largest typical reported uncertainties for the flux measurements
used in this analysis. The dash-dot curve shows the result for a more realistic case
where the fluxes of all of the objects are altered in the manner described in the
text. As evident in all cases the added uncertainty introduced in the cumulative
and fitted differential distribution is small compared to the uncertainty resulting
from considering the extremal values of the correlation parameter β or other
uncertainties considered in this analysis.

Figure 13. Same as Figure 12 except the reconstructed β = 0 estimate of the
cumulative total number of photons between 0.1 and 100 GeV above a given
F100 from blazars, Iγ−blazars(>F100), from Equation (16). The normalization of
Iγ−blazars(>F100) here for the simulated data set is arbitrary.
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ratio of the difference of the logarithm of the flux and that of
the maximum flux in the sample, with positive alterations for
half the objects and negative alterations for the other half. The
resulting cumulative flux distribution and cumulative number of
photons is shown by the dash-dot curves in Figures 12 and 13.
Even then the change to the cumulative flux distribution is small,
and the added uncertainty introduced into the fitted differential
distribution and the cumulative total number of photons, if this
case is considered relative to the base case, is small compared to
the uncertainty resulting from considering the extremal values
of the correlation parameter β and other sources of uncertainty
considered in this work (compare with Figures 3 and 7).

We have also examined the effect of increasing the data set
size on the uncertainty range determined for the correlation
parameter β for this method in this work. A second simulated
data set provided by the Fermi-LAT collaboration consisting of
a catalog of ∼6 times as many (3018) objects resulted in a 1σ
range for β that was approximately half as large (β = −0.01±
−0.04) as with the 486 object set. As the uncertainty range in
the value of β is the major driver in the total uncertainty of
the fitted distribution parameters, we can expect a significant
reduction in uncertainty levels for the distribution parameters
of the real data with a future five year Fermi-LAT extragalactic
catalog consisting of ∼1500 blazars as opposed to the 352 here.
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